Newer
Older
Presentations / Epiphana2012 / epiphana_svt21.tex
@mchrzasz mchrzasz on 9 Jan 2013 8 KB first commit
\documentclass[]{beamer}
\setbeamertemplate{navigation symbols}{}
\usepackage{beamerthemesplit}
\useoutertheme{infolines}
\usecolortheme{dolphin}
\usetheme{Warsaw}
\usepackage{graphicx}

%\usetheme{Boadilla}

%\beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2->{15}}
\title{Silicon Vertex Tracker for SuperB}  
\author{Marcin Chrzaszcz}

\date{\today} 

\begin{document}

{
\institute{Institute of Nuclear Physics PAN}
\setbeamertemplate{footline}{} 
\begin{frame}
  \titlepage
\end{frame}
}

\institute{IFJ PAN}



%tutaj mamy pierwsza strone


\section[Outline]{}
\begin{frame}
\tableofcontents
\end{frame}

%normal slides
\section{General Overview of Silicon Vertex Tracker (SVT)}

\subsection{Physics requirements}
\begin{frame}\frametitle{Physics requirements}

The SuperB SVT design is based on the BABAR vertex detector layout with the addition of an innermost layer closer to the IP (Layer0).


\begin{enumerate}

\item SVT together with drift chamber (DCH) and magnet provide track and vertex reconsturction 
	\item For low energetic particles SVT must provide the complete track information.
	\item SVT must provide the same precision of time dependend CP violation as Babar detector with boost reduced from $\alpha\beta=0.55$ to $\alpha\beta=0.28$
	{
	\begin{itemize}
	\item $50-80 \mu m$ for exclusively reconstructed modes.
	\item $100-150 \mu m$ for inclusively reconstructed modes.
	\end{itemize}
	}
\end{enumerate}	

	
\end{frame}



\subsection{SVT Layers 1-5}
\begin{frame}\frametitle{SVT Layers 1-5} 
\begin{columns}[c]
	\column{3in}
	\includegraphics[scale=0.15]{svt2.png}

	\begin{itemize}
	\item Five layers(1-5) of double sided silicon strip detectors.
	\item Radius span $3-15~{\rm cm}$.
		\end{itemize}	

		
	%first column	
	\column{2in}
	\newline \includegraphics[scale=0.23]{svtb.png}
\newline \includegraphics[scale=0.21]{pt.png}
	
		
	%second column	
\end{columns}



\end{frame}
\subsection{Layer0}
\begin{frame}\frametitle{Layer0}
\begin{columns}[c]

	\column{2.5in}
	\begin{footnotesize}

Reguirements on Layer0:\begin{itemize}
	\item Radius about 1.5 cm
	\item High granuality.
	\item low material budget.
\end{itemize}
To meet the requirements mentioned an additional 6th layer was introduced (Layer0). 
Aspects that are beeing taken in projecting Layer0:
\begin{enumerate}
	\item Background:
	{
	\begin{footnotesize}
	\begin{itemize}
	\item $e^{+} e^{-} -> e^{+} e^{+} e^{-} e^{-}$.
	\item Bhabha scattering.
	\item Touschek.
	\item two-photon events.
	\end{itemize}
	\end{footnotesize}
	}
	\item Sensor occupancy.
	\item Radiation hardness.
\end{enumerate}
\end{footnotesize}


	\column{2.5in}
\includegraphics[scale=0.24]{dt_vs_l0.png}
\newline \includegraphics[scale=0.18]{s_vs_l0.png}

\end{columns}


\end{frame}

\section{Options for layer0}
\subsection{List of options}
\begin{frame}\frametitle{List of optons}

\begin{enumerate}
\item Double-sided silicon strip detector (Striplets).
\item Pixel detectors:
{
\begin{itemize}
\item Hybrid pixels.
\item MAPS.

\end{itemize}

} 

\end{enumerate}
\end{frame}
\subsection{Striplets}
\begin{frame}\frametitle{Striplets}
\begin{columns}[c]
	\column{3in}
	\begin{itemize}
	\item $200 \mu m$ thick, with $50 \mu m$ readout pitch.
	\item Rotated by$\pm 45^{0}$. 
	\item Occupancy: $0.8\%$; $4\%$ with safety factor. 
	\item Chip with 128 analog channels and 132 $ns$ time window.
	\item Signal to Noise: 26.
	\item Material budget: $0.55 \% X_{0}$
	\item Cluster rate: $6.37 \frac{MHz}{cm^{2}}$
	 

	\end{itemize}	

		
	%first column	
	\column{2in}
	\newline \includegraphics[scale=0.22]{striplets.png}

\end{columns}
\end{frame}
\begin{frame}\frametitle{SVT Test Beam}
\includegraphics[scale=0.22]{testbeam.png}
\newline DUT = Device Under Test.



\end{frame}

\begin{frame}\frametitle{SVT Test Beam}
\begin{small} Work done by: Laura Fabbri (INFN Bologna) \end{small}
\begin{columns}[c]
	\column{2.7in}
\begin{enumerate}
\begin{tiny}
\item Test done on DUT rotated by: $ 0^{o}, 15^{o}, 30^{o}, 45^{o}, 60^{o}, 70^{o}$.
\item 1 week of data taking. (Alberto please confirm this, mayby u know how many triggers you took)
\item Thresholds = 20 or 15.

\end{tiny}
%\line(1,0){300}
\end{enumerate}
{
\includegraphics[scale=0.16]{striplets2.png}
}
\begin{small}
Procedure:
\begin{itemize}
\item Alignment done by minimizing residuals, on telescope and DUT.
\item Cut on the residual: $ 56\mu m$ and fiducial cut.

\end{itemize}

\end{small}




\column{2.3in}
\includegraphics[scale=0.18]{residsx.png}
\newline \includegraphics[scale=0.18]{residsy.png}




\end{columns}


\end{frame}

\begin{frame}

\begin{columns}[c]
	\column{2.5in}

	\includegraphics[scale=0.17]{strip.png}
	\column{2.5in}
	\begin{itemize}
	\item Inactive strips not taken into account in the analysis
	 
	\end{itemize}

\end{columns}
\begin{center}
	\includegraphics[scale=0.18]{channel.png}
\end{center}


\end{frame}
\begin{frame}\frametitle{Efficiency vs angle }
		\includegraphics[scale=0.24]{eff.png}

%$\varepsilon_{u}=\frac{n_{clusters}|spUPos-intUPos|<56 \mu m}{n_{int} \subset active U region } $
%\newline
%\newline $\varepsilon= \frac{n_{clusters}|spUPos-intUPos|<56 \mu m \wedge n_{clusters}|spvPos-intVPos|<56 \mu m}{n_{int} \subset active U and V region  } $

\end{frame}

%NOW pixels

\subsection{Hybrid Pixels}
\begin{frame}\frametitle{Hybrid Pixels}
\begin{columns}[c]
	\column{2.5in}
		\begin{itemize}
\item Pixels:  50 x 50 $\mu m^{2}$ pitch. 
\item $200 \mu m$ thick.
\item Fron end chip optimised to work with $100\frac{MHz}{cm^{2}}$.
\item Organised in Mega Pixels \newline (16 Pixels).
\item Data-push readout featuring on-pixel data sparsification and time-stamp.
\item Gain = $42\dfrac{mV}{fC}$.

		\end{itemize}
	\column{2.5in}
			\includegraphics[scale=0.23]{pix.png}

	
	
\end{columns}

\end{frame}

\begin{frame}\frametitle{Hybrid Pixels Test Beam Notes}
\begin{block}{Work done by:}
A.Lusiani, M.Chrzaszcz, Nicola Neri, Benjamin Oberhof, Antonio Paladino.
\end{block}


\begin{exampleblock}

\begin{itemize}

\item Several thresholds, reference threshold 1/4 of a m.i.p. at normal incidence.
\item Data took with 3 chips: $12, 53, 55$.
\item DUT rotated around at $ 0^{o}, 15^{o}, 30^{o}, 45^{o}, 60^{o}, 70^{o}$.
\item 128 pixels along x (horizontal, u-axis), 32 pixels along y (vertical, v -axis).
\item approximately parallel tracks, high momentum, negligible multiple scattering.
\end{itemize}

\end{exampleblock}

\end{frame}

\begin{frame}\frametitle{Typical resolution: $~20 \mu m$.}
\begin{center}
 \includegraphics[scale=0.3]{res.png}
\end{center}


\end{frame}


\begin{frame}\frametitle{Angular dependence of residum}
\begin{center}
 \includegraphics[scale=0.3]{angle.png}
\end{center}




\end{frame}


\begin{frame}\frametitle{Hybrid Pixels Test Beam Results}
\begin{columns}[c]
\column{1.5in}

\begin{itemize}
\item To cross check our results, TOY MC was written.
\item Good agreement with the data.

\end{itemize}

	\column{3.5in}
	
\begin{center}
 \includegraphics[scale=0.3]{sim.png}
\end{center}

\end{columns}

\end{frame}

\begin{frame}\frametitle{Hybrid Pixels Test Beam Results}
\begin{columns}[c]
\column{1.5in}

\begin{itemize}
\item To cross check our results, TOY MC was written.
\item Good agreement with the data.

\end{itemize}

	\column{3.5in}
	
\begin{center}
 \includegraphics[scale=0.3]{effvsangle.png}
\end{center}

\end{columns}

\end{frame}


\begin{frame}\frametitle{Threshold Simulations}

 \includegraphics[scale=0.29]{sim2.png}

\begin{exampleblock}{Conclusion}
Next Test Beam will be done with lower threshold( 0.18 m.i.p).
\end{exampleblock}


\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{MAPS}
\begin{frame}\frametitle{Monolithic Active PixelS}
\begin{columns}[c]
	\column{2.5in}
		\begin{itemize}
		\item Newer, more challenging.
\item Pixels:  50 x 50 $\mu m^{2}$ pitch. 
\item Implemented in Deep n-well.
\item Full signal processing chain: large preamplifier, shaper, discriminator, in-pixel logic.
\end{itemize}
No TestBeam done. MC and lab results:

\begin{itemize}

\item Efficiency:$98 \% $.
\item 100$ns$ timestamp.
	\end{itemize}
		
	 Much more RD to be done.
	
	\column{2.5in}
			\includegraphics[scale=0.23]{maps.png}

	
	
\end{columns}

\end{frame}

\section{Conclusions}

\begin{frame}\frametitle{Summary} 
The RD work on the SuperB SVT is well advanced.
Crucial isueas for Layer0:
\begin{itemize}
\item Stripplets are the most propable solution.
\item RD still needed.
\end{itemize}
Out come of this work:
\begin{itemize}
\item Study of the residum and angular dependence.
\item Smaller threshold for future comming from Simulations.

\end{itemize}
In the TDR(Feb 2012) both options will be presented. Final decision will follow after.
\end{frame}




\end{document}