\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer} \usepackage[english]{babel} \usepackage{polski} \usetheme[ bullet=circle, % Other option: square bigpagenumber, % circled page number on lower right topline=true, % colored bar at the top of the frame shadow=false, % Shading for beamer blocks watermark=BG_lower, % png file for the watermark ]{Flip} %\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}} \usepackage[lf]{berenis} \usepackage[LY1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{emerald} \usefonttheme{professionalfonts} \usepackage[no-math]{fontspec} \defaultfontfeatures{Mapping=tex-text} % This seems to be important for mapping glyphs properly \setmainfont{Gillius ADF} % Beamer ignores "main font" in favor of sans font \setsansfont{Gillius ADF} % This is the font that beamer will use by default % \setmainfont{Gill Sans Light} % Prettier, but harder to read \setbeamerfont{title}{family=\fontspec{Gillius ADF}} \input t1augie.fd %\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font %\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font % \newcommand{\handwriting}{} % If you prefer no special handwriting font or don't have augie %% Gill Sans doesn't look very nice when boldfaced %% This is a hack to use Helvetica instead %% Usage: \textbf{\forbold some stuff} %\newcommand{\forbold}{\fontspec{Arial}} \usepackage{graphicx} \usepackage[export]{adjustbox} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{colortbl} \usepackage{mathrsfs} % For Weinberg-esque letters \usepackage{cancel} % For "SUSY-breaking" symbol \usepackage{slashed} % for slashed characters in math mode \usepackage{bbm} % for \mathbbm{1} (unit matrix) \usepackage{amsthm} % For theorem environment \usepackage{multirow} % For multi row cells in table \usepackage{arydshln} % For dashed lines in arrays and tables \usepackage{siunitx} \usepackage{xhfill} \usepackage{grffile} \usepackage{textpos} \usepackage{subfigure} \usepackage{tikz} %\usepackage{hepparticles} \usepackage[italic]{hepparticles} \usepackage{hepnicenames} % Drawing a line \tikzstyle{lw} = [line width=20pt] \newcommand{\topline}{% \tikz[remember picture,overlay] {% \draw[crimsonred] ([yshift=-23.5pt]current page.north west) -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}} % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % \usepackage{tikzfeynman} % For Feynman diagrams \usetikzlibrary{arrows,shapes} \usetikzlibrary{trees} \usetikzlibrary{matrix,arrows} % For commutative diagram % http://www.felixl.de/commu.pdf \usetikzlibrary{positioning} % For "above of=" commands \usetikzlibrary{calc,through} % For coordinates \usetikzlibrary{decorations.pathreplacing} % For curly braces % http://www.math.ucla.edu/~getreuer/tikz.html \usepackage{pgffor} % For repeating patterns \usetikzlibrary{decorations.pathmorphing} % For Feynman Diagrams \usetikzlibrary{decorations.markings} \tikzset{ % >=stealth', %% Uncomment for more conventional arrows vector/.style={decorate, decoration={snake}, draw}, provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw}, antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw}, fermion/.style={draw=gray, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}}, fermionbar/.style={draw=gray, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}}, fermionnoarrow/.style={draw=gray}, gluon/.style={decorate, draw=black, decoration={coil,amplitude=4pt, segment length=5pt}}, scalar/.style={dashed,draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}}, scalarbar/.style={dashed,draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}}, scalarnoarrow/.style={dashed,draw=black}, electron/.style={draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}}, bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw}, } % TIKZ - for block diagrams, % from http://www.texample.net/tikz/examples/control-system-principles/ % \usetikzlibrary{shapes,arrows} \tikzstyle{block} = [draw, rectangle, minimum height=3em, minimum width=6em] \usetikzlibrary{backgrounds} \usetikzlibrary{mindmap,trees} % For mind map \newcommand{\degree}{\ensuremath{^\circ}} \newcommand{\E}{\mathrm{E}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\Cov}{\mathrm{Cov}} \newcommand\Ts{\rule{0pt}{2.6ex}} % Top strut \newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut \graphicspath{{images/}} % Put all images in this directory. Avoids clutter. % SOME COMMANDS THAT I FIND HANDY % \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec \newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild \newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold \newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold \newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert \newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert %% "\alert" is already a beamer pre-defined \newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}% \def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}} \usepackage{gmp} \usepackage[final]{feynmp-auto} \usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex} \bibliography{bib} \setbeamertemplate{bibliography item}[text] \makeatletter\let\frametextheight\beamer@frametextheight\makeatother % suppress frame numbering for backup slides % you always need the appendix for this! \newcommand{\backupbegin}{ \newcounter{framenumberappendix} \setcounter{framenumberappendix}{\value{framenumber}} } \newcommand{\backupend}{ \addtocounter{framenumberappendix}{-\value{framenumber}} \addtocounter{framenumber}{\value{framenumberappendix}} } \definecolor{links}{HTML}{2A1B81} %\hypersetup{colorlinks,linkcolor=,urlcolor=links} % For shapo's formulas: \def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}} \def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}} \newcommand{\lsim}{\mathop{\lsi}} \newcommand{\gsim}{\mathop{\gsi}} \newcommand{\wt}{\widetilde} %\newcommand{\ol}{\overline} \newcommand{\Tr}{\rm{Tr}} \newcommand{\tr}{\rm{tr}} \newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&} \newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}} \newcommand{\abs}[1]{\rm{$\left| #1 \right|$}} \newcommand{\eV}{\rm{eV}} \newcommand{\keV}{\rm{keV}} \newcommand{\GeV}{\rm{GeV}} \newcommand{\im}{\rm{Im}} \newcommand{\disp}{\displaystyle} \def\be{\begin{equation}} \def\ee{\end{equation}} \def\ba{\begin{eqnarray}} \def\ea{\end{eqnarray}} \def\d{\partial} \def\l{\left(} \def\r{\right)} \def\la{\langle} \def\ra{\rangle} \def\e{{\rm e}} \def\Br{{\rm Br}} \def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace} \def\ARROWR{{\color{WildStrawberry}{$\Rrightarrow$}}\xspace} \author{ {\fontspec{Trebuchet MS}M.Chrz\k{a}szcz, A.Mauri, N.Serra} (Universit\"{a}t Z\"{u}rich)} \institute{UZH} \title[Light inflaton model hunting guide]{Light inflaton model hunting guide} \date{25 September 2014} \begin{document} \tikzstyle{every picture}+=[remember picture] { \setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}} \begin{frame}[c]%{\phantom{title page}} \begin{center} \begin{center} \begin{columns} \begin{column}{0.75\textwidth} \flushright\fontspec{Trebuchet MS}\bfseries \Huge {Light inflaton model hunting guide} \end{column} \begin{column}{0.02\textwidth} {~} \end{column} \begin{column}{0.23\textwidth} % \hspace*{-1.cm} \vspace*{-3mm} \includegraphics[width=0.6\textwidth]{lhcb-logo} \end{column} \end{columns} \end{center} \quad \vspace{3em} \begin{columns} \begin{column}{0.44\textwidth} \flushright \vspace{-1.8em} {\fontspec{Trebuchet MS} \Large Marcin ChrzÄ…szcz\\\vspace{-0.1em}\small \href{mailto:mchrzasz@cern.ch}{mchrzasz@cern.ch}} \end{column} \begin{column}{0.53\textwidth} \includegraphics[height=1.3cm]{uzh-transp} \end{column} \end{columns} \vspace{1em} \textcolor{black}{With A. Mauri, N.Serra}\normalsize\\ \vspace{0.5em} \textcolor{normal text.fg!50!Comment}{RD meeting, CERN\\ November 2, 2016} \end{center} \end{frame} } \begin{frame}[c]{The inflaton model} \begin{minipage}{\textwidth} \begin{small} \ARROW The model is extremely simple: \begin{align*} V(H,S)=V_H + V_{\rm mix} + V_S, \end{align*} where \begin{align*} V_H = -\mu^2 H^{\dag}H + \lambda_H (H^{\dag} H)^2\\ V_{\rm mix} = \frac{a_1}{2}\left(H^{\dag}H\right)S + \frac{a_2}{2}\left(H^{\dag}H\right)S^2\\ V_S = \frac{b_2}{2}S^2 + \frac{b_3}{3}S^3 + \frac{b_4}{4}S^4 \end{align*} \ARROW Now the Lagrangian needs to be written in physical degrees of freedom: \begin{itemize} \item You start by minimizing the scalar potential. \item Then you expand the group states (linear terms in h, s expansion vanish). \item Then you generate the mass is given(see backup for details): \end{itemize} \begin{align*} \mathcal{L}_{mass}=-\frac{1}{2} \begin{pmatrix} h \\ s \end{pmatrix}^T \begin{pmatrix} A & C \\ C & B \end{pmatrix} \begin{pmatrix} s^{\prime}\\ h^{\prime} \end{pmatrix} \end{align*} \end{small} \end{minipage} \vspace*{2.cm} \end{frame} \begin{frame}[c]{The inflaton model} \begin{minipage}{\textwidth}{~}\\ \begin{small} \ARROW You can diagonalize the matrix by orthogonal transformation: \begin{align*} \begin{pmatrix} h \\ s \end{pmatrix}= \begin{pmatrix} \sin \theta & \cos \theta \\ \cos \theta & \sin \theta \end{pmatrix} \begin{pmatrix} s^{\prime}\\ h^{\prime} \end{pmatrix} \end{align*} where \begin{align*} \cos \theta = 1 +\mathcal{O}(y^2),~~ \sin \theta = y + \mathcal{O}(y^3)~~ y = \frac{2C}{A-B} \end{align*} \ARROW For small mixing: \begin{align*} m^2_{S^{\prime}} \sim B - \frac{1}{4}(A-B)y^2 \end{align*} \ARROW So now comes something that is the most important; all the interaction with the SM is done just by assuming it's Higgs and inserting: $h \to \sin \theta s$ \ARROW For example: \begin{align*} \mathcal{L}_Y = - m_f h \bar{\psi}_f \psi_f + {\rm h.c.}~~~~~\mapsto \mathcal{L}_{S^{\prime}ff}= - m_f \sin \theta s \bar{\psi}_f \psi_f + {\rm h.c.} \end{align*} \end{small} \end{minipage} \vspace*{2.cm} \end{frame} \begin{frame}[c]{The inflaton model, so what?} \begin{minipage}{\textwidth} \begin{small} \ARROW For a given mixing angle $\sin \theta$ and the inflaton mass we can calculate it's width: \begin{align*} \Gamma_{\ell \ell} = \frac{\sin^2 \theta}{8 \pi \nu^2}m_{\ell}^2 m_S \left(1-\frac{4m^2_{\ell}}{m^2_S} \right)^{\frac{3}{2}}\\ c \tau_S \approx 60 \times \left(\frac{0.01}{\sin \theta}\right)^2 \left(\frac{500}{m_S}\right)^3 \rm [mm] \end{align*} \ARROW Since in experiment we set limits in 2D space: $(m_S, c \tau_S)$ we can map it to: $(m_S, \sin \theta)$.\\ \ARROW Now the misunderstanding started with ''Light inflaton Hunter's Guide'' D. Gorbunov: \begin{equation} {\rm Br} (\PB \to \chi X_s) ~\sim 10^{-6}\left(1-\frac{m^2_{\chi}}{m^2_b}\right) \left(\frac{\beta}{\beta_0}\right) \left(\frac{300{\rm MeV}}{m_{\chi}}\right) \end{equation} and: ''where Xs stands for strange meson channel mostly saturated by a sum of pseudoscalar and vector kaons.'' \end{small} \end{minipage} \vspace*{2.cm} \end{frame} \begin{frame}[c]{The inflaton model, so what?} \begin{minipage}{\textwidth} \begin{small} \ARROW In the interpretation of the $\PB \to \PKstar \xi$ they followed Gorbunov and assumed that the $33\%$ of $X_s$ are a $\PKstar$ and used the above formula.\\ \ARROW We followed a different approach and calculated the exclusive widths: \begin{align*} \mathcal{M}=-\frac{1}{2}c_h \theta \langle K \vert \bar{s}b \vert B \rangle = -\frac{1}{2} c_h \theta \frac{M_B^2-M_K^2}{m_b-m_s} f_0(m_s^2) \end{align*} \begin{align*} \Gamma_{\PB \to \PKstar \chi} = \frac{c_h \theta^2}{64 \pi} \lambda^{1/2}(1,\frac{M_K^2}{M_B^2}, \frac{M_S^2}{M_B^2})f_0(m_S^2) \frac{(M_B^2 - M_K^2)}{M_B(m_b- m_s)^2} \end{align*} \ARROW Now after we calculate this our self we found the solution in the literature \href{http://journals.aps.org/prd/pdf/10.1103/PhysRevD.83.054005}{ B.Batel et. al} \end{small} \end{minipage} \vspace*{2.cm} \end{frame} \begin{frame}[c]{The inflaton model, so what?} \begin{minipage}{\textwidth} \begin{small} {~}\\ \ARROW Now if we look how many of the $X_s$ are $\PK$ and $\PKstar$ we define the variables: \begin{align*} r_K = \frac{\PB \to \PK \chi}{\PB \to X_s \chi}~~~~r_{\PKstar} = \frac{\PB \to \PKstar \chi}{\PB \to X_s \chi} \end{align*} \includegraphics[width=0.45\linewidth]{images/rk_graph.png} \includegraphics[width=0.45\linewidth]{images/rkstar.png} \\ {~}\\ \ARROW So the assumption about $33~\%$ was generous assumption. \end{small} \end{minipage} \vspace*{2.cm} \end{frame} \begin{frame}[c]{Cross check of the calculations} \begin{minipage}{\textwidth} \begin{small} {~}\\ \ARROW So we have cross-checked this calculations with old Higgs papers. \\ \ARROW In the 80s they thought that Higgs might he light enough that it can be produced in $\PB$ decays.\\ \ARROW From Haber, et al.: \begin{center} \includegraphics[width=0.45\textwidth]{images/higgs.png} \end{center} \ARROW So everything is consistent. \end{small} \end{minipage} \vspace*{2.cm} \end{frame} \begin{frame}{The result} \begin{minipage}{\textwidth} \begin{center} \includegraphics[angle=-90,width=0.9\textwidth]{{images/Inflaton_parameter_space_log}.pdf} \end{center} \end{minipage} \vspace*{2.cm} \end{frame} \backupbegin \begin{frame}\frametitle{Backup} \ARROW ves: \begin{align*} \langle H \rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 0\\ \nu \end{pmatrix}\\ \langle S \rangle = x. \end{align*} \ARROW Minimalization: \begin{align*} 0 = -\mu^2 + \lambda_H \nu^2 + a_1 x^2 + \frac{1}{2} x^2\\ 0 = b_2 + b_3 x+ b_4 x^2 + \frac{a_1\nu^2}{4 x_0} + \frac{a_2 \nu_0^2}{2} \end{align*} \end{frame} \begin{frame}\frametitle{Backup} \ARROW generate the mass: \begin{align*} \mathcal{L}_{mass}=-\frac{1}{2} \begin{pmatrix} h \\ s \end{pmatrix}^T \begin{pmatrix} A & C \\ C & B \end{pmatrix} \begin{pmatrix} s^{\prime}\\ h^{\prime} \end{pmatrix} \end{align*} \begin{align*} \cos \theta = 2(1+y^{-2}(1-\sqrt{1+y^2}))^{-0.5}\\ \sin \theta = 2(1+y^{-2}(1+\sqrt{1+y^2}))^{-0.5}\\ y=\frac{2C}{A-B} \end{align*} \ARROW Mass eigenvalues: \begin{align*} m^2_{h^{\prime}/s^{\prime}} = \frac{1}{2}\left[A + B \pm (A-B)\sqrt{1+y^2}\right] \end{align*} \end{frame} \begin{frame}\frametitle{Naturalnes} \ARROW If the $\sin \theta \ll 1$ \begin{align*} m^2_{h^{\prime}} \sim 2 \lambda_H \nu^2\\ m^2_{s^{\prime}} \sim b_3 x + 2b_4 x^2 -\frac{a_1\nu^2}{4 x} \end{align*} \ARROW Since Higgs is $125\GeV$ then $m_S \sim \mathcal{O}(1)$ \end{frame} \backupend \end{document}