\documentclass[xcolor=svgnames]{beamer} \usepackage[utf8]{inputenc} \usepackage[english]{babel} \usepackage{polski} %\usepackage{amssymb,amsmath} %\usepackage[latin1]{inputenc} %\usepackage{amsmath} %\newcommand\abs[1]{\left|#1\right|} \usepackage{amsmath} \newcommand\abs[1]{\left|#1\right|} \usepackage{hepnicenames} \usepackage{hepunits} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \definecolor{mygreen}{cmyk}{0.82,0.11,1,0.25} \usetheme{Sybila} \title[Method of moments for $\PBzero \to \PKstar \mu \mu$]{Method of moments for $\PBzero \to \PKstar \mu \mu$} \author{Marcin Chrz\k{a}szcz$^{1,2}$, Nicola Serra$^{1}$} \institute{$^1$~University of Zurich,\\ $^2$~Institute of Nuclear Physics, Krakow} \date{\today} \begin{document} % --------------------------- SLIDE -------------------------------------------- \frame[plain]{\titlepage} \author{Marcin Chrz\k{a}szcz} % ------------------------------------------------------------------------------ % --------------------------- SLIDE -------------------------------------------- \begin{frame}\frametitle{Quo vadis $\PBzero \to \PKstar \mu \mu$?} \center \includegraphics[width=0.8\paperwidth]{diagram.png}\\ \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Quo vadis $\PBzero \to \PKstar \mu \mu$?} \center \includegraphics[width=0.8\paperwidth]{diagram_mm.png}\\ \end{frame} \section{Introduction} \begin{frame}\frametitle{Introduction} Why method of moments: \begin{enumerate} \item Complementary approach to LL fits. \item Allows to extract info measuring quantities in event basis depending on the angular distribution. \item Used in $\PB \to \rho \Plepton \nu$(SLAC-386 UC-414),\\ $\PJpsi \to \PK \PK \gamma$(PRD 71, 032005 (2005) ), etc. \end{enumerate} \end{frame} \section{Method of Moments - Theory} \begin{frame}\frametitle{Method of moments} {~} Let's assume we have our pdf with $k$ unknown parameters:~$PDF(x_i, \alpha)$, $dim(\alpha)=k$. One can calculate $k$ moments, which are the functions of $\alpha_i$: \begin{equation} \mu_i=f(\alpha_1,..., \alpha_k) = E[W_i] \end{equation} For $n$ events, we can estimate: \begin{equation} \widehat{\mu}_i=\dfrac{1}{n}\sum_{j=0}^{j=n-1} w_j \end{equation} , where $w_j=g(x_i)$ \end{frame} \begin{frame}\frametitle{Trivial example} {~} Lets see how this works in practice: \begin{equation} f(x)=\dfrac{x^{a-1}e^{-x/b}} {b^a \Gamma(a)} \end{equation} we measure the moments:\\ \begin{center} $m_1=\dfrac{X_1+X_2+...+X_n}{n}$,\\ $m_2=\dfrac{X_1^2+X_2^2+...+X_n^2}{n}$.\\\end{center} and calculate them analytically: \begin{center} $m_1=ab$, $m_2=b^2a(a+1)$\end{center} So one just needs to solve this and get the answer: \center $a=\dfrac{m_1^2}{m_2-m_1^2}$, $b=\dfrac{m_2-m_1^2}{m_1}$ \end{frame} \section{Moments of Ss} \begin{frame}\frametitle{Our PDF} {~} The angular terms: \begin{small} \begin{multline} PDF(\cos \theta_k ,\cos \theta_l, \phi) =\dfrac{9}{32\pi}( \dfrac{3}{4}(1-F_l)\sin^2 \theta_k + F_l \cos^2 \theta_k + (\dfrac{1}{4}(1-F_l)\sin^2 \theta_k \\ -F_l\cos^2) \cos 2\theta_l + S_3 \sin^2 \theta_k \sin^2 \theta_l cos2\phi + S_4 \sin2 \theta_k \sin \theta_l \cos\phi +\\ S_5 \sin 2 \theta_k \sin \theta_l \cos \phi + (S_{6s} \sin^2 \theta_k + S_{6c} \cos^2 \theta_k) \cos \theta_l + \\ S_7 \sin 2\theta_k \sin \theta_l \sin \phi + S_8 \sin 2 \theta_k \sin 2 \theta_l \sin \phi + S_9 \sin^2 \theta_k \sin^2 \theta_l \sin 2 \phi) \end{multline} \end{small} \only<1>{ Since we are fitting a PDF we need to ensure it is normalized: \begin{equation} \int_{-\pi}^{\pi} d\phi \int_{-1}^{1} d cos\theta_l \int_{-1}^{1} d cos\theta_k \dfrac{d^4\Gamma}{dq^2 dcos\theta_k dcos\theta_l d\phi}=1 \end{equation} } \only<2> { \begin{small} For further use let's introduce a notation: \begin{multline} PDF(\cos \theta_k ,\cos \theta_l, \phi) =\dfrac{9}{32\pi}( \dfrac{3}{4}(1-F_l)\sin^2 \theta_k + F_l \cos^2 \theta_k + \\(\dfrac{1}{4}(1-F_l)\sin^2 \theta_k -F_l\cos^2) \cos 2\theta_l + \sum_{x=3}^{9} S_x f_x(\cos \theta_k ,\cos \theta_l, \phi) \end{multline} \end{small} } \end{frame} \begin{frame}\frametitle{Moments for $\PB \to \PKstar \mu \mu$ 1/2} {~} \begin{footnotesize} Let's calculate the moments(means of the given distribution): \begin{equation} \int_{-1}^{1}d\cos \theta_l \int_{-1}^{1}d\cos \theta_k \int_{-\pi}^{\pi}d\phi PDF(\cos \theta_k ,\cos \theta_l, \phi) \sin^2 \theta_k =\frac{2}{5} (2-F_l) \end{equation} \begin{equation} \int_{-1}^{1}d\cos \theta_l \int_{-1}^{1}d\cos \theta_k \int_{-\pi}^{\pi}d\phi PDF(\cos \theta_k ,\cos \theta_l, \phi) \cos^2 \theta_k =\frac{1}{5} (2F_l+1) \end{equation} \begin{equation} \int_{-1}^{1}d\cos \theta_l \int_{-1}^{1}d\cos \theta_k \int_{-\pi}^{\pi}d\phi PDF(\cos \theta_k ,\cos \theta_l, \phi) \cos^2 \theta_k =-\dfrac{2}{25}(2 + F_l) \end{equation} \begin{equation} \int_{-1}^{1}d\cos \theta_l \int_{-1}^{1}d\cos \theta_k \int_{-\pi}^{\pi}d\phi PDF(\cos \theta_k ,\cos \theta_l, \phi) \sin^2 \theta_k =-\dfrac{1}{25}(1+8F_l) \end{equation} \end{footnotesize} \end{frame} \begin{frame}\frametitle{Moments for $\PB \to \PKstar \mu \mu$ 2/2} {~} \begin{small} Let's calculate the moments(means of the given distribution): \begin{equation} \int_{-1}^{1}d\cos \theta_l \int_{-1}^{1}d\cos \theta_k \int_{-\pi}^{\pi}d\phi PDF(\cos \theta_k ,\cos \theta_l, \phi) f_{S_x}= \frac{8}{25}S_x, \end{equation} for $x=3,4,8,9$, and: %% \begin{equation} \int_{-1}^{1}d\cos \theta_l \int_{-1}^{1}d\cos \theta_k \int_{-\pi}^{\pi}d\phi PDF(\cos \theta_k ,\cos \theta_l, \phi) f_{S_x}= \frac{2}{5}S_x, \end{equation} for $x=5,6,7$.\\ New physics apparently as we like orthogonal world: \begin{equation} \int_{-1}^{1}d\cos \theta_l \int_{-1}^{1}d\cos \theta_k \int_{-\pi}^{\pi}d\phi~( f_{S_x} \times f_{S_y}) = \alpha_{xy} \delta_{x~y} \end{equation} \end{small} \end{frame} \begin{frame}\frametitle{Moments for $\PB \to \PKstar \mu \mu$} {~} \begin{itemize} \item We are abusing the fact that the basis is orthogonal and moments do not mix. \item Makes live easier and reduces the systematics. \item Each of the S does not know about other. \item In case of full PDF, $S_{1s}$, $S_{2s}$, $S_{1c}$, $S_{2c}$ $S_{6s}$, $S_{6c}$ are not orthogonal. \item Still we can get them solving equation system: \end{itemize} \begin{equation} \dfrac{d^3\Gamma}{\Gamma dcos\theta_k dcos\theta_l d\phi} sin^2 \theta_k cos \theta_l = 0.1(S_6c+4S_6s) \end{equation} \begin{equation} \dfrac{d^3\Gamma}{\Gamma dcos\theta_k dcos\theta_l d\phi} cos \theta_l = 0.25(S_{6}c+2S_{6s}) \end{equation} \small solution: $S_{6c}=2 (4 M_{S_{6c}} - 5 M_{S_{6s}})$, $S_{6s}= -2 M_{S_{6c}} + 5 M_{S_{6s}}$ \end{frame} \section{Toy MC study} \begin{frame}\frametitle{Moments for $\PB \to \PKstar \mu \mu$} {~} Lets see if this method actually works. Let's take some random parameters for the PDF and make a toy. \begin{columns} \column{2.5in} \includegraphics[scale=0.25]{images/J3.png} \column{2.5in} \includegraphics[scale=0.25]{images/J9.png} \end{columns} \end{frame} \begin{frame}\frametitle{Error Estimation} {~} \begin{itemize} \item Since moment is the mean of a given distribution the error can be estimated as $mean/RMS$ \item use TOY MC to check this assumption \item Do not worry, detail description an numbers will come in other presentation. \end{itemize} \includegraphics[scale=0.3]{plots/conw.png}\\ \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{Correlation check} {~} \begin{itemize} \item In theory $S_i$ shouldn't be correlated to $S_j$ in the moment calculation. \item Lets put this to a test. \end{itemize} \begin{columns} \column{2.5in} \includegraphics[scale=0.2]{plots/J9J4.png}\\ \column{2.5in} \includegraphics[scale=0.2]{plots/J8J5.png}\\ \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{Correlation check 2} {~} \begin{itemize} \item Let's now FIX $J_x$ and simulate different $J_y$ \item Again theory would suggest that one J shouldn't know about the other, so $J_x$ shouldn't change with scanning $J_y$ parameter \end{itemize} \begin{columns} \column{2.5in} \includegraphics[scale=0.24]{plots/J5_vs_J9_300.png}\\ \column{2.5in} \includegraphics[scale=0.24]{plots/J3_vs_J9_300.png}\\ \end{columns} \end{frame} \section{S-wave} \begin{frame}\frametitle{S-wave pollution} {~} \begin{columns} \column{3in} \begin{itemize} \item Unfortunately in our perfect orthogonal world lives an imposter. \item This imposter is $\PBzero \to (\PK \Ppi)_{S-wave}~\mu \mu$ \item This "ghost" dilutes our NP! Like dark matter the universe. \item We need something to bust this ghost away \end{itemize} \column{2in} \includegraphics[width=0.95\textwidth]{P5.png}\\ \includegraphics[width=0.5\textwidth]{gb.jpg} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{S-wave hunting} {~} Our PDF with the S-wave will look as follows: \begin{multline} PDF_{full}(\cos \theta_k ,\cos \theta_l, \phi) =\dfrac{9}{32\pi}( \textcolor{red}{(1-F_s)}(\dfrac{3}{4}(1-F_l)\sin^2 \theta_k + F_l \cos^2 \theta_k + \\ (\dfrac{1}{4}(1-F_l)\sin^2 \theta_k -F_l\cos^2) \cos 2\theta_l + S_3 \sin^2 \theta_k \sin^2 \theta_l cos2\phi + \\S_4 \sin2 \theta_k \sin \theta_l \cos\phi + S_5 \sin 2 \theta_k \sin \theta_l \cos \phi + \\ (S_{6s} \sin^2 \theta_k + S_{6c} \cos^2 \theta_k) \cos \theta_l + S_7 \sin 2\theta_k \sin \theta_l \sin \phi + \\ S_8 \sin 2 \theta_k \sin 2 \theta_l \sin \phi + S_9 \sin^2 \theta_k \sin^2 \theta_l \sin 2 \phi) + \\ \textcolor{red}{\dfrac{2}{3} F_s \sin^2 \theta_l + \frac{4}{3} A_s \sin^2 \theta_l \cos \theta_k + I_4 \sin \theta_k \sin 2 \theta_l \cos \phi} \\ \textcolor{red}{+ I_5 \sin \theta_k \sin \theta_l \cos \phi + I_7 \sin \theta_k \sin \theta_l + \sin \phi + I_8 \sin \theta_k \sin 2\theta_l \sin\phi}) \end{multline} \small In this form we ensure normalization. \end{frame} \begin{frame}\frametitle{How does the dilution work? 1/2} {~} \begin{small} \begin{equation} \int_{-1}^{1}d\cos \theta_l \int_{-1}^{1}d\cos \theta_k \int_{-\pi}^{\pi}d\phi PDF_{full}(\cos \theta_k ,\cos \theta_l, \phi) f_{S_x}= \frac{8}{25}S_x\textcolor{red}{(1-F_s)}, \end{equation} for $x=3,4,8,9$, and: %% \begin{equation} \int_{-1}^{1}d\cos \theta_l \int_{-1}^{1}d\cos \theta_k \int_{-\pi}^{\pi}d\phi PDF_{full}(\cos \theta_k ,\cos \theta_l, \phi) f_{S_x}= \frac{2}{5}S_x\textcolor{red}{(1-F_s)}, \end{equation} for $x=5,6,7$.\\ Not much harm and easy to control. \end{small} \end{frame} \begin{frame}\frametitle{How does the dilution work? 2/2} {~} \begin{small} Unfortunately $F_l$ and $F_s$ will mix with each other: \begin{multline} \int_{-1}^{1}d\cos \theta_l \int_{-1}^{1}d\cos \theta_k \int_{-\pi}^{\pi}d\phi PDF_{full}(\cos \theta_k ,\cos \theta_l, \phi) \sin^2 \theta_k= \\ \frac{2}{15} (6 + 3 F_l (F_s-1) - F_s)=M_{F_l} \end{multline} \begin{multline} \int_{-1}^{1}d\cos \theta_l \int_{-1}^{1}d\cos \theta_k \int_{-\pi}^{\pi}d\phi PDF_{full}(\cos \theta_k ,\cos \theta_l, \phi) \sin^2 \theta_l= \\ \frac{1}{5} (3 + F_l + F_s - F_l F_s)=M_{F_s} \end{multline} They can solve this system: $ \begin{cases} F_s = \frac{15}{4} (M_{F_l} + 2 M_{F_s}) \\ F_l = \frac{(15 M_{F_l} + 10 M_{F_s}-18)}{(15 M_{F_l} + 30 M_{F_s}-34)} \end{cases}$ \end{small} \end{frame} \begin{frame}\frametitle{S-wave moments} {~} We can even measure directly the S-wave: \begin{equation} \dfrac{d^3\Gamma}{\Gamma dcos\theta_k dcos\theta_l d\phi }sin^2 \theta_l cos \theta_k = \dfrac{32 I_{1b} }{45} \end{equation} \begin{equation} \dfrac{d^3\Gamma}{\Gamma dcos\theta_k dcos\theta_l d\phi } sin \theta_k sin 2 \theta_l cos \phi = \dfrac{16 I_4 }{45} \end{equation} \begin{equation} \dfrac{d^3\Gamma}{\Gamma dcos\theta_k dcos\theta_l d\phi } sin\theta_k sin\theta_l cos\phi = \dfrac{4 I_5 }{9} \end{equation} \begin{equation} \dfrac{d^3\Gamma}{\Gamma dcos\theta_k dcos\theta_l d\phi} sin \theta_k sin 2 \theta_l sin \phi = \dfrac{4 I_7 }{9} \end{equation} \begin{equation} \dfrac{d^3\Gamma}{\Gamma dcos\theta_k dcos\theta_l d\phi} sin \theta_k sin2 \theta_l sin \phi = \dfrac{16 S_8 }{45} \end{equation} \end{frame} \begin{frame}\frametitle{Conclusions} {~} \begin{itemize} \item Method of moments very suitable for $\PBzero \to \PKstar \mu \mu$. \item The method converge fast and works for the "simple case", i.e. signal only. \item Method very insensitive to S-wave component, thanks to orthogonality. \item Complementary one can measure in-depended S-wave component. \item No problem with boundary problems. \end{itemize} What comes in the next talks(stay tuned): \begin{itemize} \item This method reduces the error on unfolding. \item No problem with convergence. \item Systematics easy accessible. \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%55 \begin{frame}\frametitle{~} {~} \center \Huge BACKUPS \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J1c_50.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J1c_75.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J1c_50E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J1c_75E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J1c_125.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J1c_175.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J1c_125E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J1c_175E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J1c_225.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J1c_300.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J1c_225E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J1c_300E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J1c_400.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J1c_400E.png}\\ \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55 \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J1s_50.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J1s_75.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J1s_50E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J1s_75E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J1s_125.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J1s_175.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J1s_125E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J1s_175E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J1s_225.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J1s_300.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J1s_225E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J1s_300E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J1s_400.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J1s_400E.png}\\ \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J2c_50.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J2c_75.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J2c_50E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J2c_75E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J2c_125.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J2c_175.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J2c_125E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J2c_175E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J2c_225.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J2c_300.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J2c_225E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J2c_300E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J2c_400.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J2c_500.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J2c_400E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J2c_500E.png}\\ \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J3_50.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J3_75.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J3_50E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J3_75E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J3_125.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J3_175.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J3_125E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J3_175E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J3_225.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J3_300.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J3_225E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J3_300E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J3_400.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J3_500.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J3_400E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J3_500E.png}\\ \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J4_50.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J4_75.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J4_50E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J4_75E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J4_125.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J4_175.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J4_125E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J4_175E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J4_225.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J4_300.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J4_225E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J4_300E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J4_400.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J4_500.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J4_400E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J4_500E.png}\\ \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J5_50.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J5_75.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J5_50E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J5_75E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J5_125.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J5_175.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J5_125E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J5_175E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J5_225.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J5_300.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J5_225E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J5_300E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J5_400.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J5_500.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J5_400E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J5_500E.png}\\ \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J7_50.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J7_75.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J7_50E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J7_75E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J7_125.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J7_175.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J7_125E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J7_175E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J7_225.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J7_300.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J7_225E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J7_300E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J7_400.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J7_500.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J7_400E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J7_500E.png}\\ \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J8_50.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J8_75.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J8_50E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J8_75E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J8_125.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J8_175.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J8_125E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J8_175E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J8_225.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J8_300.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J8_225E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J8_300E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J8_400.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J8_500.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J8_400E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J8_500E.png}\\ \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J9_50.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J9_75.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J9_50E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J9_75E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J9_125.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J9_175.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J9_125E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J9_175E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J9_225.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J9_300.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J9_225E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J9_300E.png} \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J9_400.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J9_500.png}\\ \column{2.5in} \includegraphics[scale=0.17]{plots/pool_plots/J9_400E.png}\\ \includegraphics[scale=0.17]{plots/pool_plots/J9_500E.png}\\ \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%% \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.2]{plots/J9J8.png}\\ \includegraphics[scale=0.2]{plots/J9J5.png}\\ \column{2.5in} \includegraphics[scale=0.2]{plots/J9J7.png}\\ \includegraphics[scale=0.2]{plots/J9J4.png}\\ \end{columns} \end{frame} \begin{frame} {~} \begin{columns} \column{2.5in} \includegraphics[scale=0.2]{plots/J9J3.png}\\ \includegraphics[scale=0.2]{plots/J8J7.png}\\ \column{2.5in} \includegraphics[scale=0.2]{plots/J8J5.png}\\ \includegraphics[scale=0.2]{plots/J8J4.png}\\ \end{columns} \end{frame} % ------------------------------------------------------------------------------ \end{document}