- \documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}
-
- \usepackage[english]{babel}
- \usepackage{polski}
-
-
- \usetheme[
- bullet=circle, % Other option: square
- bigpagenumber, % circled page number on lower right
- topline=true, % colored bar at the top of the frame
- shadow=false, % Shading for beamer blocks
- watermark=BG_lower, % png file for the watermark
- ]{Flip}
-
- %\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}
-
-
- \usepackage[lf]{berenis}
- \usepackage[LY1]{fontenc}
- \usepackage[utf8]{inputenc}
-
- %\usepackage{emerald}
- \usefonttheme{professionalfonts}
- \usepackage[no-math]{fontspec}
- \defaultfontfeatures{Mapping=tex-text} % This seems to be important for mapping glyphs properly
-
- \setmainfont{Gillius ADF} % Beamer ignores "main font" in favor of sans font
- \setsansfont{Gillius ADF} % This is the font that beamer will use by default
- % \setmainfont{Gill Sans Light} % Prettier, but harder to read
-
- \setbeamerfont{title}{family=\fontspec{Gillius ADF}}
-
- \input t1augie.fd
-
- %\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
- %\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
- % \newcommand{\handwriting}{} % If you prefer no special handwriting font or don't have augie
-
- %% Gill Sans doesn't look very nice when boldfaced
- %% This is a hack to use Helvetica instead
- %% Usage: \textbf{\forbold some stuff}
- %\newcommand{\forbold}{\fontspec{Arial}}
-
- \usepackage{graphicx}
- \usepackage[export]{adjustbox}
-
- \usepackage{amsmath}
- \usepackage{amsfonts}
- \usepackage{amssymb}
- \usepackage{bm}
- \usepackage{colortbl}
- \usepackage{mathrsfs} % For Weinberg-esque letters
- \usepackage{cancel} % For "SUSY-breaking" symbol
- \usepackage{slashed} % for slashed characters in math mode
- \usepackage{bbm} %for \mathbbm{1} (unit matrix)
- \usepackage{amsthm} % For theorem environment
- \usepackage{multirow} % For multi row cells in table
- \usepackage{arydshln} % For dashed lines in arrays and tables
- \usepackage{siunitx}
- \usepackage{xhfill}
- \usepackage{grffile}
- \usepackage{textpos}
- \usepackage{subfigure}
- \usepackage{tikz}
- \usepackage[normalem]{ulem}
-
- %\usepackage{hepparticles}
- %\usepackage[italic]{hepparticles}
-
- \usepackage{hepnicenames}
- \usepackage{hepparticles}
- % Drawing a line
- \tikzstyle{lw} = [line width=20pt]
- \newcommand{\topline}{%
- \tikz[remember picture,overlay] {%
- \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
- -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}
-
-
-
- % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
- \usepackage{tikzfeynman} % For Feynman diagrams
- \usetikzlibrary{arrows,shapes}
- \usetikzlibrary{trees}
- \usetikzlibrary{matrix,arrows} % For commutative diagram
- % http://www.felixl.de/commu.pdf
- \usetikzlibrary{positioning} % For "above of=" commands
- \usetikzlibrary{calc,through} % For coordinates
- \usetikzlibrary{decorations.pathreplacing} % For curly braces
- % http://www.math.ucla.edu/~getreuer/tikz.html
- \usepackage{pgffor} % For repeating patterns
-
- \usetikzlibrary{decorations.pathmorphing} % For Feynman Diagrams
- \usetikzlibrary{decorations.markings}
- \tikzset{
- % >=stealth', %% Uncomment for more conventional arrows
- vector/.style={decorate, decoration={snake}, draw},
- provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
- antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
- fermion/.style={draw=gray, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
- fermionbar/.style={draw=gray, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
- fermionnoarrow/.style={draw=gray},
- gluon/.style={decorate, draw=black,
- decoration={coil,amplitude=4pt, segment length=5pt}},
- scalar/.style={dashed,draw=black, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
- scalarbar/.style={dashed,draw=black, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
- scalarnoarrow/.style={dashed,draw=black},
- electron/.style={draw=black, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
- bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
- }
-
- % TIKZ - for block diagrams,
- % from http://www.texample.net/tikz/examples/control-system-principles/
- % \usetikzlibrary{shapes,arrows}
- \tikzstyle{block} = [draw, rectangle,
- minimum height=3em, minimum width=6em]
-
-
-
-
- \usetikzlibrary{backgrounds}
- \usetikzlibrary{mindmap,trees} % For mind map
- \newcommand{\degree}{\ensuremath{^\circ}}
- \newcommand{\E}{\mathrm{E}}
- \newcommand{\Var}{\mathrm{Var}}
- \newcommand{\Cov}{\mathrm{Cov}}
- \newcommand\Ts{\rule{0pt}{2.6ex}} % Top strut
- \newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut
-
- \graphicspath{{images/}} % Put all images in this directory. Avoids clutter.
-
- % SOME COMMANDS THAT I FIND HANDY
- % \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
- \newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
- \newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
- \newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
- \newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
- \newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
- %% "\alert" is already a beamer pre-defined
- \newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%
-
- \def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}
-
- \usepackage{gmp}
- \usepackage[final]{feynmp-auto}
-
- \usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
- \bibliography{bib}
- \setbeamertemplate{bibliography item}[text]
-
- \makeatletter\let\frametextheight\beamer@frametextheight\makeatother
-
- % suppress frame numbering for backup slides
- % you always need the appendix for this!
- \newcommand{\backupbegin}{
- \newcounter{framenumberappendix}
- \setcounter{framenumberappendix}{\value{framenumber}}
- }
- \newcommand{\backupend}{
- \addtocounter{framenumberappendix}{-\value{framenumber}}
- \addtocounter{framenumber}{\value{framenumberappendix}}
- }
-
-
- \definecolor{links}{HTML}{2A1B81}
- %\hypersetup{colorlinks,linkcolor=,urlcolor=links}
-
- % For shapo's formulas:
- \def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
- \def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
- \newcommand{\lsim}{\mathop{\lsi}}
- \newcommand{\gsim}{\mathop{\gsi}}
- \newcommand{\wt}{\widetilde}
- %\newcommand{\ol}{\overline}
- \newcommand{\Tr}{\rm{Tr}}
- \newcommand{\tr}{\rm{tr}}
- \newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
- \newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
- \newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
- \newcommand{\eV}{\rm{eV}}
- \newcommand{\keV}{\rm{keV}}
- \newcommand{\GeV}{\rm{GeV}}
- \newcommand{\im}{\rm{Im}}
- \newcommand{\disp}{\displaystyle}
- \def\be{\begin{equation}}
- \def\ee{\end{equation}}
- \def\ba{\begin{eqnarray}}
- \def\ea{\end{eqnarray}}
- \def\d{\partial}
- \def\l{\left(}
- \def\r{\right)}
- \def\la{\langle}
- \def\ra{\rangle}
- \def\e{{\rm e}}
- \def\Br{{\rm Br}}
- \def\P5prime{{{\rm P}^{\prime}_5}}
-
-
- \def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace}
- \def\ARROWR{{\color{WildStrawberry}{$\Rrightarrow$}}\xspace}
-
- \author{ M.Chrzaszcz (UZH)}
- \institute{UZH}
- \title[Quo Vadis $P^{\prime}_5$~?]{Quo Vadis $P^{\prime}_5$~?}
- \date{30 January 2017}
-
-
- \begin{document}
- \tikzstyle{every picture}+=[remember picture]
-
- {
- \setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
- \begin{frame}[c]%{\phantom{title page}}
- \begin{center}
- \begin{center}
- \begin{columns}
- \begin{column}{0.75\textwidth}
- \flushright\bfseries \Huge {Quo Vadis $\P5prime$~?}
- \end{column}
- \begin{column}{0.02\textwidth}
- {~}
- \end{column}
- \begin{column}{0.23\textwidth}
- % \hspace*{-1.cm}
- \vspace*{-3mm}
- \includegraphics[width=0.6\textwidth]{lhcb-logo}
- \end{column}
-
- \end{columns}
- \end{center}
- \quad
- \vspace{3em}
-
-
- \begin{columns}
- \begin{column}{0.44\textwidth}
- \flushright \vspace{-1.8em} { \Large Marcin Chrzaszcz\\\vspace{-0.1em} \vspace{-0.1em}\small \href{mailto:mchrzasz@cern.ch}{mchrzasz@cern.ch}}
-
- \end{column}
-
- \begin{column}{0.53\textwidth}
- \includegraphics[height=1.3cm]{uzh-transp}
-
- \end{column}
- \end{columns}
-
- \begin{center}
- on behalf of the $\PB \to \PKstar \Pmu \Pmu$ team
- \end{center}
-
- \vspace{0.2em}
-
- \vspace{1em}
-
- \vspace{0.5em}
-
- \textcolor{normal text.fg!50!Comment}{Analysis and software week, CERN\\April 28, 2017}
- \end{center}
- \end{frame}
- }
-
-
-
-
-
-
-
-
-
-
- \begin{frame}\frametitle{The road (towards NP ?)}
-
- \begin{columns}
- \column{0.02\textwidth}
-
- \column{0.6\textwidth}
- \onslide<1,2,3>{
- \ARROW Several theory authors proposed to measure a ''clean'' observable:
- \begin{align*}
- \P5prime= \frac{S_5}{\sqrt{F_L(1-F_L)}}
- \end{align*}
- \ARROW At leading order of $\alpha_s$ and $m_b$ expansion the form factors cancel \href{https://arxiv.org/abs/1207.2753}{arxiv::1207.2753}
-
- }
-
-
- \onslide<2,3>{
- \ARROW LHCb: \href{https://arxiv.org/pdf/1308.1707.pdf}{arXiv::1308.1707} ($1~\rm fb^{-1}$)
- \includegraphics[width=0.95\textwidth]{images/P5p1.png}
- }
-
-
- \column{0.4\textwidth}
- \onslide<1,2,3>{
- What we were promised:\\
- \includegraphics[width=0.9\textwidth]{images/path1.png}\\
- }
- \onslide<3>
- {
- What we got:\\\vspace{0.5em}
- \includegraphics[width=0.9\textwidth]{images/path2.png}
- }
- \end{columns}
-
-
-
-
- \end{frame}
-
-
- \begin{frame}\frametitle{The history of $\P5prime$}
-
- \begin{columns}
-
- \column{0.4\textwidth}
- \only<1>{{\color{black}{\ARROW 2013 LHCb: \href{https://arxiv.org/pdf/1308.1707.pdf}{arXiv::1308.1707}}}\\}
- \only<2,3,4,5>{{\color{gray}{\ARROW 2013 LHCb: \href{https://arxiv.org/pdf/1308.1707.pdf}{arXiv::1308.1707}}}\\}
- \only<2,3,4,5>{\ARROW 2015 LHCb: \href{https://arxiv.org/abs/1512.04442}{arXiv::1512.0444}\\}
- \only<4,5>{{\color{red}{\ARROW 2016 Belle: \href{https://arxiv.org/abs/1604.04042}{arXiv::1604.04042}}}\\}
- \only<5>{\ARROW 2017: {\color{blue}{\href{https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-023/}{ATLAS-CONF-2017-023}}} $(20.5~\rm fb^{-1})$ and {\color{OliveGreen}{\href{http://cds.cern.ch/record/2256738?ln=en}{CMS-PAS-BPH-15-008}}} $(20.8~\rm fb^{-1})$}
-
-
-
- \column{0.6\textwidth}
- \only<2,4,5>{
- \ARROW Theory:
- ~~DHMV: \href{https://arxiv.org/abs/1407.8526}{arXiv::1407.8526}
- ~~ASZB: \href{https://arxiv.org/abs/1411.3161}{arXiv::1411.3161}
- }
- %\includegraphics[width=0.95\textwidth]{images/P5p1.png}
- \only<1>{
- \includegraphics[width=0.95\textwidth]{images/P5p1.png}
- }
- \only<2>{
- \includegraphics[angle=-90,width=0.9\textwidth]{images/P5p_LHCb.pdf}
- }
- \only<3>{
- \includegraphics[angle=-90,width=0.9\textwidth]{images/P5p_LHCb.pdf}
- }
- \only<4>{
- \includegraphics[angle=-90,width=0.9\textwidth]{images/P5p_LHCb_Belle.pdf}
- }
- \only<5>{
- \includegraphics[angle=-90,width=0.9\textwidth]{images/P5p.pdf}
- }
-
-
- \end{columns}
- \only<3>{
-
- \begin{exampleblock}{}
- \ARROWR We generated a lot of interest :) The paper has now 115 citations!\\
- \ARROWR Two alliances were formed:~~~~~~~~~~\ARROWR We have QCD effects:\\
- \begin{columns}
- \column{0.45\textwidth}
- \ARROWR We have new physics:
- \includegraphics[width=0.5\textwidth]{images/party.png}
- \column{0.45\textwidth}
-
- \includegraphics[width=0.5\textwidth]{images/noNP.jpg}\\ \href{https://arxiv.org/pdf/1611.04338.pdf}{arXiv::1611.04338}~L.Silvestrini, et. al.
-
- \end{columns}
- \end{exampleblock}
- }
-
- \end{frame}
-
-
- \begin{frame}\frametitle{Details about their ATLAS $\&$ CMS analysis 1/2}
-
- \ARROW The results are based on Run1 data.\\
- \ARROW The measurement of $\P5prime$ is possible knowing the $\PB$ flavour.\\
- \ARROW In LHCb we have the RICH, but ATLAS and CMS don't, so the flavour is assigned by checking two possible mass hypothesis for $\PKstar$ and choosing the one closer to the SM value ($13\%$ for CMS and $11\%$ for ATLAS).\\
- \ARROW The analysis follows our LHCb results from $1~\rm fb^{-1}$:
- \begin{itemize}
- \item {\color{red}{Not enough events to perform the full angular fit.}}
- \item {\color{OliveGreen}{Fold the angles to reduce the number of observables}}
- \item {\color{red}{In this procedure you lose correlations between the observables}}
- \end{itemize}
- \ARROW The acceptance corrections both in CMS and ATLAS parametrized as $\epsilon(\cos \theta_l, \cos \theta_k, \phi, m)$ in each of the $q^2$ bin.\\
- %\ARROWR ATLAS uses the normal polynomial, while CMS uses KDE and histogram binning.
-
-
-
- \end{frame}
-
- \begin{frame}\frametitle{Details about their ATLAS $\&$ CMS analysis 2/2}
- \begin{center}
-
-
- \begin{columns}
- \column{0.5\textwidth}
- \begin{center}
- \includegraphics[width=0.4\textwidth]{images/atlas.jpg}
- \end{center}
- \begin{small}
- \ARROW Angular acceptance parametrized by polynomial functions.\\
- \ARROW Determination of $F_L$, $P_1$, $P^{\prime}_4$, $P^{\prime}_5$, $P^{\prime}_6$, $P^{\prime}_8$ and/or $S_i$ $i=3,4,5,7,8$.\\
- \ARROW Systematic for S-wave (small)\\
- \ARROW Main systematics: background: charm, partRECO, fake $\PKstar$.\\
- \ARROW $\PB \to \PKstar \PJpsi$ used ONLY for mass PDF.
-
- \end{small}
-
- \column{0.5\textwidth}
- \begin{center}
- \includegraphics[width=0.25\textwidth]{images/cms.jpg}
- \end{center}
- \begin{small}
- \ARROW Angular acceptance parametrized by KDE and sampled histograms.\\
- \ARROW Determination of only $P_1$ and $P^{\prime}_5$.\\
- \ARROW Swave fraction inferred from previous measurement.\\
- \ARROW Main systematics: Control channel differences.\\
- \ARROW $\PB \to \PKstar \PJpsi$ used for systematics.
-
-
- \end{small}
-
-
- \end{columns}
- \end{center}
-
-
- \end{frame}
-
-
- \begin{frame}\frametitle{Global analysis}
- \ARROW Two main players on the market:
- \begin{columns}
- \column{0.5\textwidth}
- \ARROWR J. Matias, et. al.\\
-
-
-
-
- \column{0.5\textwidth}
- \ARROWR D. Straub, et. al.\\
-
-
- \end{columns}
- {~}\\
- \begin{columns}
- \column{0.5\textwidth}
- \ARROW Measurements taken into the analysis:
- \begin{itemize}
- \item Angular and Br of $\PB \to \PKstar \mu \mu$
- \item Angular and Br of $\PBs \to \Pphi \mu \mu$
- \item Angular and Br of $\PB \to \PK \mu \mu$
- \item Br $\PB \to X_s \mu \mu$ and $\Pbeauty \to \Pstrange \gamma$
- \item $\PBs \to \mu \mu$
- \end{itemize}
-
-
- \column{0.5\textwidth}
- \ARROW Measurements taken into the analysis:
- \begin{itemize}
- \item Angular and Br of $\PB \to \PKstar \mu \mu$
- \item Angular and Br of $\PBs \to \Pphi \mu \mu$
- \item Angular and Br of $\PB \to \PK \mu \mu$
- \item Br $\PB \to X_s \mu \mu$
- \end{itemize}
-
-
- \end{columns}
-
- \ARROW There are also subtle difference in the theory treatment of form factors.
-
-
- \end{frame}
-
-
-
- \begin{frame}\frametitle{So what is the significance? J. Matias, et. al.}
- \only<1>{
- \ARROW LHCb ($3\rm~fb^{-1}$):\\
- \begin{center}
- \begin{tabular}{|c|c|c|c|}
- \hline
- Coefficient & Best Fit & Pull$_{\rm SM}$ \\
- \hline
- $C_9$ & $-1.09$ & $4.5$ \\
- $C_9=-C_{10}$ & $-0.68$ & $4.2$\\
- $C_9=-C^{\prime}_9$ & $-1.06$ & $4.8$ \\
- $C_9=-C_{10}$ and $C^{\prime}_9=-C^{\prime}_{10}$ & $-0.69$ & $4.1$ \\
- \hline
- \end{tabular}
- \end{center}
- }
- \only<2>{
- \ARROW LHCb ($3\rm~fb^{-1}$) + Belle:
- \begin{center}
- \begin{tabular}{|c|c|c|c|}
- \hline
- Coefficient & Best Fit & Pull$_{\rm SM}$ \\
- \hline
- $C_9$ & $-1.12$ & $5.0$ (!!!)\\
- $C_9=-C_{10}$ & $-0.61$ & $4.4$\\
- $C_9=-C^{\prime}_9$ & $-1.05$ & $4.5$\\
- $C_9=-C_{10}$ and $C^{\prime}_9=-C^{\prime}_{10}$ & $-0.66$ & $4.6$\\
- \hline
- \end{tabular}
- \end{center}
- }
- \only<3>{
- \ARROW LHCb ($3\rm~fb^{-1}$) + Belle + ATLAS:
- \begin{center}
- \begin{tabular}{|c|c|c|c|}
- \hline
- Coefficient & Best Fit & Pull$_{\rm SM}$ \\
- \hline
- $C_9$ & $-1.14$ & $5.2$ (!!!) \\
- $C_9=-C_{10}$ & $-0.60$ & $4.4$\\
- $C_9=-C^{\prime}_9$ & $-1.08$ & $4.9$\\
- $C_9=-C_{10}$ and $C^{\prime}_9=-C^{\prime}_{10}$ & $-0.67$ & $4.6$\\
- \hline
- \end{tabular}
- \end{center}
- }
- \only<4>{
- \ARROW LHCb ($3\rm~fb^{-1}$) + Belle + ATLAS + CMS:
- \begin{center}
- \begin{tabular}{|c|c|c|c|}
- \hline
- Coefficient & Best Fit & Pull$_{\rm SM}$ \\
- \hline
- $C_9$ & $-1.07$ & $4.9$ \\
- $C_9=-C_{10}$ & $-0.58$ & $4.3$\\
- $C_9=-C^{\prime}_9$ & $-1.01$ & $4.6$\\
- $C_9=-C_{10}$ and $C^{\prime}_9=-C^{\prime}_{10}$ & $-0.61$ & $4.3$\\
- \hline
- \end{tabular}\\{~}\\
-
-
- \end{center}
- }
-
-
- \only<5>
- {
- \begin{center}
- \includegraphics[width=0.4\textwidth]{images/C9C10-Fit35-Plot.jpeg}
-
- \end{center}
-
-
- }
-
-
-
-
- \end{frame}
-
-
-
- \begin{frame}\frametitle{So what is the significance? D. Straub, et. al. \href{https://arxiv.org/abs/1703.09189}{[1703.09189]}}
- \only<1>{
- \ARROW LHCb ($3\rm~fb^{-1}$) + CDF + ATLAS + CMS:
- \begin{center}
- \begin{tabular}{|c|c|c|c|}
- \hline
- Coefficient & Best Fit & Pull$_{\rm SM}$ \\
- \hline
- $C_9$ & $-1.21$ & $4.9$ \\
- $C_9=-C_{10}$ & $-0.62$ & $4.2$\\
- \hline
- \end{tabular}\\
- \includegraphics[width=0.8\textwidth]{images/straub.png}
-
-
- \end{center}
-
- \ARROW Both groups came to a similar conclusion!
-
- }
-
-
-
- \end{frame}
-
-
- \begin{frame}
- \begin{center}
- \begin{Huge}
- \sout{Quo Vadis} $\P5prime$ ?
- \end{Huge}\\
- \begin{Huge}
- Status Quo $\P5prime$ !
- \end{Huge}
- {~}\\{~}\\{~}\\
- \includegraphics[width=0.4\textwidth]{images/Status Quo.jpg}
-
-
-
- \end{center}
-
-
-
- \end{frame}
-
-
-
-
-
- \begin{frame}\frametitle{Comments about the CMS result 1/4}
- \begin{columns}
- \column{0.4\textwidth}
- \begin{small}
- \ARROW Both ATLAS and CMS use our folding technique that was used in the $1~\rm fb^{-1}$ analysis. %CMS does not cite us for the method...\\
- \ARROW CMS when performing the angular fit fixes the $F_L$, $F_S$ and $A_s$ from the previous analysis on the same data!\\
- \ARROWR They claim that they check with TOYMC that it is correct. However some doubts remain.\\
- \ARROWR Feldman-Cousin procedure can underestimate the errors in this case.\\
- \ARROW More details on toy validation and or bootstrapping the data would be nice!
- \end{small}
-
-
- \column{0.6\textwidth}
- \includegraphics[angle=-90,width=0.95\textwidth]{images/P5p.pdf}
-
-
- \end{columns}
-
-
-
- \end{frame}
-
-
-
- \begin{frame}\frametitle{Comments about the CMS result 2/4}
- \begin{columns}
- \column{0.4\textwidth}
- \begin{small}
- \ARROW There seems to be a structure in the $\cos \theta_l$ distribution.\\
- \ARROWR A.Bevan suggested this might be due to a $\PB \to \PD(\PK \pi \pi) \pi$\\
- \ARROW Can be easily checked with MC.
- \end{small}
-
-
- \column{0.6\textwidth}
- \includegraphics[width=0.95\textwidth]{costhetal1.png}\\
- \includegraphics[width=0.95\textwidth]{costhetal2.png}
-
-
-
- \end{columns}
-
-
-
- \end{frame}
-
-
-
- \begin{frame}\frametitle{Comments about the CMS result 3/4}
- \begin{columns}
- \column{0.4\textwidth}
- \begin{small}
- \ARROW In the decay of $\PB \to \PKstar \PJpsi$ they fail to reproduce the value of $F_L$.\\
- \ARROW They assign the difference as a systematic uncertainty.\\
- \ARROWR There is no guarantee that this has no $q^2$ dependence.\\
- \ARROW They tag the $\PKstar$ via which of the configurations: $\PK^+ \pi^-$, $\PK^- \pi^+$ is closer to the nominal $\PKstar$ mass.\\
- \ARROW They model the mis-tag fractions from MC.\\
- \ARROWR The mis-tag is modelled by MC. Systematic assign from $\PB \to \PKstar \PJpsi$ (no $q^2$ dependence assumed).
- \end{small}
- \column{0.6\textwidth}
- \includegraphics[angle=-90,width=0.95\textwidth]{images/jspi.pdf}
-
-
- \end{columns}
-
-
-
- \end{frame}
-
-
-
- \begin{frame}\frametitle{Comments about the CMS result 4/4}
- \begin{columns}
- \column{0.4\textwidth}
- \begin{small}
- \ARROW CMS uses a long range mass window in the $m_{\PK \pi \mu \mu}$ fits.\\
- \ARROW In LHCb we saw non negligible amount of PARTRECO events.\\
- \ARROW In their fits they don't account for it.
-
-
-
- \end{small}
- \column{0.6\textwidth}
- \includegraphics[width=0.95\textwidth]{images/CMS.png}\\
- \includegraphics[angle=-90,width=0.95\textwidth]{images/LHCb.pdf}
-
-
- \end{columns}
-
-
-
- \end{frame}
-
-
-
-
-
-
-
-
- \begin{frame}\frametitle{Comments about the ATLAS result}
- \begin{columns}
- \column{0.4\textwidth}
- \begin{small}
- \ARROW ATLAS has much worse mass resolution compared to CMS and LHCb.\\
- \ARROW They cut tight on the $m_{\PK \pi\mu\mu}$ as we did.\\
- \ARROW How ever it is not obvious that they are not affected because of the resolution.
- \end{small}
-
-
- \column{0.6\textwidth}
- \includegraphics[width=0.75\textwidth]{images/ATLAS.png}\\
- \includegraphics[angle=-90,width=0.95\textwidth]{images/LHCb.pdf}
-
- \end{columns}
-
-
-
- \end{frame}
-
-
-
- \begin{frame}\frametitle{Conclusion}
-
- \ARROW The anomaly is alive and well!\\
- \ARROW Inclusion of new results increases the significance.\\
- \ARROW Tension with SM seen in $\P5prime$ by Atlas, Belle and LHCb. CMS result in good agreement with SM, but consistent with our results.\\
- \ARROW Some discussion on aspects of the CMS analysis ongoing.\\
- \ARROW Run2 data will confirm or disprove the anomaly (of course the nature of the anomaly is a different question).\\
- \ARROW The corrected measurement of $Br(\PB \to \PKstar \Pmu \Pmu)$ \href{https://indico.cern.ch/event/627276/}{[see Kostas slides]} will increase the tension with SM further, will agree better with $Br(\PBs \to \Pphi \Pmu \Pmu)$ and $Br(\PB \to \PK \Pmu \Pmu)$
-
- \end{frame}
-
-
-
-
-
- \backupbegin
-
- \begin{frame}\frametitle{Backup}
- \topline
-
- \end{frame}
-
- \backupend
-
- \end{document}