\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer} \usepackage[english]{babel} \usepackage{polski} \usetheme[ bullet=circle, % Other option: square bigpagenumber, % circled page number on lower right topline=true, % colored bar at the top of the frame shadow=false, % Shading for beamer blocks watermark=BG_lower, % png file for the watermark ]{Flip} %\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}} \usepackage[lf]{berenis} \usepackage[LY1]{fontenc} \usepackage[utf8]{inputenc} \usefonttheme{professionalfonts} \usepackage[no-math]{fontspec} \defaultfontfeatures{Mapping=tex-text} % This seems to be important for mapping glyphs properly \setmainfont{Gillius ADF} % Beamer ignores "main font" in favor of sans font \setsansfont{Gillius ADF} % This is the font that beamer will use by default % \setmainfont{Gill Sans Light} % Prettier, but harder to read \setbeamerfont{title}{family=\fontspec{Gillius ADF}} \input t1augie.fd %\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font %\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font % \newcommand{\handwriting}{} % If you prefer no special handwriting font or don't have augie %% Gill Sans doesn't look very nice when boldfaced %% This is a hack to use Helvetica instead %% Usage: \textbf{\forbold some stuff} %\newcommand{\forbold}{\fontspec{Arial}} \usepackage{graphicx} \usepackage[export]{adjustbox} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{colortbl} \usepackage{mathrsfs} % For Weinberg-esque letters \usepackage{cancel} % For "SUSY-breaking" symbol \usepackage{slashed} % for slashed characters in math mode \usepackage{bbm} % for \mathbbm{1} (unit matrix) \usepackage{amsthm} % For theorem environment \usepackage{multirow} % For multi row cells in table \usepackage{arydshln} % For dashed lines in arrays and tables \usepackage{siunitx} \usepackage{xhfill} \usepackage{grffile} \usepackage{textpos} \usepackage{subfigure} \usepackage{tikz} %\usepackage{hepparticles} \usepackage[italic]{hepparticles} \usepackage{hepnicenames} % Drawing a line \tikzstyle{lw} = [line width=20pt] \newcommand{\topline}{% \tikz[remember picture,overlay] {% \draw[crimsonred] ([yshift=-23.5pt]current page.north west) -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}} % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % \usepackage{tikzfeynman} % For Feynman diagrams \usetikzlibrary{arrows,shapes} \usetikzlibrary{trees} \usetikzlibrary{matrix,arrows} % For commutative diagram % http://www.felixl.de/commu.pdf \usetikzlibrary{positioning} % For "above of=" commands \usetikzlibrary{calc,through} % For coordinates \usetikzlibrary{decorations.pathreplacing} % For curly braces % http://www.math.ucla.edu/~getreuer/tikz.html \usepackage{pgffor} % For repeating patterns \usetikzlibrary{decorations.pathmorphing} % For Feynman Diagrams \usetikzlibrary{decorations.markings} \tikzset{ % >=stealth', %% Uncomment for more conventional arrows vector/.style={decorate, decoration={snake}, draw}, provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw}, antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw}, fermion/.style={draw=gray, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}}, fermionbar/.style={draw=gray, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}}, fermionnoarrow/.style={draw=gray}, gluon/.style={decorate, draw=black, decoration={coil,amplitude=4pt, segment length=5pt}}, scalar/.style={dashed,draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}}, scalarbar/.style={dashed,draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}}, scalarnoarrow/.style={dashed,draw=black}, electron/.style={draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}}, bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw}, } % TIKZ - for block diagrams, % from http://www.texample.net/tikz/examples/control-system-principles/ % \usetikzlibrary{shapes,arrows} \tikzstyle{block} = [draw, rectangle, minimum height=3em, minimum width=6em] \usetikzlibrary{backgrounds} \usetikzlibrary{mindmap,trees} % For mind map \newcommand{\degree}{\ensuremath{^\circ}} \newcommand{\E}{\mathrm{E}} \newcommand{\TeV}{\mathrm{TeV}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\Cov}{\mathrm{Cov}} \newcommand\Ts{\rule{0pt}{2.6ex}} % Top strut \newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut \graphicspath{{images/}} % Put all images in this directory. Avoids clutter. % SOME COMMANDS THAT I FIND HANDY % \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec \newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mil \newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold \newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold \newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert \newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert %% "\alert" is already a beamer pre-defined \newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}% \def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}} \usepackage{gmp} \usepackage[final]{feynmp-auto} \usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex} \bibliography{bib} \setbeamertemplate{bibliography item}[text] \makeatletter\let\frametextheight\beamer@frametextheight\makeatother % suppress frame numbering for backup slides % you always need the appendix for this! \newcommand{\backupbegin}{ \newcounter{framenumberappendix} \setcounter{framenumberappendix}{\value{framenumber}} } \newcommand{\backupend}{ \addtocounter{framenumberappendix}{-\value{framenumber}} \addtocounter{framenumber}{\value{framenumberappendix}} } \definecolor{links}{HTML}{2A1B81} %\hypersetup{colorlinks,linkcolor=,urlcolor=links} % For shapo's formulas: \def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}} \def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}} \newcommand{\lsim}{\mathop{\lsi}} \newcommand{\gsim}{\mathop{\gsi}} \newcommand{\wt}{\widetilde} %\newcommand{\ol}{\overline} \newcommand{\Tr}{\rm{Tr}} \newcommand{\tr}{\rm{tr}} \newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&} \newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}} \newcommand{\abs}[1]{\rm{$\left| #1 \right|$}} \newcommand{\eV}{\rm{eV}} \newcommand{\keV}{\rm{keV}} \newcommand{\GeV}{\rm{GeV}} \newcommand{\im}{\rm{Im}} \newcommand{\disp}{\displaystyle} \def\be{\begin{equation}} \def\ee{\end{equation}} \def\ba{\begin{eqnarray}} \def\ea{\end{eqnarray}} \def\d{\partial} \def\l{\left(} \def\r{\right)} \def\la{\langle} \def\ra{\rangle} \def\e{{\rm e}} \def\Br{{\rm Br}} \def\fixme{FIXME} \def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace} \def\ARROWR{{\color{WildStrawberry}{$\Rrightarrow$}}\xspace} \author{ {Marcin Chrzaszcz} (CERN)} \institute{UZH} \title[Magnet Stations for LHCb]{Magnet Stations for LHCb} \begin{document} \tikzstyle{every picture}+=[remember picture] { \setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}} \begin{frame}[c]%{\phantom{title page}} \begin{center} \begin{center} \begin{columns} \begin{column}{0.75\textwidth} \flushright \bfseries \Huge {Magnet Stations\\ for LHCb} \end{column} \begin{column}{0.02\textwidth} {~} \end{column} \begin{column}{0.23\textwidth} % \hspace*{-1.cm} \vspace*{-3mm} \includegraphics[width=0.6\textwidth]{lhcb-logo} \end{column} \end{columns} \end{center} \quad \vspace{3em} \begin{columns} \begin{column}{0.99\textwidth} \center \vspace{-1.8em} {M. Bettler$^1$, P. Billoir$^2$, M. Chrzaszcz$^3$, C. Da Silva$^4$, M.Durham$^4$, R.Greim$^5$, W.Karpinskig$^5$, T.Kiring$^5$, M. Martinelli$^6$, M. Pikies$^7$\\~\\ $^1$ Cambridge, $^2$ LPNHE, $^3$ CERN, $^4$ LANL, $^5$ Aachen, $^6$ EPFL, $^7$ IFJ PAN} \end{column} %\begin{column}{0.53\textwidth} %\includegraphics[height=1.3cm]{uzh-transp} %\end{column} \end{columns} \vspace{1em} % \footnotesize\textcolor{gray}{With N. Serra, B. Storaci\\Thanks to the theory support from M. Shaposhnikov, D. Gorbunov}\normalsize\\ \vspace{0.5em} \textcolor{normal text.fg!50!Comment}{Upgrade II meeting, Annecy, March 21, 2018} \end{center} \end{frame} } \begin{frame}\frametitle{Outline} \ARROW Introduction\\ \ARROW We will review the effect of an improved tracking for specific channels: \begin{itemize} \item Prompt Charm decays %\item $\PD \to 5 \pi$ \item $R(\Lambda_c^{\ast})$ \item $R(\PDstar)$ \item Multibody $\PB$ decays \item $\Sigma_b$. \item $\PB^{\ast}$. \item Gluon PDF. \item Spectroscopy. \end{itemize} \ARROW Tracking implementations.\\ \ARROW Outlook \end{frame} \begin{frame}\frametitle{Previous reports} \begin{itemize} \item Elba, Phase-II workshop:\\ \href{https://agenda.infn.it/getFile.py/access?contribId=19&sessionId=3&resId=0&materialId=slides&confId=12253}{ {\color{blue}M. Martineli talk}} \item Elba, Phase-II workshop:\\ \href{https://agenda.infn.it/getFile.py/access?contribId=20&sessionId=3&resId=0&materialId=slides&confId=12253}{ {\color{blue}M. Chrzaszcz talk}} \item Manchester, Phase-II workshop:\\ \href{https://indico.cern.ch/event/481359/contributions/1157520/attachments/1253747/1849859/Bettler_MAN.pdf}{ {\color{blue}M. Better talk}} \item Manchester, Phase-II workshop:\\ \href{https://indico.cern.ch/event/481359/contributions/1157519/attachments/1253525/1849467/MagnetStationsSimulation.pdf}{ {\color{blue}I. Babushkin talk}} \item Manchester, Phase-II workshop:\\ \href{https://indico.cern.ch/event/481359/contributions/1157526/attachments/1253827/1850013/UpstreamTracksPotential.pdf }{ {\color{blue}M. Martinelli talk}} \item Tuesday Presentation\\ \href{https://indico.cern.ch/event/557554/contributions/2247267/attachments/1423140/2181806/gluon_saturation_seminar.pdf}{{\color{blue}Cesar Luiz da Silva talk}} \end{itemize} \end{frame} \begin{frame}\frametitle{The idea} \begin{center} \includegraphics[width=0.65\textwidth]{images/mag.png} \end{center} \ARROW Tracks with hits in the vertex locator and the TT/UT and not in the Tstations: UPSTREAM tracks.\\ \ARROW Those are bend outside of the T-stations acceptance by the magnetic field because of their low-momentum.\\ \ARROW The reduced amount of field between the VELO and the TT, means that their momentum is computed with a large uncertainty. $\Delta p/p = 20-25\%$ current, $\Delta p/p = 15-20\%$ upgrade \end{frame} \begin{frame}\frametitle{Proposal} \only<1>{ \ARROW Original idea comes from Sheldon Stone, Paolo Gandini, Liming Zhang: \href{https://indico.cern.ch/event/327376/contributions/1713479/}{{\color{blue}[Tuesday meeting Sept 2nd 2014]}}\\ \begin{center} \includegraphics[width=0.65\textwidth]{images/stations.png} \end{center} \ARROW It is outside the LHCb acceptancen!! No $X_0$ added.\\ \ARROW No need to have a high resolution. $\mathcal{O}(1\rm mm)$ should be enough.\\ } \only<2>{ \begin{center} \includegraphics[width=0.75\textwidth]{images/sheldon.png} \end{center} } \end{frame} \iffalse \begin{frame}\frametitle{Where our tracks are?} \begin{columns} \column{0.1in} {~}\\ \column{3in} \ARROW The upstream tracks have rather poor momentum resolution: $\frac{\Delta p}{p} \sim 15\%$. \\ \ARROW The particles die after short and sad (for physics) life in the magnet yoke. \\ \ARROW If one put chambers in the magnet stations, one could record the particles before they death.\\ \ARROW This will not increase the material budget of the rest of the detector.\\ \begin{center} \includegraphics[width=0.7\textwidth]{images/joke.png} \end{center} \column{2in} \includegraphics[width=0.95\textwidth]{images/sketch.png}\\ \includegraphics[width=0.95\textwidth]{images/magnet.png} \end{columns} \end{frame} \begin{frame}\frametitle{Physics interest} \begin{small} \begin{columns} \column{0.1in} {~}\\ \column{3in} \ARROW We have enormous amount of channels where we have slow particles: \begin{itemize} \item $\PDstar \to \PD \pi$. \item $\Lambda_c(2595, 2625) \to \Lambda_c \pi \pi$. \item All the $\PB^{\ast \ast}$ decays! $\leftarrowtail$ huge community interests!!! \item As well other states: $\Sigma_b \to \Lambda_b \pi$. \item Little is known about the excited $\PBs$ states as well. \end{itemize} \column{2in} \includegraphics[width=0.95\textwidth]{images/charmS.png}\\ \end{columns} \end{small} \end{frame} \fi \begin{frame}\frametitle{The sensitivity study} \begin{columns} \column{0.4\textwidth} \ARROW Take the Gauss \texttt{v50r0} for upgrade.\\ \ARROW Simulate the particle gun.\\ \ARROW Decays particles with \texttt{EvtGen}.\\ \ARROW Put for now a plates in the Magnet (and beyond) and see where the particles hit them.\\ \ARROW $\nu=7.6$. \column{0.6\textwidth} \includegraphics[width=0.95\textwidth]{images/mag3.png} \end{columns} \end{frame} \begin{frame}\frametitle{Current Physics cases} \begin{columns} \column{0.6\textwidth} \begin{itemize} \item Previously reported:\\ \ARROW $\PDstar \to \PD (\pi \PK) \pi_{\rm slow}$: {\color{JungleGreen}gain $21~\%$.}\\ \ARROW $\PB \to \tau \tau$: {\color{JungleGreen}gain: $24~\%$.}\\ \ARROW $R(\Lambda_c^{\ast})= \frac{\mathcal{B}(\Lambda_b \to \Lambda_c^{\ast} \tau \nu) }{\mathcal{B}(\Lambda_b \to \Lambda_c^{\ast} \mu \nu)}$, $\Lambda_c^{\ast} \to p \pi_{\rm slow} \pi_{\rm slow}$ : {\color{JungleGreen}gain $60~\%$.}\\ \ARROW $R(D^{\ast})= \frac{\mathcal{B}( \PB \to \PD^{\ast} \tau \nu) }{\mathcal{B}( \PB \to \PD^{\ast} \tau \nu) }$: {\color{JungleGreen}gain $26~\%$.}\\ \ARROW $\PB \to n\PK$: {\color{JungleGreen}gain $10-50~\%$.}\\ \ARROW $\Sigma_b \to \Lambda_b \pi$: {\color{JungleGreen}gain $29~\%$.}\\ \ARROW Gluon PDF: {\color{JungleGreen} Enabled measurement.}\\ \end{itemize} \includegraphics[width=0.9\textwidth]{images/pdf.png} \column{0.5\textwidth} \includegraphics[angle=-90,width=0.95\textwidth]{images/nk.pdf}\\ \includegraphics[width=0.9\textwidth]{images/gluon22.png} \end{columns} \end{frame} \begin{frame}\frametitle{Additional Physics cases} \only<1> { \begin{columns} \column{0.6\textwidth} \begin{itemize} \item Newly reported:\\ \ARROW $\Sigma_c \to \Lambda_c \pi_{\rm slow}$: {\color{JungleGreen}gain $19~\%$.}\\ \ARROW Low-mass Drell-Yan: {\color{JungleGreen}gain $15~\%$.}\\ \ARROW $\PBc(2S) \to \PBc \pi_{\rm slow} \pi_{\rm slow}$: {\color{JungleGreen}gain $50~\%$.}\\ \end{itemize} \column{0.5\textwidth} \href{https://journals.aps.org/prd/pdf/10.1103/PhysRevD.70.054017}{{\color{blue}{S.Godfrey, PHYSICAL REVIEW D 70 054017}}} \includegraphics[width=0.95\textwidth]{images/spec2.png} \end{columns} } \only<2>{ \ARROW This is just the tip of the ice berg!\\ \begin{center} \includegraphics[width=0.95\textwidth]{images/spec3.png} \end{center} } \end{frame} \begin{frame} \begin{center} \begin{Huge} Tracking studies \end{Huge} \end{center} \end{frame} \begin{frame}\frametitle{2-fold Runge-Kutta for MS,~~~~P.Billoir} \begin{center} \includegraphics[width=0.9\textwidth]{images/RK2.png} \end{center} \ARROW We start from ,,standard'' Runge-Kutta method.\\ \ARROW If $\vert t_x \vert>1$ we switch steps to $x$.\\ \ARROW With VELO + UT we know precisely: $x$, $y$, $t_x$, $t_y$. We poorly know: $\dfrac{q}{p} \rightarrow $ MS can help.\\ \ARROW Runge-Kutta method has to be inverted with the Newton-Raphson method. \end{frame} \begin{frame}\frametitle{2-fold Runge-Kutta for MS,~~~~P.Billoir} \begin{center} \includegraphics[width=0.8\textwidth]{images/MS2.png}\\ \includegraphics[width=0.8\textwidth]{images/MS1.png} \end{center} \end{frame} \begin{frame} \begin{center} \begin{Huge} Detector Implementation \end{Huge} \end{center} \end{frame} \begin{frame}\frametitle{Gauss implementation,~~~~M. Pikies} \begin{center} \includegraphics[width=0.7\textwidth]{images/imp.png}\\ \end{center} \ARROW Currently cloning structures of the SciFi.\\ \ARROW Plans to implement Cesars proposal.\\ \ARROW Run full MC simulations. \end{frame} \iffalse \begin{frame}\frametitle{Prompt charm decays} \ARROW Study the prompt production: $\PDstar \to \PD (\pi \PK) \pi_{\rm slow}$. \begin{columns} \column{0.6\textwidth} \ARROW The study is based on two type of cases: \begin{small} \begin{itemize} \item Slow $\pi$ hits UT + FT and $K$, $\pi$ in UT + FT \item Slow $\pi$ hits UT + MS and $K$, $\pi$ in UT + FT \end{itemize} \ARROW The gain in terms of statistics:\\ \begin{align*} { \rm gain} = 20.7\% \end{align*} \end{small} \column{0.4\textwidth} \includegraphics[angle=-90,width=0.95\textwidth]{{images/z_Dstar}.pdf}\\ \includegraphics[angle=-90,width=0.95\textwidth]{{images/yz_Dstar}.pdf} \end{columns} \end{frame} \begin{frame}\frametitle{$\Lambda_b \to \Lambda_c^{\ast} \tau \nu$} \ARROW Study the LUV in: $\Lambda_b \to \Lambda_c^{\ast} \tau \nu$ \begin{columns} \column{0.6\textwidth} \ARROW The study is based on two type of cases: \begin{small} \begin{itemize} \item Two slow $\pi$ hits UT + FT and p, $K$, $\pi$ in UT + FT \item One slow $\pi$ hits UT + MS(FT) and p, $K$, $\pi$ in UT + FT \item Two slow $\pi$ hits UT + MS and p, $K$, $\pi$ in UT + FT \end{itemize} \end{small} \ARROW The gain in terms of statistics:\\ \begin{align*} { \rm gain} = 60.0\% \end{align*} \column{0.4\textwidth} \includegraphics[angle=-90,width=0.95\textwidth]{{images/z_Lcstar}.pdf}\\ \includegraphics[angle=-90,width=0.95\textwidth]{{images/yz_Lcstar}.pdf} \end{columns} \end{frame} \begin{frame}\frametitle{$\PB \to \PDstar \tau \nu$} \ARROW Study the LUV in: $\PB \to \PDstar \tau \nu$ \begin{columns} \column{0.6\textwidth} \ARROW The study is based on two type of cases: \begin{small} \begin{itemize} \item Slow $\pi$ hits UT + FT and $K$, $\pi$ in UT + FT \item Slow $\pi$ hits UT + MS and $K$, $\pi$ in UT + FT \end{itemize} \end{small} \ARROW The gain in terms of statistics:\\ \begin{align*} { \rm gain} = 26.0\% \end{align*} \column{0.4\textwidth} \includegraphics[angle=-90,width=0.95\textwidth]{{images/z_DstarB}.pdf}\\ \includegraphics[angle=-90,width=0.95\textwidth]{{images/yz_DstarB}.pdf} \end{columns} \end{frame} \begin{frame}\frametitle{$\PB \to n \PK$} \ARROW Study the multi body decays: $\PB \to n \PK$: \begin{center} \includegraphics[angle=-90,width=0.75\textwidth]{images/nk.pdf} \end{center} \ARROW Clearly a threshold effect, the less PHSP you have the more you gain. \end{frame} \iffalse \begin{frame}\frametitle{$\PD \to 5 \PK$} \begin{columns} \column{0.6\textwidth} \ARROW Similar is expected to $\PD \PD$ searches. \ARROW The study is based on two type of cases: \begin{small} \begin{itemize} \item Slow $\pi$ hits UT + FT and $K$, $\pi$ in UT + FT \item Slow $\pi$ hits UT + MS and $K$, $\pi$ in UT + FT \end{itemize} \end{small} \ARROW The gain in terms of statistics:\\ \begin{align*} { \rm gain} = 26.0\% \end{align*} \column{0.4\textwidth} \includegraphics[angle=-90,width=0.95\textwidth]{{images/z_DstarB}.pdf}\\ \includegraphics[angle=-90,width=0.95\textwidth]{{images/yz_DstarB}.pdf} \end{columns} \end{frame} \fi \begin{frame}\frametitle{$\Sigma_b \to \Lambda_b \pi$} \begin{columns} \column{0.6\textwidth} \ARROW The study is based on two type of cases: \begin{small} \begin{itemize} \item Slow $\pi$ hits UT + FT and $\Lambda_c$, $D_s$ in UT + FT \item Slow $\pi$ hits UT + MS and $\Lambda_c$, $D_s$ in UT + FT \end{itemize} \end{small} \ARROW The gain in terms of statistics:\\ \begin{align*} { \rm gain} = 29.0\% \end{align*} \column{0.4\textwidth} \includegraphics[angle=-90,width=0.95\textwidth]{{images/z_DstarB}.pdf}\\ \includegraphics[angle=-90,width=0.95\textwidth]{{images/yz_DstarB}.pdf} \end{columns} \end{frame} \begin{frame}\frametitle{Gluon PDF} \begin{center} \includegraphics[width=0.9\textwidth]{images/gluon.png} \end{center} \ARROW The Gluon PDF saturates the low momentum transfer and fractional momentum. \end{frame} \begin{frame}\frametitle{Gluon PDF} \begin{center} \includegraphics[width=0.9\textwidth]{images/gluon22.png} \end{center} \end{frame} \begin{frame}\frametitle{Gluon PDF efficiency} \ARROW If one looks at the efficiency for the low tracks, one finds where is the improvement: \begin{center} \includegraphics[width=0.9\textwidth]{images/pdf.png} \end{center} \ARROW For more details see \href{https://indico.cern.ch/event/557554/contributions/2247267/attachments/1423140/2181806/gluon_saturation_seminar.pdf}{{\color{blue}Cesar Luiz da Silva; Tuesday Presentation}} \end{frame} \begin{frame}\frametitle{Spectroscopy} \begin{center} \includegraphics[width=0.9\textwidth]{images/spec.png} \end{center} \end{frame} \begin{frame}\frametitle{Idea from this workshop: $\PB \to \tau \tau$} \ARROW LHCb has recently measured: $\PB_{s/d} \to \tau \tau$~\href{https://arxiv.org/abs/1703.02508}{\color{blue}arXiv::1703.02508}\\ \begin{columns} \column{0.6\textwidth} \includegraphics[width=0.95\textwidth]{images/bstautau.pdf} \column{0.4\textwidth} \includegraphics[width=0.95\textwidth]{images/Bstautau2.png} \end{columns} \ARROW As a multibody decay it will probably have non-negligable gain from MS.\\ \ARROW From preliminary studies $\mathcal{O}(24)\%$ gain. \end{frame} \begin{frame}\frametitle{Soft bomb events} \ARROW All credits to Zoltan Ligeti.\\ \ARROW Based on paper:\href{https://arxiv.org/pdf/1612.00850.pdf?fname=cm&font=TypeI}{\color{blue}arXiv::1612.00850} \includegraphics[width=0.99\textwidth]{images/bomb.png} \ARROW The paper gives a lot of information how to select such events $\color{blue}\rightarrow$ Need new MC study. \end{frame} \fi \begin{frame}\frametitle{Outlook} \ARROW The physics program of magnet stations is growing.\\ \ARROW For many channels, the MS are improving the efficiencies from ~$20-30\% (R(D^{\ast}))$ to $60\%$.\\ \ARROW For other, such as the study of Gluon saturation, the MS are enabling the measurement.\\ \ARROW MS help when little PHSP is available.\\ \ARROW Spectroscopy measurements enhanced.\\ \ARROW Tagging of charm meson and baryon decays $\rightarrow$ reduce background.\\{~}\\ \ARROW Tracking algorithms are being developed.\\ \ARROW Implementing the MS in Gauss. \end{frame} \backupbegin \begin{frame}\frametitle{Backup} \topline \end{frame} \backupend \end{document}