Newer
Older
Presentations / Inflaton / Theory / mchrzasz.tex
\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}

\usepackage[english]{babel}
\usepackage{polski}


\usetheme[
	bullet=circle,		% Other option: square
	bigpagenumber,		% circled page number on lower right
	topline=true,			% colored bar at the top of the frame
	shadow=false,			% Shading for beamer blocks
	watermark=BG_lower,	% png file for the watermark
	]{Flip}

%\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}


\usepackage[lf]{berenis}
\usepackage[LY1]{fontenc}
\usepackage[utf8]{inputenc}

\usepackage{emerald}
\usefonttheme{professionalfonts}
\usepackage[no-math]{fontspec}
\defaultfontfeatures{Mapping=tex-text}	% This seems to be important for mapping glyphs properly

\setmainfont{Gillius ADF}			% Beamer ignores "main font" in favor of sans font
\setsansfont{Gillius ADF}			% This is the font that beamer will use by default
% \setmainfont{Gill Sans Light}		% Prettier, but harder to read

\setbeamerfont{title}{family=\fontspec{Gillius ADF}}

\input t1augie.fd

%\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
%\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
% \newcommand{\handwriting}{}	% If you prefer no special handwriting font or don't have augie

%% Gill Sans doesn't look very nice when boldfaced
%% This is a hack to use Helvetica instead
%% Usage: \textbf{\forbold some stuff}
%\newcommand{\forbold}{\fontspec{Arial}}

\usepackage{graphicx}
\usepackage[export]{adjustbox}

\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{colortbl}
\usepackage{mathrsfs} 			% For Weinberg-esque letters
\usepackage{cancel}				% For "SUSY-breaking" symbol
\usepackage{slashed}            % for slashed characters in math mode
\usepackage{bbm}                % for \mathbbm{1} (unit matrix)
\usepackage{amsthm}				% For theorem environment
\usepackage{multirow}			% For multi row cells in table
\usepackage{arydshln} 			% For dashed lines in arrays and tables
\usepackage{siunitx}
\usepackage{xhfill}
\usepackage{grffile}
\usepackage{textpos}
\usepackage{subfigure}
\usepackage{tikz}

%\usepackage{hepparticles}
\usepackage[italic]{hepparticles}

\usepackage{hepnicenames}

% Drawing a line
\tikzstyle{lw} = [line width=20pt]
\newcommand{\topline}{%
  \tikz[remember picture,overlay] {%
    \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
             -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}



% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\usepackage{tikzfeynman}		% For Feynman diagrams
\usetikzlibrary{arrows,shapes}
\usetikzlibrary{trees}
\usetikzlibrary{matrix,arrows} 				% For commutative diagram
% http://www.felixl.de/commu.pdf
\usetikzlibrary{positioning}				% For "above of=" commands
\usetikzlibrary{calc,through}				% For coordinates
\usetikzlibrary{decorations.pathreplacing}  % For curly braces
% http://www.math.ucla.edu/~getreuer/tikz.html
\usepackage{pgffor}							% For repeating patterns

\usetikzlibrary{decorations.pathmorphing}	% For Feynman Diagrams
\usetikzlibrary{decorations.markings}
\tikzset{
	% >=stealth', %%  Uncomment for more conventional arrows
	vector/.style={decorate, decoration={snake}, draw},
	provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
	antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
	fermion/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
	fermionbar/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
	fermionnoarrow/.style={draw=gray},
	gluon/.style={decorate, draw=black,
		decoration={coil,amplitude=4pt, segment length=5pt}},
	scalar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	scalarbar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
	scalarnoarrow/.style={dashed,draw=black},
	electron/.style={draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
}

% TIKZ - for block diagrams,
% from http://www.texample.net/tikz/examples/control-system-principles/
% \usetikzlibrary{shapes,arrows}
\tikzstyle{block} = [draw, rectangle,
minimum height=3em, minimum width=6em]




\usetikzlibrary{backgrounds}
\usetikzlibrary{mindmap,trees}	% For mind map
\newcommand{\degree}{\ensuremath{^\circ}}
\newcommand{\E}{\mathrm{E}}
\newcommand{\Var}{\mathrm{Var}}
\newcommand{\Cov}{\mathrm{Cov}}
\newcommand\Ts{\rule{0pt}{2.6ex}}       % Top strut
\newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut

\graphicspath{{images/}}	% Put all images in this directory. Avoids clutter.

% SOME COMMANDS THAT I FIND HANDY
% \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
\newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
\newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
\newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
\newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
\newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
%% "\alert" is already a beamer pre-defined
\newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%

\def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}

\usepackage{gmp}
\usepackage[final]{feynmp-auto}

\usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
\bibliography{bib}
\setbeamertemplate{bibliography item}[text]

\makeatletter\let\frametextheight\beamer@frametextheight\makeatother

% suppress frame numbering for backup slides
% you always need the appendix for this!
\newcommand{\backupbegin}{
	\newcounter{framenumberappendix}
	\setcounter{framenumberappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
	\addtocounter{framenumberappendix}{-\value{framenumber}}
	\addtocounter{framenumber}{\value{framenumberappendix}}
}


\definecolor{links}{HTML}{2A1B81}
%\hypersetup{colorlinks,linkcolor=,urlcolor=links}

% For shapo's formulas:
\def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\newcommand{\lsim}{\mathop{\lsi}}
\newcommand{\gsim}{\mathop{\gsi}}
\newcommand{\wt}{\widetilde}
%\newcommand{\ol}{\overline}
\newcommand{\Tr}{\rm{Tr}}
\newcommand{\tr}{\rm{tr}}
\newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
\newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
\newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
\newcommand{\eV}{\rm{eV}}
\newcommand{\keV}{\rm{keV}}
\newcommand{\GeV}{\rm{GeV}}
\newcommand{\im}{\rm{Im}}
\newcommand{\disp}{\displaystyle}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\ba{\begin{eqnarray}}
\def\ea{\end{eqnarray}}
\def\d{\partial}
\def\l{\left(}
\def\r{\right)}
\def\la{\langle}
\def\ra{\rangle}
\def\e{{\rm e}}
\def\Br{{\rm Br}}

\def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace}
\def\ARROWR{{\color{WildStrawberry}{$\Rrightarrow$}}\xspace}

\author{ {\fontspec{Trebuchet MS}M.Chrz\k{a}szcz, A.Mauri, N.Serra} (Universit\"{a}t Z\"{u}rich)}
\institute{UZH}
\title[Light inflaton model hunting guide]{Light inflaton model hunting guide}
\date{25 September 2014}


\begin{document}
\tikzstyle{every picture}+=[remember picture]

{
\setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
\begin{frame}[c]%{\phantom{title page}}
\begin{center}
\begin{center}
	\begin{columns}
		\begin{column}{0.75\textwidth}
			\flushright\fontspec{Trebuchet MS}\bfseries \Huge {Light inflaton model hunting guide}
		\end{column}
                \begin{column}{0.02\textwidth}
                  {~}
                  \end{column}
                \begin{column}{0.23\textwidth}
                 % \hspace*{-1.cm}
                  \vspace*{-3mm}
                  \includegraphics[width=0.6\textwidth]{lhcb-logo}
                  \end{column}

	\end{columns}
\end{center}
	\quad
	\vspace{3em}
\begin{columns}
\begin{column}{0.44\textwidth}
\flushright \vspace{-1.8em} {\fontspec{Trebuchet MS} \Large Marcin ChrzÄ…szcz\\\vspace{-0.1em}\small \href{mailto:mchrzasz@cern.ch}{mchrzasz@cern.ch}}

\end{column}
\begin{column}{0.53\textwidth}
\includegraphics[height=1.3cm]{uzh-transp}
\end{column}
\end{columns}

\vspace{1em}
	\textcolor{black}{With A. Mauri, N.Serra}\normalsize\\
\vspace{0.5em}

	\textcolor{normal text.fg!50!Comment}{RD meeting, CERN\\ November 2, 2016}
\end{center}
\end{frame}
}


\begin{frame}[c]{The inflaton model}
	\begin{minipage}{\textwidth}
	\begin{small}
\ARROW The model is extremely simple:
\begin{align*}
V(H,S)=V_H + V_{\rm mix} +  V_S,
\end{align*}
where
\begin{align*}
V_H = -\mu^2 H^{\dag}H + \lambda_H (H^{\dag} H)^2\\
V_{\rm mix} = \frac{a_1}{2}\left(H^{\dag}H\right)S + \frac{a_2}{2}\left(H^{\dag}H\right)S^2\\
V_S = \frac{b_2}{2}S^2 + \frac{b_3}{3}S^3 + \frac{b_4}{4}S^4
\end{align*}
\ARROW Now the Lagrangian needs to be written in physical degrees of freedom:
\begin{itemize}
\item You start by minimizing the scalar potential.
\item Then you expand the group states (linear terms in h, s expansion vanish). 
\item Then you generate the mass is given(see backup for details):
\end{itemize}
\begin{align*}
\mathcal{L}_{mass}=-\frac{1}{2}
\begin{pmatrix}
h \\
s
\end{pmatrix}^T
\begin{pmatrix}
A & C \\
C & B
\end{pmatrix}
\begin{pmatrix}
s^{\prime}\\
h^{\prime}
\end{pmatrix}
\end{align*}

\end{small}
	\end{minipage}
		\vspace*{2.cm}
\end{frame}

\begin{frame}[c]{The inflaton model}
	\begin{minipage}{\textwidth}{~}\\
	\begin{small}
\ARROW You can diagonalize the matrix by orthogonal transformation:
\begin{align*}
\begin{pmatrix}
h \\
s
\end{pmatrix}=
\begin{pmatrix}
\sin \theta & \cos \theta \\
\cos \theta & \sin \theta
\end{pmatrix}
\begin{pmatrix}
s^{\prime}\\
h^{\prime}
\end{pmatrix}
\end{align*}
where
\begin{align*}
\cos \theta = 1 +\mathcal{O}(y^2),~~
\sin \theta = y + \mathcal{O}(y^3)~~
y = \frac{2C}{A-B}
\end{align*}
\ARROW For small mixing:
\begin{align*}
m^2_{S^{\prime}} \sim B - \frac{1}{4}(A-B)y^2
\end{align*}
\ARROW So now comes something that is the most important; all the interaction with the SM is done just by assuming it's Higgs and inserting: $h \to \sin \theta s$

\ARROW For example:
\begin{align*}
\mathcal{L}_Y = - m_f h \bar{\psi}_f \psi_f + {\rm h.c.}~~~~~\mapsto \mathcal{L}_{S^{\prime}ff}=  - m_f \sin \theta s \bar{\psi}_f \psi_f + {\rm h.c.}
\end{align*}


\end{small}
	\end{minipage}
		\vspace*{2.cm}
\end{frame}


\begin{frame}[c]{The inflaton model, so what?}
	\begin{minipage}{\textwidth}
	\begin{small}
\ARROW For a given mixing angle $\sin \theta$ and the inflaton mass we can calculate it's width:
\begin{align*}
\Gamma_{\ell \ell} = \frac{\sin^2 \theta}{8 \pi \nu^2}m_{\ell}^2 m_S \left(1-\frac{4m^2_{\ell}}{m^2_S} \right)^{\frac{3}{2}}\\
c \tau_S \approx 60 \times \left(\frac{0.01}{\sin \theta}\right)^2 \left(\frac{500}{m_S}\right)^3 \rm [mm]
\end{align*}

\ARROW Since in experiment we set limits in 2D space: $(m_S, c \tau_S)$ we can map it to: $(m_S, \sin \theta)$.\\
\ARROW Now the misunderstanding started with ''Light inflaton Hunter's Guide'' D. Gorbunov:
\begin{equation}                                                                                                                                                
{\rm Br} (\PB \to \chi X_s) ~\sim 10^{-6}\left(1-\frac{m^2_{\chi}}{m^2_b}\right) \left(\frac{\beta}{\beta_0}\right) \left(\frac{300{\rm MeV}}{m_{\chi}}\right)  
\end{equation}                                                                                                                                                  
and:
                                                                                                                                                   ''where Xs stands for strange meson channel mostly saturated by a sum of pseudoscalar and vector kaons.''



\end{small}
	\end{minipage}
		\vspace*{2.cm}
\end{frame}

\begin{frame}[c]{The inflaton model, so what?}
	\begin{minipage}{\textwidth}
	\begin{small}
\ARROW In the interpretation of the $\PB \to \PKstar \xi$ they followed Gorbunov and assumed that the $33\%$ of $X_s$ are a $\PKstar$ and used the above formula.\\
\ARROW We followed a different approach and calculated the exclusive widths:
\begin{align*}
\mathcal{M}=-\frac{1}{2}c_h \theta \langle K \vert \bar{s}b \vert B \rangle = -\frac{1}{2} c_h \theta \frac{M_B^2-M_K^2}{m_b-m_s} f_0(m_s^2)
\end{align*}
\begin{align*}
\Gamma_{\PB \to \PKstar \chi} = \frac{c_h \theta^2}{64 \pi} \lambda^{1/2}(1,\frac{M_K^2}{M_B^2}, \frac{M_S^2}{M_B^2})f_0(m_S^2) \frac{(M_B^2 - M_K^2)}{M_B(m_b- m_s)^2}
\end{align*}

\ARROW Now after we calculate this our self we found the solution in the literature \href{http://journals.aps.org/prd/pdf/10.1103/PhysRevD.83.054005}{ B.Batel et. al}


\end{small}
	\end{minipage}
		\vspace*{2.cm}
\end{frame}

\begin{frame}[c]{The inflaton model, so what?}
	\begin{minipage}{\textwidth}
	\begin{small}
	{~}\\
\ARROW Now if we look how many of the $X_s$ are $\PK$ and $\PKstar$ we define the variables:
\begin{align*}
r_K = \frac{\PB \to \PK \chi}{\PB \to X_s \chi}~~~~r_{\PKstar} = \frac{\PB \to \PKstar \chi}{\PB \to X_s \chi}
\end{align*}
\includegraphics[width=0.45\linewidth]{images/rk_graph.png}
\includegraphics[width=0.45\linewidth]{images/rkstar.png}  \\
{~}\\
\ARROW So the assumption about $33~\%$ was generous assumption.

\end{small}
	\end{minipage}
		\vspace*{2.cm}
\end{frame}

\begin{frame}[c]{Cross check of the calculations}
	\begin{minipage}{\textwidth}
	\begin{small}
	{~}\\
\ARROW So we have cross-checked this calculations with old Higgs papers. \\
\ARROW In the 80s they thought that Higgs might he light enough that it can be produced in $\PB$ decays.\\
\ARROW From Haber, et al.:
\begin{center}
\includegraphics[width=0.45\textwidth]{images/higgs.png}
\end{center}
\ARROW So everything is consistent.
\end{small}
	\end{minipage}
		\vspace*{2.cm}
\end{frame}


\begin{frame}{The result}
	\begin{minipage}{\textwidth}


\begin{center}
\includegraphics[angle=-90,width=0.9\textwidth]{{images/Inflaton_parameter_space_log}.pdf}
\end{center}


	\end{minipage}
		\vspace*{2.cm}
\end{frame}




\backupbegin

\begin{frame}\frametitle{Backup}

\ARROW ves:
\begin{align*}
\langle H \rangle = \frac{1}{\sqrt{2}}\begin{pmatrix}
0\\
\nu
\end{pmatrix}\\
\langle S \rangle = x.
\end{align*}


\ARROW Minimalization:
\begin{align*}
0 = -\mu^2 + \lambda_H \nu^2 + a_1 x^2  + \frac{1}{2} x^2\\
0 = b_2 + b_3 x+ b_4 x^2 + \frac{a_1\nu^2}{4 x_0} + \frac{a_2 \nu_0^2}{2}
\end{align*}

\end{frame}




\begin{frame}\frametitle{Backup}

\ARROW generate the mass:
\begin{align*}
\mathcal{L}_{mass}=-\frac{1}{2}
\begin{pmatrix}
h \\
s
\end{pmatrix}^T
\begin{pmatrix}
A & C \\
C & B
\end{pmatrix}
\begin{pmatrix}
s^{\prime}\\
h^{\prime}
\end{pmatrix}
\end{align*}

\begin{align*}
\cos \theta = 2(1+y^{-2}(1-\sqrt{1+y^2}))^{-0.5}\\
\sin \theta = 2(1+y^{-2}(1+\sqrt{1+y^2}))^{-0.5}\\
y=\frac{2C}{A-B}
\end{align*}
\ARROW Mass eigenvalues:
\begin{align*}
m^2_{h^{\prime}/s^{\prime}} = \frac{1}{2}\left[A + B \pm (A-B)\sqrt{1+y^2}\right]
\end{align*}

\end{frame}



\begin{frame}\frametitle{Naturalnes}

\ARROW If the $\sin \theta \ll 1$
\begin{align*}
m^2_{h^{\prime}} \sim 2 \lambda_H \nu^2\\
m^2_{s^{\prime}} \sim b_3 x + 2b_4 x^2 -\frac{a_1\nu^2}{4 x}
\end{align*}
\ARROW Since Higgs is $125\GeV$ then $m_S \sim \mathcal{O}(1)$

\end{frame}

\backupend

\end{document}