- \documentclass[]{beamer}
- \setbeamertemplate{navigation symbols}{}
- \usepackage{beamerthemesplit}
- \useoutertheme{infolines}
- \usecolortheme{dolphin}
- \usetheme{Warsaw}
- \usepackage{graphicx}
- \usepackage{amssymb,amsmath}
- \usepackage[latin1]{inputenc}
- \usepackage{amsmath}
- \usepackage{amsfonts}
- \usepackage{amssymb}
- \usepackage{latexsym}
- \usepackage{hyperref}
-
- \usepackage[T1]{fontenc}
- \usepackage[polish]{babel}
- \usepackage{lmodern}
-
-
-
- %\usetheme{Boadilla}
-
- %\beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2->{15}}
- \title{Silicon Vertex Tracker for SuperB}
- \author{Marcin Chrz\k{a}szcz}
-
- \date{\today}
-
- \begin{document}
-
- {
- \institute{Institute of Nuclear Physics PAN}
- \setbeamertemplate{footline}{}
- \begin{frame}
- \titlepage
- \end{frame}
- }
-
- \institute{IFJ PAN}
-
-
-
- %tutaj mamy pierwsza strone
-
-
- \section[Outline]{}
- \begin{frame}
- \tableofcontents
- \end{frame}
-
- %normal slides
- \section{General Overview of Silicon Vertex Tracker (SVT)}
-
- \subsection{Physics requirements}
- \begin{frame}\frametitle{Physics requirements}
-
- The SuperB SVT design is based on the BaBar vertex detector layout with an additional innermost layer closer to the IP (Layer0).
-
-
- \begin{enumerate}
-
- \item SVT together with drift chamber (DCH) and magnet provide track and vertex reconsturction.
- \item For less energetic particles SVT must provide the complete track information.
- \item SVT must provide the same precision of time dependent CP violation as BaBar detector with boost reduced from $\beta\gamma=0.55$ to $\beta\gamma=0.28$
- {
- \begin{itemize}
- \item $50-80 \mu m$ for exclusively reconstructed modes.
- \item $100-150 \mu m$ for inclusively reconstructed modes.
- \end{itemize}
- }
- \end{enumerate}
-
-
- \end{frame}
-
-
-
- \subsection{SVT Layers 1-5}
- \begin{frame}\frametitle{SVT Layers 1-5}
- \begin{columns}[c]
- \column{3in}
- \includegraphics[scale=0.15]{svt2.png}
-
- \begin{itemize}
- \item Five layers(1-5) of double-sided silicon strip detectors.
- \item Radial span $3-15~{\rm cm}$.
- \end{itemize}
-
-
- %first column
- \column{2in}
- \newline \includegraphics[scale=0.23]{svtb.png}
- \newline \includegraphics[scale=0.21]{pt.png}
-
-
- %second column
- \end{columns}
-
-
-
- \end{frame}
- \subsection{Layer0 setup}
- \begin{frame}\frametitle{Layer0}
- \begin{columns}[c]
-
- \column{2.5in}
- \begin{footnotesize}
- To meet the physics requirements mentioned for SuperB an additional 6th layer was introduced (Layer0).
- Reguirements for Layer0:\begin{itemize}
- \item Radius about 1.5 cm
- \item High granuality.
- \item low material budget.
- \end{itemize}
- Aspects that are being considered in projecting Layer0:
- \begin{enumerate}
- \item Background:
- {
- \begin{footnotesize}
- \begin{itemize}
- \item $e^{+} e^{-} -> e^{+} e^{+} e^{-} e^{-}$.
- \item Bhabha scattering.
- \item Touschek.
- \item two-photon events.
- \end{itemize}
- \end{footnotesize}
- }
- \item Sensor occupancy.
- \item Radiation hardness.
- \end{enumerate}
- \end{footnotesize}
-
-
- \column{2.5in}
- \includegraphics[scale=0.24]{dt_vs_l0.png}
- \newline \includegraphics[scale=0.18]{s_vs_l0.png}
-
- \end{columns}
-
-
- \end{frame}
-
- \section{Options for layer0}
- %\subsection{List of options}
-
- \begin{frame}\frametitle{List of options}
-
- \begin{enumerate}
- \item Double-sided silicon strip detector (Striplets).
- \item Pixel detectors:
- {
- \begin{itemize}
- \item Hybrid pixels.
- \item MAPS.
-
- \end{itemize}
-
- }
-
- \end{enumerate}
- \end{frame}
- \subsection{Striplets}
- \begin{frame}\frametitle{Striplets}
- \begin{columns}[c]
- \column{3in}
- \begin{itemize}
- \item $200 \mu m$ thick, with $50 \mu m$ readout pitch.
- \item Rotated by$\pm 45^{0}$.
- %\item Occupancy: $0.8\%$; $4\%$ with safety factor.
- \item Chip with 128 analog channels and 132 $ns$ time window.
- \item Signal to Noise ratio: 26 to 1.
- \item Material budget: $0.55 \% X_{0}$
- \item Cluster rate: $6.37 {MHz}$ ${cm^{-2}}$
-
-
- \end{itemize}
-
-
- %first column
- \column{2in}
- \newline \includegraphics[scale=0.22]{striplets.png}
-
- \end{columns}
- \end{frame}
- \begin{frame}\frametitle{SVT Test Beam}
- \includegraphics[scale=0.22]{testbeam.png}
- \newline DUT = Device Under Test.
-
-
-
- \end{frame}
-
- \begin{frame}\frametitle{SVT Test Beam}
- \begin{small} Work done by: Laura Fabbri (INFN Bologna) \end{small}
- \begin{columns}[c]
- \column{2.7in}
- \begin{enumerate}
- \begin{tiny}
- \item Test done on DUT rotated by: $ 0^{o}, 15^{o}, 30^{o}, 45^{o}, 60^{o}, 70^{o}$.
- \item 1 week of data taking.
- \item Thresholds = 20 or 15.
-
- \end{tiny}
- %\line(1,0){300}
- \end{enumerate}
- {
- \includegraphics[scale=0.16]{striplets2.png}
- }
- \begin{small}
- Procedure:
- \begin{itemize}
- \item Alignment done by minimizing residuals, on telescope and DUT.
- \item Cut on the residual: $ 56\mu m$ and fiducial cut.
-
- \end{itemize}
-
- \end{small}
-
-
-
-
- \column{2.3in}
- \includegraphics[scale=0.18]{residsx.png}
- \newline \includegraphics[scale=0.18]{residsy.png}
-
-
-
-
- \end{columns}
-
-
- \end{frame}
-
- \begin{frame}
-
- \begin{columns}[c]
- \column{2.5in}
-
- \includegraphics[scale=0.17]{strip.png}
- \column{2.5in}
- \begin{itemize}
- \item Inactive strips not taken into account in the analysis
-
- \end{itemize}
-
- \end{columns}
- \begin{center}
- \includegraphics[scale=0.18]{channel.png}
- \end{center}
-
-
- \end{frame}
- \begin{frame}\frametitle{Efficiency vs angle }
- \includegraphics[scale=0.24]{eff.png}
-
- %$\varepsilon_{u}=\frac{n_{clusters}|spUPos-intUPos|<56 \mu m}{n_{int} \subset active U region } $
- %\newline
- %\newline $\varepsilon= \frac{n_{clusters}|spUPos-intUPos|<56 \mu m \wedge n_{clusters}|spvPos-intVPos|<56 \mu m}{n_{int} \subset active U and V region } $
-
- \end{frame}
-
- %NOW pixels
-
- \subsection{Hybrid Pixels}
- \begin{frame}\frametitle{Hybrid Pixels}
- \begin{columns}[c]
- \column{2.5in}
- \begin{itemize}
- \item Pixels: 50 x 50 $\mu m^{2}$ pitch.
- \item $200 \mu m$ thick.
- \item Front end chip optimised to work with $100{MHz}$ ${cm^{-2}}$.
- \item Organised in Mega Pixels \newline (16 Pixels).
- \item Data-push readout featuring on-pixel data sparsification and time-stamp.
- \item Gain = $42{mV}$ ${fC^{-1}}$.
-
- \end{itemize}
- \column{2.5in}
- \includegraphics[scale=0.23]{pix.png}
-
-
-
- \end{columns}
-
- \end{frame}
-
- \begin{frame}\frametitle{Hybrid Pixels Test Beam Notes}
- \begin{block}{Work done by:}
- A.Lusiani, M.Chrzaszcz, Nicola Neri, Benjamin Oberhof, Antonio Paladino.
- \end{block}
-
-
- \begin{exampleblock}
-
- \begin{itemize}
-
- \item Several thresholds, reference threshold 1/4 of a m.i.p. at normal incidence.
- \item Data took with 3 chips: $12, 53, 55$.
- \item DUT rotated around at $ 0^{o}, 15^{o}, 30^{o}, 45^{o}, 60^{o}, 70^{o}$.
- \item 128 pixels along x (horizontal, u-axis), 32 pixels along y (vertical, v -axis).
- \item approximately parallel tracks, high momentum, negligible multiple scattering.
- \end{itemize}
-
- \end{exampleblock}
-
- \end{frame}
-
- \begin{frame}\frametitle{Hybrid Pixels Test Beam Results}
- \begin{block}{ }
- Typical resolution: $~20 \mu m$.
- \end{block}
- \begin{center}
- \includegraphics[scale=0.27]{res.png}
- \end{center}
-
-
- \end{frame}
-
-
- \begin{frame}\frametitle{Angular dependence of the residual}
- \begin{center}
- \includegraphics[scale=0.3]{angle.png}
- \end{center}
-
-
-
-
- \end{frame}
-
-
- \begin{frame}\frametitle{Hybrid Pixels: Test Beam}
- \begin{columns}[c]
- \column{1.5in}
-
- \begin{itemize}
- \item To cross check our results, TOY MC was written.
- \item Good agreement with data.
-
- \end{itemize}
-
- \column{3.5in}
-
- \begin{center}
- \includegraphics[scale=0.3]{sim.png}
- \end{center}
-
- \end{columns}
-
- \end{frame}
-
- \begin{frame}\frametitle{Hybrid Pixels Test Beam Results}
- \begin{columns}[c]
- \column{1.5in}
-
- \begin{itemize}
- \item To cross check our results, TOY MC was written.
- \item Good agreement with data.
-
- \end{itemize}
-
- \column{3.5in}
-
- \begin{center}
- \includegraphics[scale=0.3]{effvsangle.png}
- \end{center}
-
- \end{columns}
-
- \end{frame}
-
-
- \begin{frame}\frametitle{Threshold Simulations}
-
- \includegraphics[scale=0.29]{sim2.png}
-
- \begin{exampleblock}{Conclusion}
- The next Test Beam will be done with lower threshold( 0.17 - 0.18 m.i.p).
- \end{exampleblock}
-
-
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- \subsection{MAPS}
- \begin{frame}\frametitle{Monolithic Active PixelS}
- \begin{columns}[c]
- \column{2.5in}
- \begin{itemize}
- \item Newer, more challenging.
- \item Pixels: 50 x 50 $\mu m^{2}$ pitch, $50 \mu m$ thickness.
- \item Active cooling is needed ($2 \enskip W \enskip cm^{-2}$).
- \item Implemented in Deep n-well.
- \item Full signal processing chain: large preamplifier, shaper, discriminator, in-pixel logic.
- \end{itemize}
- No TestBeam results yet. MC and lab results:
-
- \begin{itemize}
-
- \item Efficiency:$98 \% $.
- \item 100$ns$ timestamp.
- \end{itemize}
-
- Much more $R \& D$ to be done.
-
- \column{2.5in}
- \includegraphics[scale=0.23]{maps.png}
-
-
-
- \end{columns}
-
- \end{frame}
-
- \section{Outcome}
-
- \begin{frame}\frametitle{Summary}
- The $R \& D$ work on the SuperB SVT is well advanced.
- Crucial issues for Layer0:
- \begin{itemize}
- \item Striplets most ready and working solution for the beginning of SuperB
- data-taking.
- \item $R \& D$ still needed.
- \end{itemize}
- Outcome of work on Hybrid Pixels:
- \begin{itemize}
- \item Study of the residuals and angular dependence.
- \item Smaller threshold planned for next simulations.
-
- \end{itemize}
- In the TDR(Feb 2012) both options will be presented. Final decision will follow after.
- \end{frame}
-
-
-
-
- \end{document}