\documentclass[xcolor=svgnames]{beamer} \usepackage[utf8]{inputenc} \usepackage[english]{babel} \usepackage{polski} %\usepackage{amssymb,amsmath} %\usepackage[latin1]{inputenc} %\usepackage{amsmath} %\newcommand\abs[1]{\left|#1\right|} \usepackage{amsmath} \newcommand\abs[1]{\left|#1\right|} \usepackage{hepnicenames} \usepackage{hepunits} \usepackage{color} \usepackage{braket} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \definecolor{mygreen}{cmyk}{0.82,0.11,1,0.25} %-------------------------------------------------------------------- % Introduction %-------------------------------------------------------------------- \usetheme{Sybila} \placelogotrue \title[Recent BaBar results on CP violation in B-meson decays]{ Recent BaBar results on CP violation in B-meson decays} \author{Marcin Chrz\k{a}szcz$^{1}$ \\ \footnotesize{on behalf of the BaBar collaboration}} \institute{$^1$~University of Zurich \\{~}\\ Deep-Inelastic Scattering 2015 } \date{30 April, 2015} \begin{document} % --------------------------- SLIDE -------------------------------------------- \frame[plain]{\titlepage} \author{Marcin Chrz\k{a}szcz} % ------------------------------------------------------------------------------ % --------------------------- SLIDE -------------------------------------------- \institute{~(UZH)} \section[Outline]{} \begin{frame} %\tableofcontents %FIXME! \begin{enumerate} \item BaBar detector \item CP asymmetries with inclusive dilepton measurement. \item CP asymmetries in FCNC: \begin{itemize} \item $\Pbeauty \to \Pstrange \Pphoton$ \item $\Pbeauty \to \Pstrange \Plepton \Plepton$ \end{itemize} \item Conclusions \end{enumerate} \end{frame} % --------------------------- SLIDE -------------------------------------------- \section{BaBar Detector} \begin{frame}\frametitle{BaBar Detector} \begin{columns} \column{2.5in} \begin{itemize} \item PEP-II, an asymmetric $\Pelectron \APelectron$ collider. \item Operating mostly at $\PUpsilon(4S)$ threshold. \end{itemize} \includegraphics[width=0.95\textwidth]{images/bbr_det.png} \column{2.5in} \includegraphics[width=0.95\textwidth]{images/bbr_lumi.png} \end{columns} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \end{frame} \begin{frame}\frametitle{B factories} \begin{columns} \column{2.5in} \includegraphics[width=0.95\textwidth]{images/upsilon1.png}\\ \includegraphics[width=0.95\textwidth]{images/topo.png} \column{2.5in} \begin{itemize} \item $\PB$ mesons produced in a clean environment. \item Just above the $m(\PB \APB)$ threshold. \item Thanks to knowing the beam energy we have additional discriminating variable: $\Delta E = E_{\PB} -E_{beam}$ \end{itemize} \includegraphics[width=0.95\textwidth]{images/ee_col.png} \end{columns} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \end{frame} \section{CP violation in $\PB \APB$ mixing} \begin{frame}\frametitle{$\PBzero \APBzero$ mixing} \begin{itemize} \item Neutral mesons couple to their anti particles via weak interactions. \end{itemize} \begin{columns} \column{3.4in} \begin{itemize} \item $\PBzero \Leftrightarrow \APBzero$, $\PBs \Leftrightarrow \APBs$, $\PDzero \Leftrightarrow \APDzero$, $\PK \Leftrightarrow \APK$. \item We can writhe the weak eigenstates as: \end{itemize} \begin{equation*} \ket{B_{L/H}} = \dfrac{1}{\sqrt{p^2+q^2}} (p \ket{\PBzero} \pm q \ket{\APBzero}) \end{equation*} \begin{itemize} \item Then the CP asymmetry can can be written as: \end{itemize} \begin{equation*} A_{CP} = \dfrac{\mathcal{P}(\APBzero \to \PBzero) - \mathcal{P}(\PBzero \to \APBzero) }{\mathcal{P}(\APBzero \to \PBzero) + \mathcal{P}(\PBzero \to \APBzero)}\approx 2(1-|\frac{q}{p}|) \end{equation*} \column{1.5in} \begin{center} \includegraphics[width=0.99\textwidth]{images/Bmixing_dia.png} \end{center} \end{columns} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{itemize} \item $\PUpsilon(4S)$ has an anti-symmetric state: $\dfrac{1}{\sqrt{2}} (\PBzero(t_1) \APBzero(t_2) - \APBzero(t_1) \PBzero(t_2))$ \item One $\PB$ is a specific flavour state tags the other one. \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{Inclusive dilepton measurement} \begin{itemize} \item $\PB$ mesons decay in $\sim 10\%$ semileptonically. \item Charge of lepton determines the $\PB$ meson flavour. \item If one observes same sign leptons $\to$ mixing occurred ($\Plepton\Plepton \in \lbrace \Pe \Pe, \Pmu \Pmu \rbrace$) \end{itemize} \begin{columns} \column{0.5in} {~} \column{2.5in} \begin{itemize} \item $\Plepton^- \Plepton^{+}$: no mixing \item $\Plepton^- \Plepton^{-}$: $\PBzero \to \APBzero$. \item $\Plepton^+ \Plepton^{+}$: $\APBzero \to \PBzero$. \end{itemize} \column{2in} \includegraphics[width=0.65\textwidth]{images/semillep.png} \end{columns} \begin{itemize} \item Writing down the mixing probabilities~(time integrated): \end{itemize} \begin{equation*} \mathcal{P}^{\pm \pm} \propto (1 \pm A_{CP}) \chi_d \end{equation*} \begin{equation*} \mathcal{P}^{\pm \mp} \propto (1 -\chi_d), \end{equation*} where $A_{CP}$ is the CP asymmetry and $\chi_d$ is the effective mixing probability.\\ \begin{itemize} \item SM: $A_{CP} \sim \mathcal{O}(10^{-4})$, NP can enhance significantly $A_{CP}$. \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{Detector effects} \begin{footnotesize} \begin{itemize} \item Detector is not a perfect device $\to$ Introduced charge asymmetries $a_{\Plepton_j}$ for each $\Plepton_j$. \item $\PUpsilon(4S)$ also goes to $\PBplus \PBminus$. Contribution: $r_B = N_{\PB^+ \PB^-}/N_{\PBzero \APBzero}$. \item Time integrated probability gets modified: \begin{align*} \mathcal{P}^{\pm \pm} \propto (1 \pm a_{\Plepton_1} \pm a_{\Plepton_2} \pm A_{CP}) \chi_d \\ \mathcal{P}^{\pm \mp} \propto (1 -\chi_d + r_B)(1 \pm a_{\Plepton_1} \mp a_{\Plepton_2} ) \end{align*} \item Summing over all events in $\Plepton_1 \Plepton_2 \in \lbrace \Pe \Pe, \Pe \Pmu, \Pmu \Pe, \Pmu \Pmu \rbrace$ categories: \begin{align*} N^{\pm \pm}_{\Plepton_1 \Plepton_2} = 1/2 N^0_{\Plepton_1 \Plepton_2} (1 \pm a_{\Plepton_1} \pm a_{\Plepton_2} \pm A_{CP}) \chi_d^{\Plepton_1 \Plepton_2}\\ N^{\pm \mp}_{\Plepton_1 \Plepton_2}= 1/2 N^0_{\Plepton_1 \Plepton_2} (1 -\chi_d^{\Plepton_1 \Plepton_2} + r_B)(1 \pm a_{\Plepton_1} \mp a_{\Plepton_2} ) \end{align*} \item We have 16 observables, and 13 unknowns. $a_{\Plepton_j}$ highly correlated. \item Adding additional observable: events containing only single electron ($a_{\Pe}$). \item 17 observables as input to $\chi^2$ fit, extracting: $A_{CP}$, 4 signal yields,\\ 4 efficiency asymmetries, 4 mixing probabilities. \end{itemize} \end{footnotesize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \placelogofalse \begin{frame}\frametitle{Event selection} \begin{itemize} \item Item select an isotropic events with $\geq 4$ tracks. \item Each lepton track should have $p >0.6~\GeVoverc$. \item Hard requirements on the $\Pe$, $\Pmu$ PID selection. \begin{itemize} \item $\epsilon_e \sim 93\%$, $\epsilon_{\mu} ~40-80\%$. \item MissID: $\mathcal{P}(h\to e) <0.1\%$, $\mathcal{P}(h\to \mu) \sim 1\%$. \end{itemize} \item Veto $\PJpsi$, $\Ppsi(2S)$ and photon conversion. \end{itemize} \begin{columns} \column{2in} \begin{itemize} \item $\Delta t$ is calculated from the separation of the two POCAs along the beam direction and the c.m. boost ($\beta\gamma=0.56$). \item $\Delta t< 15~\rm{ps}$ and $\sigma \Delta t <3~\rm{ps}$ \end{itemize} \column{3in} \includegraphics[width=0.95\textwidth]{images/POCA.png} \end{columns} \end{frame} \placelogotrue %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{Systematics} \begin{columns} \column{2.5in} \includegraphics[width=0.95\textwidth]{images/table.png} \column{2.3in} \begin{itemize} \item Dominant systematic from bias in MC. \item Secondly the MC/data corrections to PID. \item Difference in charge asymmetry between $\PBzero$ and average of $\PBzero$ and $\PB^{\pm}$. \end{itemize} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{Fit results} \begin{center} \begin{footnotesize} \begin{tabular}{c c c c} \hline \hline \multicolumn{2}{c}{$A_{CP} = (-3.9 \pm 3.5)\times 10^{-3}$} & \multicolumn{2}{c}{ \includegraphics[height=0.5cm]{images/Babar_with_banner.jpg}~\href{http://arxiv.org/abs/1411.1842}{\color{blue}{PRL 114, 081801 (2015)}} }\\ \hline %\hline $N^0_{\Pe\Pe}$ & $N^0_{\Pe\Pmu}$ & $N^0_{\Pmu\Pe}$ & $N^0_{\Pmu\Pmu}$ \\ $430875 \pm 515$ & $365343 \pm 429$ & $458200 \pm 480$ & $268077 \pm 381$ \\ $\chi_d^{\Pe\Pe}$ & $\chi_d^{\Pe\Pmu}$ & $\chi_d^{\Pmu\Pe}$ & $\chi_d^{\Pmu\Pmu}$ \\ $0.2248 \pm 0.0006$ & $0.1769 \pm 0.0006$ & $0.1754 \pm 0.0005$ & $0.2032 \pm 0.0007$ \\ $a^{\Pe 1}$ & $a^{\Pe 2}$ & $a^{\Pmu 1}$ & $a^{\Pmu 2}$ \\ $0.0034 \pm 0.0006$ & $0.0030 \pm 0.006$ & $-0.0056 \pm 0.0011$ & $-0.0065 \pm 0.0011$ \\ \hline \end{tabular} {~}\\ \begin{columns} \column{0.5in}{~} \column{2.5in} \includegraphics[width=0.75\textwidth]{images/pull.png} \begin{itemize} \item Result $A_{CP} = (-3.9 \pm 3.5 \pm 1.9 )\times 10^{-3}$ in agreement with SM. \end{itemize} \column{2.5in} \includegraphics[width=0.76\textwidth]{images/hfag.png} \end{columns} \end{footnotesize} \end{center} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{Flavour-changing neutral current} \begin{itemize} \item CKM structure in SM allows only the charged interactions to change flavour. \item One can escape the CKM structure and produce $\Pbottom \to \Pstrange$ and $\Pbottom \to \Pdown$ only at loop level. \begin{itemize} \item This kind of process are suppressed by the GIM in SM $\to$~Rare decays. \end{itemize} \item LHCb already sees a $3.7~\sigma$ deviation in the angular observables in $\PBzero \to \PKstar \Pmuon \APmuon$. See my talk: \href{https://indico.cern.ch/event/341292/session/15/contribution/40}{\color{blue}LINK}. \item Here we present CP observables in $\Pbeauty \to \Pstrange \Pphoton$ and $\Pbeauty \to \Pstrange \Plepton \Plepton$ decays. \item SM prediction $\sim 0$ \end{itemize} \end{frame} \placelogofalse \begin{frame}\frametitle{CP asymmetries in $\PB \to X_s \Pphoton$} \begin{itemize} \item Fully inclusive approach impossible. \item Instead use semi-inclusive ( sum of exclusive modes). \item 16 modes used (marked with $ \ast$) \item Additional requirements: \end{itemize} \begin{columns} \column{2in} \begin{itemize} \item \href{http://arxiv.org/abs/1406.0534}{\color{blue}{PRD 90, 092001 (2014)}} \item Requirements: \begin{itemize} \item $m(X_s) \in (0.6,2.0)~\GeV$ \begin{itemize} \item Indirect cut on $E_{\gamma} >2.3~\GeV$ \end{itemize} \item $|\Delta E| <0.15~\GeV$ \item MVA based approach to get ride of $q\bar{q}$ background. \end{itemize} \end{itemize} \column{3in} \begin{tiny} \begin{tabular}{l l | l l} \hline {~} & Final State & {~} &Final State\\ \hline \hline 1* & $B^{+}\rightarrow K_{S}\pi^{+}\gamma$ & 20 & $B^{0}\rightarrow K_{S}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\gamma$\\ 2* & $B^{+}\rightarrow K^{+}\pi^{0}\gamma$ & 21 & $B^{0}\rightarrow K^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}\gamma$\\ 3* & $B^{0}\rightarrow K^{+}\pi^{-}\gamma$ & 22 & $B^{0}\rightarrow K_{S}\pi^{+}\pi^{-}\pi^{0}\pi^{0}\gamma$\\ 4 & $B^{0}\rightarrow K_{S}\pi^{0}\gamma$ & 23* & $B^{+}\rightarrow K^{+}\eta\gamma$\\ 5* & $B^{+}\rightarrow K^{+}\pi^{+}\pi^{-}\gamma$ & 24 & $B^{0}\rightarrow K_{S}\eta\gamma$\\ 6* & $B^{+}\rightarrow K_{S}\pi^{+}\pi^{0}\gamma$ & 25 & $B^{+}\rightarrow K_{S}\eta\pi^{+}\gamma$\\ 7* & $B^{+}\rightarrow K^{+}\pi^{0}\pi^{0}\gamma$ & 26 & $B^{+}\rightarrow K^{+}\eta\pi^{0}\gamma$\\ 8 & $B^{0}\rightarrow K_{S}\pi^{+}\pi^{-}\gamma$ & 27* & $B^{0}\rightarrow K^{+}\eta\pi^{-}\gamma$\\ 9* & $B^{0}\rightarrow K^{+}\pi^{-}\pi^{0}\gamma$ & 28 & $B^{0}\rightarrow K_{S}\eta\pi^{0}\gamma$\\ 10 & $B^{0}\rightarrow K_{S}\pi^{0}\pi^{0}\gamma$ & 29 & $B^{+}\rightarrow K^{+}\eta\pi^{+}\pi^{-}\gamma$\\ 11* & $B^{+}\rightarrow K_{S}\pi^{+}\pi^{-}\pi^{+}\gamma$ & 30 & $B^{+}\rightarrow K_{S}\eta\pi^{+}\pi^{0}\gamma$\\ 12* & $B^{+}\rightarrow K^{+}\pi^{+}\pi^{-}\pi^{0}\gamma$ & 31 & $B^{0}\rightarrow K_{S}\eta\pi^{+}\pi^{-}\gamma$\\ 13* & $B^{+}\rightarrow K_{S}\pi^{+}\pi^{0}\pi^{0}\gamma$ & 32 & $B^{0}\rightarrow K^{+}\eta\pi^{-}\pi^{0}\gamma$\\ 14* & $B^{0}\rightarrow K^{+}\pi^{+}\pi^{-}\pi^{-}\gamma$ & 33* & $B^{+}\rightarrow K^{+}K^{-}K^{+}\gamma$\\ 15 & $B^{0}\rightarrow K_{S}\pi^{0}\pi^{+}\pi^{-}\gamma$ & 34 & $B^{0}\rightarrow K^{+}K^{-}K_{S}\gamma$\\ 16* & $B^{0}\rightarrow K^{+}\pi^{-}\pi^{0}\pi^{0}\gamma$ & 35 & $B^{+}\rightarrow K^{+}K^{-}K_{S}\pi^{+}\gamma$\\ 17 & $B^{+}\rightarrow K^{+}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\gamma$ & 36 & $B^{+}\rightarrow K^{+}K^{-}K^{+}\pi^{0}\gamma$\\ 18 & $B^{+}\rightarrow K_{S}\pi^{+}\pi^{-}\pi^{+}\pi^{0}\gamma$ & 37* & $B^{0}\rightarrow K^{+}K^{-}K^{+}\pi^{-}\gamma$\\ 19 & $B^{+}\rightarrow K^{+}\pi^{+}\pi^{-}\pi^{0}\pi^{0}\gamma$ & 38 & $B^{0}\rightarrow K^{+}K^{-}K_{S}\pi^{0}\gamma$\\ \hline \end{tabular} \end{tiny} \end{columns} \end{frame} % \placelogotrue %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{Asymmetry extraction} \begin{itemize} \item Asymmetry for fitted yields needs to be corrected as in previous analysis detector asymmetries. \item Asymmetry extracted from side-bands. \begin{itemize} \item $(-1.4 \pm 0.7)~\%$. \end{itemize} \end{itemize} \includegraphics[width=0.91\textwidth]{images/side.png} \begin{columns} \column{3.1in} {~}{~} $A_{CP} \simeq 0.12 \times \dfrac{\Lambda_{78}}{100~\MeV} \rm{Im} \dfrac{C_{8g}}{C_{7\gamma}}$ \begin{itemize} \item Results: \begin{itemize} \item $A_{CP}(\PBplus \to X_s^+ \Pphoton) = (4.23 \pm 2.93 \pm 0.95)\%$ \item $A_{CP}(\PBzero \to X_s^0 \Pphoton) = (-0.74 \pm 2.57 \pm 1.10)\%$ \item Average: \item $A_{CP} = (1.7 \pm 1.9 \pm 1.0)~\%$ \item SM: $A_{CP} \sim 0 \leftrightarrow Im(C_8) \sim 0$ \end{itemize} \end{itemize} \column{2in} \includegraphics[width=0.9\textwidth]{images/im87.pdf} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{CP asymmetries in $\PB \to X_s \Plepton \Plepton$} \begin{itemize} \item Very important channel for NP searches. \item Significant deviation found by LHCb. \item CP observables are very clean predictions in SM and almost QCD free. \item Similar ''semi-inclusive'' modes: \begin{align*} X_s= \lbrace \PK^+,~\PK^+\pi^0,~ \PK^+\pi^-,~\PK^+\pi^-\pi^0,\\ ~\PK^+\pi^-\pi^+,~\PK_s,~\PK_s\pi^+, ~\PK_s\pi^+\pi^0,~\PK_s\pi^+\pi^-\rbrace \end{align*} \item Look for two leptons flavours: $\Plepton \Plepton = \lbrace \Pe \Pe, \Pmu \Pmu \rbrace$ \item Additional requirements: \begin{itemize} \item Require: $m(X_s) < 1.8~\GeV$ \item $\Delta E \in [ -0.1 (-0.05), 0.05 ]~\GeV$ for $\Plepton \Plepton = \Pe \Pe~( \Pmu \Pmu)$ \end{itemize} \end{itemize} \end{frame} \placelogotrue %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{Differential branching fraction} %\begin{columns} %\column{2.8in} \begin{itemize} \item \href{http://arxiv.org/abs/1312.5364}{\color{blue}{PRL 112 (2014) 211802}} \item $\PJpsi,~(\Ppsi(2S))$ veto: $6.8-10.1~(12.9-14.2)~\GeV$ \item Suppress $q\bar{q}$ background with a BDT. \item Perform a simultaneous fit to $m_{ES}$ and $L_R= \dfrac{\mathcal{P}_S}{\mathcal{P}_S+\mathcal{P}_B}$ \end{itemize} %\column{2.2in} \includegraphics[width=0.69\textwidth]{images/ee_bin0.png}\\ \includegraphics[width=0.73\textwidth]{images/mumu_bin0.png} %\end{columns} \end{frame} \placelogofalse %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{CP \& BR asymmetries results} \begin{columns} \column{2.5in} \begin{footnotesize} \begin{tabular}{|c|c|} \hline $q^2~[\GeV^2] $ & $A_{CP}$ \\ \hline \hline $1.0 < q^{2} < 6.0$ & $-0.06 \pm 0.22 \pm 0.01$ \\ \hline $0.1 < q^{2} < 2.0$ & $-0.13 \pm 0.18 \pm 0.01$ \\ \hline $2.0 < q^{2} < 4.3$ & $\: 0.42 \: \: {}_{-0.42}^{+0.50} \pm 0.01$ \\ \hline $4.3 < q^{2} < 6.8$ & $\! \! -0.45_{-0.57}^{+0.44} \pm 0.01$ \\ \hline $10.1< q^{2} <14.2$* & $0.19 \: \: {}_{-0.17}^{+0.18} \pm 0.01$ \\ \hline \end{tabular} \begin{itemize} \item Measured branching fractions($\times 10^{-6}$) : \begin{equation*} \mathcal{B}(\PB \to X_s \Pelectron \APelectron) = 7.69^{+0.82}_{-0.77}{}^{+0.50}_{-0.33} \pm 0.50 \end{equation*} \begin{equation*} \mathcal{B}(\PB \to X_s \Pelectron \APelectron) = 4.41^{+1.31}_{-1.17}{}^{+0.57}_{-0.42} \pm 0.27 \end{equation*} \item Combined: \begin{equation*} \mathcal{B}(\PB \to X_s \Plepton^- \Plepton^+ ) = 6.73^{+0.70}_{-0.64}{}^{+0.34}_{-0.25} \pm 0.50 \end{equation*} \item In agreement with SM. \end{itemize} {~}{~}* Excluding $\Ppsi(2S)$ region. \end{footnotesize} \column{2.5in} \begin{itemize} \item \color{blue}{electrons}, \color{black}{muons}, \color{red}{combined} \end{itemize} \includegraphics[width=0.9\textwidth]{images/results-q2.png}\\ \includegraphics[width=0.9\textwidth]{images/ACP.png} \end{columns} \end{frame} \placelogotrue %%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{Conclusions} \begin{enumerate} \item B-factories still producing new results. \item Presented new measurements of CP violation in neutral $\PB$ meson system using inclusive dileptons events. \item BaBar continues to chase FCNC with measurement of CP asymmetries in: $\Pbeauty \to \Pstrange \gamma$ and $\Pbeauty \to \Pstrange \Plepton \Plepton$ \item FCNC statistically limited: need future experiments. \item All measurements consistent (for now?) with SM. \end{enumerate} \begin{center} \includegraphics[width=0.45\textwidth]{images/digging-for-diamonds.png} \end{center} \end{frame} \end{document}