\documentclass[]{beamer} \setbeamertemplate{navigation symbols}{} \usepackage{beamerthemesplit} \useoutertheme{infolines} \usecolortheme{dolphin} \usetheme{Warsaw} \usepackage{graphicx} \usepackage{amssymb,amsmath} \usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{latexsym} \usepackage{hyperref} \usepackage{enumerate} \usepackage[T1]{fontenc} \usepackage[polish]{babel} \usepackage{lmodern} \usepackage{feynmp} \logo{\includegraphics[height=1.0cm,keepaspectratio ]{pic/ifj.png} \includegraphics[height=1.0cm]{pic/SuperB_logo.png} } %\usetheme{Boadilla} %\beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2->{15}} \title{The SuperB factory} \subtitle{physics prospects and project status} \author{Marcin Chrz\k{a}szcz} \date{$21^{st}$ September $2012$} \begin{document} { \institute{{\scriptsize on behave of SuperB Collaboration} {\small \newline \newline \newline Institute of Nuclear Physics PAN \newline Krakow, Poland}} \setbeamertemplate{footline}{} \begin{frame} \titlepage \end{frame} } \institute{IFJ PAN} %tutaj mamy pierwsza strone \section[Outline]{} \begin{frame} \tableofcontents \end{frame} %normal slides \section{Introduction} \begin{frame}\frametitle{B factories} B factories achived a great success over the dozen years. A natural continuation of this project are Super Flavor Factories. \begin{exampleblock}{Super Flavor Factories} \begin{enumerate} \item Data $75 ab^{-1}$. \item Luminosity $10^{36} cm^{-2} s^{-1} $. \item Flexibility to run on charm threshold with luminosity $10^{35} cm^{-2} s^{-1} $. \item Logitudanal polarization of electron beam $80 \% $. \item Upgradet Babar detector. \item Start of data taking: 2018. \item $10ab^{-1}$ peer year. \end{enumerate} \end{exampleblock} \end{frame} \section{SuperB Infrasctructure} \subsection{Accelerator} \begin{frame} \includegraphics[scale=0.35]{pic/tor_veggata_site.png} \end{frame} %\subsection{Accelerator} \begin{frame} \includegraphics[scale=0.35]{pic/acc.png} \end{frame} \subsection{Luminosity} \begin{frame}\frametitle{Quest for Luminosity} \begin{columns}[c] \column{3.0in} \includegraphics[scale=0.4]{pic/crab_off.png} \column{1.5in} $L \propto \dfrac{1}{\sqrt{\beta}_{y}}$, $ \Phi \approx \dfrac{\sigma_{z}}{\sigma_{x}} \dfrac{\theta}{2}$ \end{columns} \end{frame} \begin{frame} \begin{columns}[c] \column{3.0in} \includegraphics[scale=0.4]{pic/crab_on.png} \column{1.5in} $L \propto \dfrac{1}{\sqrt{\beta}_{y}}$, $ \Phi \approx \dfrac{\sigma_{z}}{\sigma_{x}} \dfrac{\theta}{2}$ \end{columns} \end{frame} \section{Detector} \begin{frame}\frametitle{Recycling} SuperB detector is based on Babar. \includegraphics[scale=7]{pic/det.jpg} \end{frame} \subsection{SVT} \begin{frame}\frametitle{Silicon Vertex Tracker} \begin{columns}[c] \column{3in} \includegraphics[scale=0.15]{pic/svt2.png} \begin{itemize} \item Five layers(1-5) of double-sided silicon strip detectors. \item Radial span $3-15~{\rm cm}$. \item Upgrade the electronics for faster readout. \item Additional Layer 0: \begin{enumerate} \item Radius $\approx 1.5 cm$ . \item Low material budget: $X_{0}=0.5\%$. \item Two possible technologies: Hybrid Pixels, Double Sided Strip detectors(Striplts). \end{enumerate} \end{itemize} %first column \column{2in} \newline \includegraphics[scale=0.23]{pic/svtb.png} %second column \end{columns} \end{frame} \subsection{DCH} \begin{frame}\frametitle{Drift Chamber} \begin{columns}[c] \column{3in} \includegraphics[scale=0.15]{pic/dich.png} \begin{itemize} \item 40 layers of $\approx 1 cm$ cells parralel to beam line. \item Provide momentum and $\dfrac{dE}{dx}$ for low momentum particles($p<700 MeV$). \item $\approx 10000$ channels \item Ocuupancy%($3.5 % - 5%$). \end{itemize} %first column \column{2in} R\& D: \begin{itemize} \item Geometry \item Gas mixture \item aaaa \end{itemize} %second column \end{columns} \end{frame} \subsection{DIRC} \begin{frame}\frametitle{Detector of Internally Reflected Cherenkov light} \begin{columns}[c] \column{2in} \includegraphics[scale=0.23]{pic/DIRC.png} \newline \includegraphics[scale=0.23]{pic/dirc2.png} %first column \column{3in} \begin{itemize} \item Momentum range $ 0.7 - 4 GeV$ \item Radiator: synthetic fused silica. \item Photon detectors outside field region. \item Radiatoin hard. \end{itemize} %second column \end{columns} \end{frame} \subsection{EMC and IFR} \begin{frame}\frametitle{Electromagnetic and hadronic calorimeter} \begin{columns}[c] \column{3in} \includegraphics[scale=0.23]{pic/ifr.png} %first column \column{2in} Electronamgnetic Calorimeter: \begin{itemize} \item Coverage $94\% of 4 \Pi$ \item CsI or LYSO cristals \item Crystal lenght $16-17.5 X_{0}$ \item Radiatoin hard. \end{itemize} Instrumented Flux Return: \begin{itemize} \item Upgrade form TDC to BIRO \item Scintilators \item Iron reused from Babar \item SiPM \end{itemize} %second column \end{columns} \end{frame} %%%%%%%%%%% uFFFFFFFFFFFFFFFFFfff detector finished \section{Physics} \subsection{Rare B Physics} \begin{frame}\frametitle{$B \rightarrow \tau \nu$} \begin{columns}[c] \column{3.5in} Precise SM prediction: \small \newline $Br(B \rightarrow l \nu) = \dfrac{G^{2}_{F} m_{B}}{8\pi} m_{l}^{2} (1-\dfrac{m_{l}^{2}}{m_{B}^{2}})f_{B}^{2}\vert V_{ub}\vert^{2} \tau_{B}$ \newline In SUSY: \small \newline $Br(B \rightarrow l \nu) = \dfrac{G^{2}_{F} m_{B}}{8\pi} m_{l}^{2} (1-\dfrac{m_{l}^{2}}{m_{B}^{2}})f_{B}^{2}\vert V_{ub}\vert^{2} \tau_{B}(1-\dfrac{tan^{2}\beta}{1+\overline{\epsilon} tan \beta}\dfrac{m_{B}^{2}}{m_{H}^{2}})$ \column{1.5in} \includegraphics[scale=0.2]{pic/b2taunu.png} \newline \includegraphics[scale=0.2]{pic/higggs.png} \end{columns} \center \includegraphics[scale=0.16]{pic/excl.png} \end{frame} \subsection{TDCP} \begin{frame}\frametitle{Time Depended CP} Time Depended CP can be signs of new physics. One has to study set of modes: \newline $b \rightarrow s\overline{s}c$, $b \rightarrow s$ Curent experimental results(SM -observed): \newline $\Delta sin(2\beta)=2.7\sigma$, penguin \newline $\Delta sin(2\beta)=2.1\sigma$, tree Golden modes in SuperB: $B \rightarrow J/\psi K^{0}$, $B \rightarrow \eta ' K^{0}$, $B \rightarrow f_{0}K_{s}^{0}$ \begin{columns}[c] \column{3.0in} \includegraphics[scale=0.2]{pic/table.png} \column{2.0in} \includegraphics[scale=0.14]{pic/jpsi.png} \newline \newline \includegraphics[scale=0.14]{pic/jpsi2.png} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{$B \rightarrow X_{s} \gamma$} \begin{frame}\frametitle{$B \rightarrow X_{s} \gamma$} Very important probe of new physics! Current experimental result averaged out: $Br(B \rightarrow X_{s} \gamma ) = (3.52\pm0.23\pm0.09) 10^{-4} $ Theoretical calculations on NNLO: $Br(B \rightarrow X_{s} \gamma ) = (3.15 \pm 0.23) 10^{-4}$ Experimently chalenging to measure the inclusive decays. THere are two ways of studing this decay: \begin{enumerate} \item Exlusive: \begin{itemize} \item The earliest results were done suing a large number of exclusive decays, which are fully reconstructed. \item Erros rising from unseen modes. \item Obsolete for SuperB. \end{itemize} \item Inclusive: \begin{itemize} \item Use tagging to tag the other B. \item No requirements on $X_{s}$. \item Disadvantage: Cut on photon energy. \item Effort to keep the cut as small as possible \end{itemize} \end{enumerate} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{LFV} \begin{frame}\frametitle{LFV} \begin{itemize} \item LFV can occure in SM due to masses of the neutrinos. \item Any observation is evidence of new physics. \item Most promising channels: $\tau \rightarrow l \gamma $, $\tau \rightarrow l l l$. \newline \includegraphics[scale=0.33]{pic/tau3mu_SUSY_r_violating-eps-converted-to.pdf} \includegraphics[scale=0.33]{pic/tau3mu_littlest_higgs-eps-converted-to.pdf} \includegraphics[scale=0.33]{pic/tau3mu_SUSY_seesaw-eps-converted-to.pdf} \newline \includegraphics[scale=0.33]{pic/tau3mu_SUSY_seesaw-eps-converted-to.pdf} \includegraphics[scale=0.33]{pic/tau3mu_SM2-eps-converted-to.pdf} \includegraphics[scale=0.33]{pic/tau3mu_SM-eps-converted-to.pdf} \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{$\tau \rightarrow l \gamma$ sensitivity} \begin{columns}[c] \column{2.5in} \begin{itemize} \item Better tracking resolution, increase $\Delta m - \Delta E $ box, by $65\%$. \item Higher photon efficiency. \item Increase of geometry acceprance. \item Thicker signal peak. \item Smaller boost improves performance of the fit. \end{itemize} \column{2.5in} \includegraphics[scale=0.2]{pic/dm_de.png} \end{columns} \end{frame} \begin{frame}\frametitle{Polarization} \begin{columns}[c] \column{2.0in} SuperB will have polarized electron beam($80\%$). One can use this infromation \newline \newline Preliminary results: Upper limit at $90\%$: $2.44\times10^{-9}$ $3 \sigma$ observation: $5.50\times 10^{-9}$ \newline \column{3.0in} \includegraphics[scale=0.23]{pic/polar.png} \end{columns} \end{frame} \begin{frame}\frametitle{$\tau \rightarrow 3\mu$} \begin{columns}[c] \column{2.0in} Current analysis: \begin{itemize} \item Calculate the trust axis. \item Semi tag the second $ \tau $. \item Limit obtained($90\%$ Br($\tau \rightarrow 3\mu$) = $8.1 \times 10^{-10}$ \end{itemize} \column{3.0in} \includegraphics[scale=0.23]{pic/dm_de23mu.png} \end{columns} \end{frame} \begin{frame}\frametitle{LFV Summary} %!!!!!!!!!!!!!!!!!!!!!! \includegraphics[scale=0.4]{pic/lfv_superb.png} \end{frame} \subsection{CP violation} \begin{frame}\frametitle{CP violation} \begin{itemize} \item CP violation was never observed in $\tau$ sector. \item SM prediction is neglible small $O(10^{-12})l$ in $\tau^{\pm} \rightarrow K^{pm} \pi^{0} \nu$. \item Any obserwation is clear identification of NP. \item Very fiew NP models can explain this: \begin{enumerate} \item RPV SUSY \item Multi Higgs models \end{enumerate} \item SuperB can improve sensitivety 75 times compared to CLEO. \end{itemize} \end{frame} \subsection{EDM} \begin{frame}\frametitle{EDM} EDM can be measured with single angle differential cross section $e^{+}e^{-} \rightarrow \tau^{+} \tau^{-}$. \begin{itemize} \item Improvement using polarized beam. \item Achivable sensitivety: $10^{-19} ecm$ \end{itemize} \end{frame} \end{document}