- \documentclass[xcolor=svgnames]{beamer}
- \usepackage[utf8]{inputenc}
- \usepackage[english]{babel}
- \usepackage{polski}
- %\usepackage{amssymb,amsmath}
- %\usepackage[latin1]{inputenc}
- %\usepackage{amsmath}
- %\newcommand\abs[1]{\left|#1\right|}
- \usepackage{amsmath}
- \newcommand\abs[1]{\left|#1\right|}
- \usepackage{hepnicenames}
- \usepackage{hepunits}
- \usepackage{color}
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
- \definecolor{mygreen}{cmyk}{0.82,0.11,1,0.25}
-
-
- \usetheme{Sybila}
-
- \title[Drell-Yan measurement]{Drell-Yan measurement}
- \author{Marcin Chrz\k{a}szcz$^{1}$}
- \institute{$^1$~University of Zurich}
- \date{\today}
-
- \begin{document}
- % --------------------------- SLIDE --------------------------------------------
- \frame[plain]{\titlepage}
- \author{Marcin Chrz\k{a}szcz{~}}
- \institute{(UZH)}
- % ------------------------------------------------------------------------------
- % --------------------------- SLIDE --------------------------------------------
- \begin{frame}\frametitle{Outlook}
- \begin{itemize}
- \item Nicola performed this analysis for PhD.
- \item Bringing the analysis towards publication.
- \item Cross checking and trying to improve.
- \item Nicola gave all the code with documentation.
- \item I am old fashioned and rewrote the code from scratch.
- \end{itemize}
-
-
-
- \end{frame}
-
- \begin{frame}\frametitle{Preselection}
- \begin{itemize}
- \item No Changes here.
- \item Trigger lines:
-
- \begin{itemize}
- \item \texttt{L0DiMuonDecision\_TOS}, \texttt{Hlt1DiMuonHighMassDecision\_TOS}, \texttt{Hlt2DiMuonDY(2,3,4)Decision\_TOS}
- \end{itemize}
- \item Selection:
- \begin{itemize}
- %\item a
- \item \texttt{muminus\_TrEta>2.0}, \texttt{ muminus\_TrEta<4.5}, \texttt{muplus\_TrEta>2.0}, \texttt{ muplus\_TrEta<4.5}, \texttt{ min(muminus\_TrPChi2,muplus\_TrPChi2)>0.001}, \texttt{min(muminus\_P , muplus\_P)>10000}, \texttt{ min(muminus\_PT , muplus\_PT)>3000}
- \end{itemize}
- \end{itemize}
-
-
- \end{frame}
-
- \begin{frame}\frametitle{Muon isolation}
- \begin{itemize}
- \item We define an isolation for a single track:
- \end{itemize}
- \includegraphics[width=0.95\textwidth]{images/iso1.png}
- \begin{itemize}
- \item And for 2 tracks:
- \end{itemize}
- \includegraphics[width=0.95\textwidth]{images/iso2.png}
- \begin{itemize}
- \item No changes here.
- \end{itemize}
- \end{frame}
-
-
- \begin{frame}\frametitle{Background Templates}
- \begin{itemize}
- \item Now I started playing around :)
- \item We have two sources of background: MissID and Heavy Flavour decays.
- \item For now I take MissID for same sign data, and Heavy Flavour decays from selecting muons with Vertex $\chi > 50$. This cut is much larger what it was before.
- \item For cross check I have 2 different sources of templates: MinBias(muon free), and IP cut(also tighter) instead of vertex.
- \end{itemize}
-
-
-
-
- \end{frame}
- \begin{frame}\frametitle{Signal Templates -Nicola approach}
- \begin{columns}
- \column{2.5in}
- \includegraphics[width=0.95\textwidth]{images/Z0.png}
- \begin{itemize}
- \item $\PZzero$ is background free, take range of $80,100$ and we have a data $\mu\mu_{iso}$ for the $\PZzero$.
- \item Determine the scale factor to minimalize the $\chi^2$ in MC.
- \end{itemize}
- \column{2.5in}
- \includegraphics[width=0.95\textwidth]{images/scale.png}\\
- \includegraphics[width=0.85\textwidth]{images/chi2.png}
- \end{columns}
-
-
- \end{frame}
-
- \begin{frame}\frametitle{Signal Templates - My idea}
- \begin{itemize}
- \item Instead of extrapolating from $\PZzero$, let's try interpolating :)
- \item \texttt{Splot}ed Both $\PZzero$ and $\PUpsilon(1S)$.
- \end{itemize}
- \begin{columns}
- \column{1.6in}
- \includegraphics[width=0.95\textwidth]{images/result_upsilon.png}
- \column{1.6in}
- \includegraphics[width=0.95\textwidth]{images/result_Z0.png}
- \column{1.6in}
- \includegraphics[width=0.95\textwidth]{images/result_1CB.png}
- \end{columns}
- \begin{itemize}
- \item For $\PZzero$ we need to to use double CB.
- \end{itemize}
-
- \end{frame}
- \begin{frame}\frametitle{Signal Templates - My idea}
- \only<1>{
- \begin{itemize}
- \item Ok form \texttt{Splot} we have the $\mu\mu_{iso}$ for two mass points: $M_Z$ and $M_{\PUpsilon}$
- \item Ad hoc anzats to get the signal template for $M_X$:
- \end{itemize}
- \begin{equation}
- \mu\mu_{iso, M_X} =\dfrac{M_X-M_{\PUpsilon}}{M_Z-M_{\PUpsilon}} \times T_Z + (1-\dfrac{M_X-M_{\PUpsilon}}{M_Z-M_{\PUpsilon}}) \times T_{\PUpsilon}
- \end{equation}
- }
-
- \only<2>
- {
- \begin{center}
- \begin{Large}
- Attention, from this slide work has been done on jet lag, during confernece talks, in airplane, or all above.
- \end{Large}
- \end{center}
-
-
- }
-
- \end{frame}
- \begin{frame}\frametitle{Signal Templates - My idea, results}
- \begin{itemize}
- \item Some $M_{\mu\mu}, y$ bins don't converge.
- \item But the ones that do look awesome (to be checked):
- \end{itemize}
- \includegraphics[width=0.95\textwidth]{images/dupa.png}
-
- \end{frame}
-
- \begin{frame}\frametitle{Todo}
- \begin{itemize}
- \item Those are just preliminary results! Don't bite my head off.
- \item Want to compare the two method of obtaining signal templates.
- \item Try different ''mixing'' functions.
- \item See why some bins do not converge.
- \item Lots of fun ahead.
- \end{itemize}
-
- \end{frame}
-
-
-
- \end{document}