% This program can be redistributed and/or modified under the terms % of the GNU Public License, version 3. % % Seth Brown, Ph.D. % sethbrown@drbunsen.org % % Compiled with XeLaTeX % Dependencies: % Fontin Sans font (http://www.exljbris.com/fontinsans.fsrtml) % \documentclass{beamer} \usepackage{pgf} \usepackage{tikz} \usepackage{times} \usepackage[T1]{fontenc} %\usepackage[mathscr]{eucal} %\usepackage{mathptmx} %\usepackage{mathrsfs} \usepackage{hyperref} \usepackage{color} \usepackage{graphicx} \usepackage{wasysym} % \usepackage{pgfpagfes} % \setbeameroption{show notes on second screen} %\pgfpagesuselayout{4 on 1}[a4paper,border shrink=5mm,landscape] \usepackage{xcolor} \usepackage{xcolor,multirow} %\usepackage[table]{xcolor} %\usepackage[dvipsnames]{xcolor} %\usepackage{amsfonts} %\usepackage{amsmath} % \usepackage[amssymb]{SIunits} %\usepackage{natbib} %\usepackage{amssymb} \usepackage{hepparticles} \usepackage{hepnicenames} \usepackage{hepunits} \usepackage{tikz} \usepackage[english]{babel} %%\usepackage{lmodern} %\usepackage{feynmp} % suppress navigation bar \beamertemplatenavigationsymbolsempty \usepackage[mathscr]{eucal} \usepackage{mathrsfs} \mode<presentation> { \usetheme{bunsen} \setbeamercovered{transparent} \setbeamertemplate{items}[circle] } \newcommand{\Simley}[1]{% \begin{tikzpicture}[scale=0.15] \newcommand*{\SmileyRadius}{1.0}% \draw [fill=brown!10] (0,0) circle (\SmileyRadius)% outside circle %node [yshift=-0.22*\SmileyRadius cm] {\tiny #1}% uncomment this to see the smile factor ; \pgfmathsetmacro{\eyeX}{0.5*\SmileyRadius*cos(30)} \pgfmathsetmacro{\eyeY}{0.5*\SmileyRadius*sin(30)} \draw [fill=cyan,draw=none] (\eyeX,\eyeY) circle (0.15cm); \draw [fill=cyan,draw=none] (-\eyeX,\eyeY) circle (0.15cm); \pgfmathsetmacro{\xScale}{2*\eyeX/180} \pgfmathsetmacro{\yScale}{1.0*\eyeY} \draw[color=red, domain=-\eyeX:\eyeX] plot ({\x},{ -0.1+#1*0.15 % shift the smiley as smile decreases -#1*1.75*\yScale*(sin((\x+\eyeX)/\xScale))-\eyeY}); \end{tikzpicture}% }% % set fonts \usepackage{amsfonts} \usepackage{amsmath} \usepackage{verbatim} \usepackage{fancyvrb} \DefineVerbatimEnvironment{code}{Verbatim}{fontsize=\small} \DefineVerbatimEnvironment{example}{Verbatim}{fontsize=\small} \usepackage{listings} \usepackage{courier} \lstset{ basicstyle=\footnotesize\ttfamily, % Standardschrift %numbers=left, % Ort der Zeilennummern numberstyle=\tiny, % Stil der Zeilennummern %stepnumber=2, % Abstand zwischen den Zeilennummern numbersep=5pt, % Abstand der Nummern zum Text tabsize=2, % Groesse von Tabs extendedchars=true, % breaklines=true, % Zeilen werden Umgebrochen keywordstyle=\color{red}, frame=b, % keywordstyle=[1]\textbf, % Stil der Keywords % keywordstyle=[2]\textbf, % % keywordstyle=[3]\textbf, % % keywordstyle=[4]\textbf, \sqrt{\sqrt{}} % stringstyle=\color{white}\ttfamily, % Farbe der String showspaces=false, % Leerzeichen anzeigen ? showtabs=false, % Tabs anzeigen ? xleftmargin=17pt, framexleftmargin=17pt, framexrightmargin=5pt, framexbottommargin=4pt, %backgroundcolor=\color{lightgray}, showstringspaces=false % Leerzeichen in Strings anzeigen ? } %\DeclareCaptionFont{blue}{\color{blue}} %\captionsetup[lstlisting]{singlelinecheck=false, labelfont={blue}, textfont={blue}} \usepackage{caption} \DeclareCaptionFont{white}{\color{white}} \DeclareCaptionFormat{listing}{\colorbox[cmyk]{0.43, 0.35, 0.35,0.01}{\parbox{\textwidth}{\hspace{15pt}#1#2#3}}} \captionsetup[lstlisting]{format=listing,labelfont=white,textfont=white, singlelinecheck=false, margin=0pt, font={bf,footnotesize}} \usetikzlibrary{arrows} \usetikzlibrary{shapes} %\usepackage{gfsartemisia-euler} %\usepackage[T1]{fontenc} \setbeamerfont{frametitle}{size=\LARGE,series=\bfseries} \tikzstyle{decision} = [diamond, draw, fill=gray!20, text width=4.5em, text badly centered, node distance=3cm, inner sep=0pt] \tikzstyle{block} = [rectangle, draw, fill=blue!10, text width=5em, text centered, rounded corners, minimum height=2em] \tikzstyle{line} = [draw, -latex'] \tikzstyle{cloud} = [draw, ellipse,fill=red!10, node distance=3cm, minimum height=2em] \tikzstyle{every picture}+=[remember picture] \renewcommand{\PKs}{{\HepParticle{K}{S}{}\xspace}} % color definitions \usepackage{color} \definecolor{uipoppy}{RGB}{225, 64, 5} \definecolor{uipaleblue}{RGB}{96,123,139} \definecolor{uiblack}{RGB}{0, 0, 0} % caption styling %\DeclareCaptionFont{uiblack}{\color{uiblack}} %\DeclareCaptionFont{uipoppy}{\color{uipoppy}} %\captionsetup{labelfont={uipoppy},textfont=uiblack} % see the macros.tex file for definitions \include{macros } % title slide definition \title{FCNF and L/BNV \\in $\Lambda_c$ decays} %\subtitle{a bias report} \author{ \underline{Marcin Chrz\k{a}szcz}$^{1,2}$, Tadeusz Lesiak$^{1}$, Mariusz Witek$^{1}$ } \institute[UTH] { %\begin{tiny} $ ^1$ Institute of Nuclear Physics, Krakow,\\ $ ^2$ University of Zurich %\end{tiny}smallsmall } \date{ \begin{small} $12^{th}$ Feb 2014 \end{small}} %-------------------------------------------------------------------- % Introduction %-------------------------------------------------------------------- \begin{document} \setbeamertemplate{background} {\includegraphics[width=\paperwidth,height=\paperheight]{frontpage_bg_mine}} \setbeamertemplate{footline}[default] \begin{frame} \vspace{1.1cm} \begin{columns} \column{2.75in} \titlepage \begin{center} \includegraphics[height=1.0cm ]{pic/uzh.jpg} % \hspace{0.5cm} % \includegraphics[height=1.5cm]{pic/babar.jpg} \hspace{1cm} \includegraphics[height=1.0cm]{pic/ifj.png} \hspace{1cm} %\includegraphics[height=1.0cm]{pic/SNS.jpg} \end{center} \vspace{10cm} \column{2.0in} \end{columns} \end{frame} %-------------------------------------------------------------------- % OUTLINE %-------------------------------------------------------------------- \section[Outline]{} \begin{frame} \tableofcontents \end{frame} %------------------------------------------------------------------- % Introduction %------------------------------------------------------------------- % % Set the background for the rest of the slides. % Insert infoline \setbeamertemplate{background} {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}} \setbeamertemplate{footline}[bunsentheme] \title{Report on $\tau \to p \Plepton \Plepton$} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \setbeamertemplate{background} {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}} \setbeamertemplate{footline}[bunsentheme] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%2>%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Motivation} \begin{frame}\frametitle{Why to search for $\Lambda_c \to \Pproton \mu^{+} \mu^{-}$?} \begin{itemize} \item Decay of $\Lambda_c^+ \to \Pproton \mu^+ \mu^-$ is a FCNC. \item Extremely suppressed in SM due to GIM mechanism. \item We will use the experience from $\tau \to \Pproton \mu \mu$. \end{itemize} \begin{columns} \column{2.5in} \begin{center} \includegraphics[scale=0.18]{new/FCNC.png} \end{center} ~$\mathcal{B}( \Lambda_c^{+} \to p \mu^{-} \mu^{+} ) < 4.4 \times 10^{-5}$\\ ~ \@ 90\% CL arXiv:1107.4465 \column{3.5in} \includegraphics[scale=0.2]{babar.png}\\ Yield: $11.1 \pm 5.0 \pm 2.5$ \end{columns} We should easily beat Babar. \textref {M.Chrz\k{a}szcz 2014} \end{frame} \section{Strategy} \begin{frame} \frametitle{Strategy} {~} Follow the strategy of $\tau$ analysis: \begin{itemize} \item Take prompt $\Lambda_c$, separate approach to SL. \item Loose cut preselection. \item Train MVA on MC prompt signal and recalibrate on data. \item Calibrate on date. \item Normalize to $\Lambda_c^{+} \to \Pproton K^{-} \pi^{+}$, $\Lambda_c^{+} \to \Pproton \pi^{-} \pi^{+}$ or $\Lambda_c \to \Pproton \phi(\mu \mu)$. \item Optimise the binning in MVA. \item CLs method for limit. \end{itemize} \textref {M.Chrz\k{a}szcz 2013} \end{frame} \section{Normalization channel} \begin{frame}\frametitle{Normalization channel} \begin{itemize} \item We have 3 candidates for normalization channel. \begin{enumerate} \item $\Lambda_c \to \Pproton \phi(\mu \mu)$, $BR= (2.4 \pm 0.8) \times 10^{-7} $ \item $\Lambda_c^{+} \to \Pproton K^{-} \pi^{+}$, $BR= (5.0 \pm 1.3) \times 10^{-2} $ \item $\Lambda_c^{+} \to \Pproton \pi^{-} \pi^{+}$, $BR= (3.5 \pm 2.0) \times 10^{-3} $ \end{enumerate} From above list $\Lambda_c \to \Pproton \phi(\mu \mu)$ is a perfect candidate for normalization. However Br is a bit low. \end{itemize} \textref {M.Chrz\k{a}szcz 2014} \end{frame} \begin{frame}\frametitle{First look in data I} \begin{columns} \column{2.6in} \begin{itemize} \item With some PID and vertex cuts we can see our $\Lambda_c \to \Pproton \phi(\mu \mu)$ \item Back of the envelope calculations predict we should have 400 of those events in $3fb^{-1}$ \item A bit small for normalization. \end{itemize} \column{2.5in} \includegraphics[scale=0.17]{new/Lc_mass_b.png}\\ \includegraphics[scale=0.17]{new/Lc_mass.png} \end{columns} \textref {M.Chrz\k{a}szcz 2014} \end{frame} \begin{frame}\frametitle{Possible background} \begin{center} \begin{tabular}{| c | c | c |} \hline \textbf{ Resonance} & $\mathcal{B} (\Lambda_c \to p X)$& $\mathcal{B} (X \to \mu \mu)$\\ \hline $\eta$ & UNKNOWN & $(5.8 \pm 0.6) \times 10^{-6}$ \\ \hline $\rho^0$ & UNKNOWN & $(4.55 \pm 0.28) \times 10^{-5}$ \\ \hline $\omega$ & UNKNOWN & $(9.1 \pm 3.0) \times 10^{-5}$ \\ \hline $f(980)$ & $(2.8 \pm 1.9) \times 10^{-3}$ & UNKNOWN \\ \hline $\phi$ & $(8.2 \pm 2.7) \times 10^{-4} $ & $(2.89 \pm 0.19) \times 10^{-4}$ \\ \hline \hline \textbf{ Resonance} & $\mathcal{B} (\Lambda_c \to p X)$ & $\mathcal{B} (X \to \mu \mu \gamma)$\\ \hline $\eta$ & UNKNOWN & $(3.1 \pm 0.4) \times 10^{-4}$ \\ \hline \end{tabular} \end{center} \textref {M.Chrz\k{a}szcz 2014} \end{frame} \begin{frame}\frametitle{First look in data II } \begin{columns} \column{2.6in} \begin{itemize} \item We also have looked at dimuon spectrum. \item Clearly $\phi$, $\eta$, $\omega$ visible. \item We also see in data $\Lambda_c \to \omega(\mu \mu) \Pproton$. \end{itemize} \column{2.5in} \includegraphics[scale=0.12]{new/bck.png}\\ \end{columns} \textref {M.Chrz\k{a}szcz 2014} \end{frame} \section{MVA} \begin{frame}\frametitle{Preliminary selection } \begin{columns} \column{2.5in} ~Stripping: \begin{itemize} \item PID($\mu$)>-5, PID($\Pproton$) >10 \item IPCHi2>9, PID($\mu -K$)>0, GHOST<0.3, PID($\Pproton$)>10, Pt>300 \item $\Delta m<150MeV$ \item $c\tau >100\mu m$ \item $IPChi2 < 225$ \end{itemize} ~Additional: \begin{itemize} \item Blind region $\vert m(p\mu\mu) - 2286.46 \vert <20 MeV$. \item $\phi$, $\omega$ veto. \end{itemize} \column{3.5in} \includegraphics[scale=0.18]{new/Lc_mass.png}\\ \includegraphics[scale=0.2]{new/blind.png}\\ \end{columns} \textref {M.Chrz\k{a}szcz 2014} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55 \begin{frame}\frametitle{Preliminary TMVA} \begin{columns} \column{2.8in} \begin{itemize} \item Variables adopted form $\tau \to 3\mu$(see Marta's talk). \item In the future we will use Blending for the classifiers. \item Already thanks to this BDTG we can pick up $\Lambda_c\ \to \omega(\mu\mu) \Pproton$. \end{itemize} \includegraphics[scale=0.2]{new/omega.png} \column{2.5in} \includegraphics[scale=0.2]{new/overtrain_BDTG.jpg}\\ \includegraphics[scale=0.2]{new/rejBvsS.jpg} \end{columns} \textref {M.Chrz\k{a}szcz 2014} \end{frame} \section{Summary} \begin{frame}\frametitle{Summary} \begin{itemize} \item Looks like we will have limits $\mathcal{O}(10^{-7})$ - $\mathcal{O}(10^{-8})$ \item We already see a new $\Lambda_c \to \omega \Pproton$ decay! \item Normalization channel is still open, but we are converging towards $\Lambda_c^{+} \to \Pproton \pi^{-} \pi^{+}$ \item We have one tight cut on the stripping (flight distance), we are considering several solutions. \end{itemize} \textref {M.Chrz\k{a}szcz 2014} \end{frame} \end{document}