\documentclass[]{beamer} \setbeamertemplate{navigation symbols}{} \usepackage{beamerthemesplit} \useoutertheme{infolines} \usecolortheme{dolphin} %\usetheme{Warsaw} \usetheme{progressbar} \usecolortheme{progressbar} \usepackage{color} \usepackage[autostyle]{csquotes} \usepackage{listings} \usefonttheme{progressbar} \useoutertheme{progressbar} \useinnertheme{progressbar} \usepackage{graphicx} %\usepackage{amssymb,amsmath} \usepackage[latin1]{inputenc} \usepackage{amsmath} \newcommand\abs[1]{\left|#1\right|} \usepackage{iwona} \usepackage{hepparticles} \usepackage{hepnicenames} \usepackage{hepunits} \progressbaroptions{imagename=images/lhcb} %\usetheme{Boadilla}f %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \definecolor{mygreen}{cmyk}{0.82,0.11,1,0.25} \setbeamertemplate{blocks}[rounded][shadow=false] \addtobeamertemplate{block begin}{\pgfsetfillopacity{0.8}}{\pgfsetfillopacity{1}} \setbeamercolor{structure}{fg=mygreen} \setbeamercolor*{block title example}{fg=mygreen!50, bg= blue!10} \setbeamercolor*{block body example}{fg= blue, bg= blue!5} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2->{15}} \title{Toy MC Results} \author{\underline{Marcin Chrzaszcz}$^{1,2}$, Nicola Serra$^{1}$} \date{\today} \begin{document} { \institute{$^1$ University of Zurich, $^2$ Institute of Nuclear Physics} \setbeamertemplate{footline}{} \begin{frame} \logo{ \vspace{2 mm} \includegraphics[height=1cm,keepaspectratio]{images/uzh.jpg}~ \includegraphics[height=1cm,keepaspectratio]{images/ifj.png}} \titlepage \end{frame} } \institute{UZH,IFJ} \section[Outline]{} \begin{frame} \tableofcontents \end{frame} \section{Debugging MC} \begin{frame}\frametitle{Plan} \begin{enumerate} \item Before we begin to explore the TOY MC let's see if we understand. \item To X-Check: \begin{enumerate} \item Check EOS SM parameters. \item Check unfolding. \end{enumerate} \item Test various methods with data bins and statistics \end{enumerate} \end{frame} \subsection{SM parameters} \begin{frame}\frametitle{Plan} \begin{itemize} \item Take the full MC(without acceptance) and fit + count events. \item See if the results are consistent. \item Here we just fit signal(\texttt{bkgcat==0}) \item In \textcolor{yellow}{yellow} $>3~\sigma$ fluctuations, \textcolor{red}{red} $>5~\sigma$ fluctuations, \end{itemize} \end{frame} \begin{frame}\frametitle{$S_4$ results} \begin{tiny} \begin{center} \begin{tabular}{| c | c| c | c | c | c | } \hline $q^2$ & $S_4^{true}$ & $S_4^{fit}$ & $S_4^{fold}$ & $S_4^{MM}$ \\ \hline \hline $[0.1,1.0]$& $ -0.0884 $ & $ -0.0869 \pm 0.0009(1.6)$ & $-0.0874 \pm 0.0010 (1.0)$ & $-0.0873 \pm 0.0010 (1.1)$ \\ \hline $[1.1,2.0]$& $-0.0481$ & $-0.0447 \pm 0.0015(2.3)$ & $-0.0462 \pm 0.0017 (1.1)$ & $-0.0477 \pm 0.0018 (0.2)$ \\ \hline $[2.0,3.0]$& $ 0.0480$ & $0.0465 \pm 0.0015(1.0)$ & $ 0.0476 \pm 0.0016 (0.25)$ & $0.0478 \pm 0.0019 (0.1)$ \\ \hline $[3.0,4.0]$& $0.1255$ & $ 0.1229 \pm 0.0014(1.9)$ & $ 0.1253 \pm 0.0016 (0.1)$ & $0.1262 \pm 0.0019 (0.4)$ \\ \hline $[4.0,5.0]$& $0.1765$ & $ 0.1731 \pm 0.0013 (2.6)$ & $0.1742 \pm 0.0015 (1.5)$ & $0.1760 \pm 0.0018 (0.3)$ \\ \hline $[5.0,6.0]$& $0.2089$ & $0.2058 \pm 0.0012 (2.3)$ &$ 0.2065 \pm 0.0015 (1.6)$ & $0.2081 \pm 0.0017 (0.9)$ \\ \hline $[6.0,7.0]$& $0.2295$ & $0.2279 \pm 0.0011 (1.5) $ & $ 0.2283 \pm 0.0014 (0.9)$ & $0.2313 \pm 0.0016 (1.1) $ \\ \hline $[7.0,8.0]$ & $0.2609$ & \textcolor{red}{$ 0.2422 \pm 0.0010 (18.7)$} & \textcolor{red}{$ 0.2428 \pm 0.0014 (13)$} & \textcolor{red}{$0.2441 \pm 0.0016 (10.5)$} \\ \hline $[15.0,16.0]$ & $0.2822$ & $0.2820 \pm 0.0008 (0.3)$ & $ 0.2817 \pm 0.0012 (0.4)$ & $0.2819 \pm 0.0014 (0.2)$ \\ \hline $[16.0,17.0]$ & $0.2888$ & $ 0.2884 \pm 0.0008 (0.5)$ & $ 0.2878 \pm 0.0013 (0.8)$ & $0.2890 \pm 0.0015 (0.1)$ \\ \hline $[17.0,18.0]$ & $0.2987$ & $0.2991 \pm 0.0008 (0.5)$ & $ 0.2987 \pm 0.0013 (0.0)$& $0.2980 \pm0.0016 (0.4)$ \\ \hline $[18.0,19.0]$ & $0.3139$ & $ 0.3152 \pm 0.0011(1.2)$ & $ 0.3150 \pm 0.0015 (0.7)$ & $0.3156 \pm 0.0020 (0.85)$ \\ \hline \hline \end{tabular} \end{center} \end{tiny} \end{frame} \begin{frame}\frametitle{$S_5$ results} \begin{tiny} \begin{center} \begin{tabular}{| c | c| c | c | c | c | } \hline $q^2$ & $S_5^{true}$ & $S_5^{fit}$ & $S_5^{fold}$ & $S_5^{MM}$ \\ \hline \hline $[0.1,1.0]$& $0.2253 $ & $0.2238 \pm 0.0008 (1.9)$ & $0.2253 \pm 0.0009 (0.0)$ & $0.2260 \pm 0.0009 (0.8)$ \\ \hline $[1.1,2.0]$& $0.1652 $ & $0.1673 \pm 0.0016 (1.3)$ & $0.1674 \pm 0.0016 (1.4)$ & $0.1671 \pm 0.0018 (1.1)$ \\ \hline $[2.0,3.0]$& $-0.0287 $ & $ -0.0298 \pm 0.0016 (0.7)$ & $ -0.0301 \pm0.0017 (0.8)$ & $-0.0300 \pm 0.0019 (0.7)$ \\ \hline $[3.0,4.0]$& $-0.1897$ & $ -0.1911 \pm 0.0015 (0.9) $ & $-0.1919 \pm 0.0016 (1.4)$ & $-0.1891 \pm 0.0019 (0.3)$ \\ \hline $[4.0,5.0]$& $-0.2969 $ & $ -0.2966 \pm 0.0014 (0.2) $ & $-0.2971 \pm 0.0015 (0.1)$ & $-0.2966 \pm 0.0018 (0.3)$ \\ \hline $[5.0,6.0]$& $-0.3654 $ & $ -0.3678 \pm 0.0013 (1.8) $ & $-0.3682 \pm 0.0014 (2.0)$ & $-0.3700 \pm 0.0017 (2.7)$ \\ \hline $[6.0,7.0]$& $-0.4084 $ & $ -0.4089 \pm 0.0012 (0.4) $ & $-0.4092 \pm 0.0013 (0.6)$ & $-0.4096 \pm 0.0016 (0.8)$ \\ \hline $[7.0,8.0]$& $-0.4113 $ & \textcolor{red}{$ -0.4356 \pm 0.0010 (24.3)$} & \textcolor{red}{$ -0.4364 \pm 0.0012 (21) $} & \textcolor{red}{ $-0.4356 \pm 0.0015 (16)$} \\ \hline $[15.0,16.0]$& $-0.3654 $ & $ -0.3651 \pm 0.0008 (0.6)$ & $-0.3650 \pm 0.0011 (0.4)$ & $-0.3646 \pm 0.0012 (0.3)$ \\ \hline $[16.0,17.0]$& $-0.3356 $ & $ -0.3347 \pm 0.0008 (1.1)$ & $-0.3349 \pm 0.0011 (0.6)$ & $-0.3359 \pm 0.0013 (0.2)$ \\ \hline $[17.0,18.0]$& $-0.2911 $ & $ -0.2907 \pm 0.0009 (0.4) $ & $-0.2903 \pm 0.0013 (0.6)$ & $-0.2896 \pm 0.0014 (1.1)$ \\ \hline $[18.0,19.0]$& $-0.2124 $ & $ -0.2153 \pm 0.0012 (2.4) $ & $-0.2152 \pm 0.0016 (1.8)$ & $-0.2158 \pm 0.0018 (1.9)$ \\ \hline \hline \end{tabular} \end{center} \end{tiny} \end{frame} \begin{frame}\frametitle{$S_7$ results} \begin{tiny} \begin{center} \begin{tabular}{| c | c| c | c | c | c | } \hline $q^2$ & $S_7^{true}$ & $S_7^{fit}$ & $S_7^{fold}$ & $S_7^{MM}$ \\ \hline \hline $[0.1,1.0]$& $0.0212 $ & $ 0.0206 \pm 0.0009 (0.7)$ & $0.0214 \pm0.0009 (0.2)$ & $0.0208 \pm 0.0009 (0.4)$ \\ \hline $[1.1,2.0]$& $0.0386 $ & $ 0.0353 \pm 0.0016 (2.1)$ & $0.0352 \pm 0.0016 (2.1)$ & $0.0348 \pm 0.0018 (2.1)$ \\ \hline $[2.0,3.0]$& $0.0379 $ & $ 0.0349 \pm 0.0016 (1.6) $ & $ 0.0351 \pm 0.0017 (1.6)$ & $0.0353 \pm 0.0019 (1.4) $ \\ \hline $[3.0,4.0]$& $0.0341$ & $ 0.0365 \pm 0.0016 (0.5) $ & $0.0368 \pm 0.0017 (1.6)$ & $0.0363 \pm 0.0019 (1.2)$ \\ \hline $[4.0,5.0]$& $0.0306 $ & $ 0.0293 \pm 0.0016 (0.8)$ & $0.0293 \pm 0.0016 (0.8)$ & $0.0303 \pm 0.0018 (0.6)$ \\ \hline $[5.0,6.0]$& $0.0284 $ & $ 0.0261 \pm 0.0015 (1.5)$ & $ 0.0262 \pm 0.0016 (1.4)$ & $0.0263 \pm 0.0018 (1.2)$ \\ \hline $[6.0,7.0]$& $0.0278 $ & $ 0.0282 \pm 0.0014 (0.3)$ & $0.0286 \pm 0.0015 (0.5)$ & $0.0287 \pm 0.0017 (0.5)$ \\ \hline $[7.0,8.0]$& $0.0000 $ &\textcolor{red}{ $ 0.0293 \pm 0.0014 (20.9) $} & \textcolor{red}{$0.0290 \pm 0.0015 (19.3)$ } & \textcolor{red}{$0.0287 \pm 0.0016 (18)$} \\ \hline $[15.0,16.0]$& $0.0000 $ & $ -0.0024 \pm 0.0013 (1.8) $ & $-0.0007 \pm 0.0014 (0.5)$ & $-0.0008 \pm 0.0014 (0.6)$ \\ \hline $[16.0,17.0]$& $0.0000 $ & $ -0.0016 \pm 0.0014 (1.1) $ & $-0.0026 \pm 0.0015 (1.6)$ & $-0.0026 \pm 0.0015 (1.7)$ \\ \hline $[17.0,18.0]$& $0.0000 $ & $ -0.0021 \pm 0.0015 (1.4) $ & $-0.0023 \pm 0.0016 (1.6)$ & $-0.0021 \pm 0.0017 (1.2)$ \\ \hline $[18.0,19.0]$& $0.0000 $ & $ -0.0006 \pm 0.0019 (0.3) $ & $-0.0021 \pm 0.0021 (1.0)$ & $-0.0015 \pm 0.0021 (0.6)$ \\ \hline \hline \end{tabular} \end{center} \end{tiny} \end{frame} \begin{frame}\frametitle{$S_8$ results} \begin{tiny} \begin{center} \begin{tabular}{| c | c| c | c | c | c | } \hline $q^2$ & $S_8^{true}$ & $S_8^{fit}$ & $S_8^{fold}$ & $S_8^{MM}$ \\ \hline \hline $[0.1,1.0]$& $-0.0038 $ & $-0.0061 \pm0.0010 (2.3) $ & $-0.0042 \pm0.0010 (0.4)$ & $-0.0040 \pm 0.0010 (0.2)$ \\ \hline $[1.1,2.0]$& $-0.0107 $ & $ -0.0133 \pm 0.0015 (1.7)$ & $-0.0142 \pm 0.0017 (2.1)$ & $-0.0135 \pm 0.0018 (1.5)$ \\ \hline $[2.0,3.0]$& $-0.0123 $ & $ -0.0141 \pm 0.0015 (1.2) $ & $-0.0144 \pm0.0017 (1.2)$ & $-0.0149 \pm 0.0019 (0.3)$ \\ \hline $[3.0,4.0]$& $-0.0121$ & $ -0.0109 \pm 0.0016 (0.8)$ & $-0.0112 \pm 0.0016 (0.6)$ & $-0.0117 \pm 0.0019 (0.2)$ \\ \hline $[4.0,5.0]$& $-0.0114 $ & $ -0.0125 \pm 0.0015 (0.8)$ & $-0.0123 \pm 0.0016 (0.6)$ & $-0.0129 \pm 0.0018 (0.8)$ \\ \hline $[5.0,6.0]$& $-0.0110 $ & $ -0.0115 \pm 0.0015 (0.3)$ & $-0.0118 \pm 0.0016 (0.5)$ & $-0.0115 \pm 0.0018 (0.3)$ \\ \hline $[6.0,7.0]$& $-0.0110 $ & $ -0.0104 \pm 0.0014 (0.4)$ & $-0.0110 \pm 0.0016 (0.0)$ & $-0.0107 \pm 0.0017 (0.2)$ \\ \hline $[7.0,8.0]$& $0.0007 $ & \textcolor{red}{$ -0.0112 \pm 0.0013 (8.1)$} & \textcolor{red}{$-0.0112 \pm 0.0015 (7.0)$ } & \textcolor{red}{ $-0.0113 \pm 0.0016 (6.6)$} \\ \hline $[15.0,16.0]$& $0.0003 $ & $ 0.0006 \pm 0.0012 (0.3)$ & $-0.0015 \pm 0.0015 (0.8)$ & $-0.0016 \pm 0.0015 (0.9)$ \\ \hline $[16.0,17.0]$& $0.0003 $ & $ -0.0023 \pm 0.0013 (0.8)$ & $-0.0020 \pm 0.0016 (1.1)$ & $-0.0022 \pm 0.0016 (1.2)$ \\ \hline $[17.0,18.0]$& $0.0002 $ & $ 0.0009 \pm 0.0015 (0.5)$ & $0.0023 \pm 0.0018 (1.2)$ & $0.0022 \pm 0.0018 (1.1)$ \\ \hline $[18.0,19.0]$& $0.0002 $ & $ -0.0019 \pm 0.0019 (0.9)$ & $-0.0007 \pm 0.0022 (0.2)$ & $-0.0012 \pm- 0.0022 (0.5)$ \\ \hline \hline \end{tabular} \end{center} \end{tiny} \end{frame} \begin{frame}\frametitle{What is going on in that bin?} \begin{itemize} \item Following Einstein: \end{itemize} \begin{alertblock}{~} A scientific person will never understand why he should believe opinions only because they are written in a certain book. \underline{Furthermore, he will never believe that the results of his own attempts} \underline{are final}. \end{alertblock} \begin{itemize} \item I start debugging my code. \item After several hours I said to Einstein to go to hell and start debugging EOS \end{itemize} \end{frame} \begin{frame}\frametitle{WTH is going on with $[7.0,8.0]$ ? 1/3} \begin{itemize} \item With those parameters from EOS the PDF is negative? <- checked , no \item Some boundary conditions? <- checked by simulating my toy, no thing going on there. \item The parametrs that EOS gives you are not the one they simulated? <- YES! \end{itemize} \end{frame} \begin{frame}\frametitle{WTH is going on with $[7.0,8.0]$ ? 2/3} \begin{itemize} \item First I simulated MY toy MC: \end{itemize} \begin{tiny} \lstinputlisting[label=samplecode,caption=My unofficial MC:]{out.log} \end{tiny} \begin{itemize} \item PDF is fine, can be fitted(here MM). \end{itemize} \end{frame} \begin{frame}\frametitle{WTH is going on with $[7.0,8.0]$ ? 3/3} \begin{itemize} \item Let's say if the predictions are internally consistent! \end{itemize} \begin{tiny} \lstinputlisting[label=samplecode,caption=TABLE from email:]{table1.log} \end{tiny} \end{frame} \begin{frame}\frametitle{Conclusions part1} \begin{itemize} \item EOS gives wrong prediction to the last bin before $cc$ resonances region. \item Rest is consistent. \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Check unfolding} \begin{frame}\frametitle{More x-checks} \begin{itemize} \item Christoph also performed an unfolding. \item He parametrized the acceptance corrections using $7^{th}$ order polynomials. \item Also made a check of this. \item On his official TOY MC \item Reweighed events($1/\epsilon$) to get back the true distribution. \item For details see \href{https://indico.cern.ch/event/290851/contribution/0/material/slides/0.pdf}{\underline{Christoph's talk}} \end{itemize} \end{frame} \begin{frame}\frametitle{More x-checks} \begin{columns} \column{2.5in} \includegraphics[scale=0.15 ]{plots/SMcosthetak.png} \column{2.5in} \includegraphics[scale=0.15 ]{plots/SMcosthetak.png} \end{columns} \begin{columns} \column{2.5in} \includegraphics[scale=0.15 ]{plots/SMphi.png} \column{2.5in} \includegraphics[scale=0.15 ]{plots/SMq2.png} \end{columns} \end{frame} \begin{frame}\frametitle{More x-checks} \begin{itemize} \item Official TOY MC internally is consistent. \item For sanity reasons, let's try the official MC. \end{itemize} \end{frame} \begin{frame}\frametitle{Not good!} \begin{columns} \column{2.5in} \includegraphics[scale=0.15 ]{plots/lhcbcosthetak.png} \column{2.5in} \includegraphics[scale=0.15 ]{plots/lhcbcosthetal.png} \end{columns} \begin{columns} \column{2.5in} \includegraphics[scale=0.15 ]{plots/lhcbphi.png} \column{2.5in} \includegraphics[scale=0.15 ]{plots/lhcbq2.png} \end{columns} \end{frame} \begin{frame}\frametitle{Magic happens when i don't require $\PBzero$ trueID} \begin{columns} \column{2.5in} \includegraphics[scale=0.15 ]{plots/lhcb_NO_TRUTHcosthetak.png} \column{2.5in} \includegraphics[scale=0.15 ]{plots/lhcb_NO_TRUTHcosthetal.png} \end{columns} \begin{columns} \column{2.5in} \includegraphics[scale=0.15 ]{plots/lhcb_NO_TRUTHphi.png} \column{2.5in} \includegraphics[scale=0.15 ]{plots/lhcb_NO_TRUTHq2.png} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Unfolding conclusions} \begin{itemize} \item MC was not truth matched for unfolding! \item Official TOY MC Internally is consistent but need to be careful for the future! \end{itemize} \end{frame} \section{Results with toys} %\subsection{Method of moments 1/3} \begin{frame}\frametitle{Strategy 1/3} \begin{itemize} \item Divide the big OFFICIAL TOY MC in bins of $q^2$ that have number of events the same as data. \item For each of them make fit and counting experiment. \item See errors and pulls. \end{itemize} \end{frame} \begin{frame}\frametitle{Strategy 2/3} \begin{itemize} \item To estimate number of signal and background events we fit the events: \item For signal, I have assumed the PDF given by Christoph: \href{https://indico.cern.ch/event/290854/contribution/1/material/slides/0.pdf}{\underline{LINK}} \item All parameters are for this pdf are fixed. \item For background I assume exponential, with free parameter. \item In summary the fit has 3 free parameters, $n_{sig}$, $n_{bkg}$, $\lambda$. \item Fit is done in region $5170,5700MeV$. \end{itemize} \end{frame} \begin{frame}\frametitle{Strategy 3/3} To get Signal moments($S_x$) we do the following: \begin{itemize} \item Calculate background moments for $m$ in $(5350,5700)~MeV$ \item Calculate "mixed" moments for $m$ in $(5230,5330)~MeV$ \item Extract signal moments:\\ \end{itemize} $S_{sig}=\dfrac{S_{mix} (n_{sig} + n_{bck}) }{n_{sig}} - \dfrac{ n_{bck} S_{bck} }{n_{sig}}$ \end{frame} \begin{frame}\frametitle{Fits} \begin{columns} \column{2.5in} \begin{itemize} \item All fits converged without any problem \item Got correlations Matrix. \end{itemize} \column{2.5in} \includegraphics[scale=0.12 ]{fits_MM/SM_Q2_0_265.png} \\ \includegraphics[scale=0.12 ]{fits_MM/SM_Q2_11_1348.png} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Pull plots S3} \begin{columns} \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_0_S3.png} \\ $Q^2 (0.1,1)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_1_S3.png} \\ $Q^2 (1.1,2)$\\ \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_2_S3.png} \\ $Q^2 (2,3)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_3_S3.png}\\ $Q^2 (3,4)$\\ \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Pull plots S3} \begin{columns} \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_4_S3.png} \\ $Q^2 (4,5)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_5_S3.png} \\ $Q^2 (5,6)$\\ \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_6_S3.png} \\ $Q^2 (6,7)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_7_S3.png}\\ $Q^2 (7,8)$\\ \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Pull plots S3} \begin{columns} \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_8_S3.png} \\ $Q^2 (15,16)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_9_S3.png} \\ $Q^2 (16,17)$\\ \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_10_S3.png} \\ $Q^2 (17,18)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_11_S3.png}\\ $Q^2 (18,19)$\\ \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Pull plots S4} \begin{columns} \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_0_S4.png} \\ $Q^2 (0.1,1)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_1_S4.png} \\ $Q^2 (1.1,2)$\\ \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_2_S4.png} \\ $Q^2 (2,3)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_3_S4.png}\\ $Q^2 (3,4)$\\ \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Pull plots S4} \begin{columns} \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_4_S4.png} \\ $Q^2 (4,5)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_5_S4.png} \\ $Q^2 (5,6)$\\ \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_6_S4.png} \\ $Q^2 (6,7)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_7_S4.png}\\ $Q^2 (7,8)$\\ \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Pull plots S4} \begin{columns} \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_8_S4.png} \\ $Q^2 (15,16)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_9_S4.png} \\ $Q^2 (16,17)$\\ \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_10_S4.png} \\ $Q^2 (17,18)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_11_S4.png}\\ $Q^2 (18,19)$\\ \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Pull plots S5} \begin{columns} \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_0_S5.png} \\ $Q^2 (0.1,1)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_1_S5.png} \\ $Q^2 (1.1,2)$\\ \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_2_S5.png} \\ $Q^2 (2,3)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_3_S5.png}\\ $Q^2 (3,4)$\\ \end{columns} \end{frame} \begin{frame}\frametitle{Pull plots S5} \begin{columns} \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_4_S5.png} \\ $Q^2 (4,5)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_5_S5.png} \\ $Q^2 (5,6)$\\ \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_6_S5.png} \\ $Q^2 (6,7)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_7_S5.png}\\ $Q^2 (7,8)$\\ \end{columns} \end{frame} \begin{frame}\frametitle{Pull plots S5} \begin{columns} \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_8_S5.png} \\ $Q^2 (15,16)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_9_S5.png} \\ $Q^2 (16,17)$\\ \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_10_S5.png} \\ $Q^2 (17,18)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_11_S5.png}\\ $Q^2 (18,19)$\\ \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Pull plots S6} \begin{columns} \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_0_S6s.png} \\ $Q^2 (0.1,1)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_1_S6s.png} \\ $Q^2 (1.1,2)$\\ \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_2_S6s.png} \\ $Q^2 (2,3)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_3_S6s.png}\\ $Q^2 (3,4)$\\ \end{columns} \end{frame} \begin{frame}\frametitle{Pull plots S6} \begin{columns} \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_4_S6s.png} \\ $Q^2 (4,5)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_5_S6s.png} \\ $Q^2 (5,6)$\\ \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_6_S6s.png} \\ $Q^2 (6,7)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_7_S6s.png}\\ $Q^2 (7,8)$\\ \end{columns} \end{frame} \begin{frame}\frametitle{Pull plots S6} \begin{columns} \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_8_S6s.png} \\ $Q^2 (15,16)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_9_S6s.png} \\ $Q^2 (16,17)$\\ \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_10_S6s.png} \\ $Q^2 (17,18)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM/Q2_11_S6s.png}\\ $Q^2 (18,19)$\\ \end{columns} \end{frame} \begin{frame}\frametitle{Conclusions} \begin{itemize} \item Method of moments works perfectly with the TOY with our statistics. \item No bias seen in toys. \end{itemize} \end{frame} \subsection{Unfolding for method of moments} \begin{frame}\frametitle{General way} \begin{itemize} \item The natural way of unfolding the method of moments is to reweigh events by $\frac{1}{\epsilon}$ \item Similar to likelihood the normalization doesn't matter. \item Error is also calculated based on weights: \end{itemize} \begin{equation} var=\dfrac{\sum_i w_i^2 \sigma_i}{(\sum_i w_i)^2} \end{equation} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{Pull plots S3} \begin{columns} \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM_ACC/Q2_0_S3_ACC.png} \\ $Q^2 (0.1,1)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM_ACC/Q2_1_S3_ACC.png} \\ $Q^2 (1.1,2)$\\ \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM_ACC/Q2_2_S3_ACC.png} \\ $Q^2 (2,3)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM_ACC/Q2_3_S3_ACC.png}\\ $Q^2 (3,4)$\\ \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Pull plots S3} \begin{columns} \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM_ACC/Q2_4_S3_ACC.png} \\ $Q^2 (4,5)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM_ACC/Q2_5_S3_ACC.png} \\ $Q^2 (5,6)$\\ \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM_ACC/Q2_6_S3_ACC.png} \\ $Q^2 (6,7)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM_ACC/Q2_7_S3_ACC.png}\\ $Q^2 (7,8)$\\ \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Pull plots S3} \begin{columns} \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM_ACC/Q2_8_S3_ACC.png} \\ $Q^2 (15,16)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM_ACC/Q2_9_S3_ACC.png} \\ $Q^2 (16,17)$\\ \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_SM_ACC/Q2_10_S3_ACC.png} \\ $Q^2 (17,18)$\\ \includegraphics[scale=0.15 ]{PLOTS_SM_ACC/Q2_11_S3_ACC.png}\\ $Q^2 (18,19)$\\ \end{columns} \end{frame} \begin{frame}\frametitle{Conclusions} \begin{itemize} \item Preliminary things look ok. \item However we plan to use a matrix method for unfolding $\rightarrow$ smaller errors. \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Fitting toys} \begin{frame}\frametitle{Fitting strategy} \begin{itemize} \item Performed fit on folded data set. \item Signal PDFs are like in 2011. \item Background PDFs are $2^{nd}$ order Chebyshev. \item PDF is parametrized: \end{itemize} $ PDF=PDF_{sig}(\cos \theta_k, \cos \theta_l, \phi) \times PDF_{sigm}(m) + PDF_{bkg}(\cos \theta_k, \cos \theta_l, \phi) \times PDF_{bkgm}(m) $ \begin{itemize} \item Fit the angles and mass in the full region \end{itemize} \end{frame} \begin{frame}\frametitle{Fitting strategy} \begin{itemize} \item Performed fit on folded data set. \item Signal PDFs are like in 2011. \item Background PDFs are $2^{nd}$ order Chebyshev. \item PDF is parametrized: \end{itemize} $ PDF=PDF_{sig}(\cos \theta_k, \cos \theta_l, \phi) \times PDF_{sigm}(m) + PDF_{bkg}(\cos \theta_k, \cos \theta_l, \phi) \times PDF_{bkgm}(m) $ \begin{itemize} \item Fit the angles and mass in the full region \end{itemize} \end{frame} \begin{frame}\frametitle{Examp} \includegraphics[scale=0.35 ]{SM_Q2_4_995.png} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Pull plots S4} \begin{columns} \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_FOLDING/Q2_0_S4.png} \\ $Q^2 (0.1,1)$\\ \includegraphics[scale=0.15 ]{PLOTS_FOLDING/Q2_1_S4.png} \\ $Q^2 (1.1,2)$\\ \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_FOLDING/Q2_2_S4.png} \\ $Q^2 (2,3)$\\ \includegraphics[scale=0.15 ]{PLOTS_FOLDING/Q2_3_S4.png}\\ $Q^2 (3,4)$\\ \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Pull plots S3} \begin{columns} \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_FOLDING/Q2_4_S5.png} \\ $Q^2 (4,5)$\\ \includegraphics[scale=0.15 ]{PLOTS_FOLDING/Q2_5_S5.png} \\ $Q^2 (5,6)$\\ \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_FOLDING/Q2_6_S5.png} \\ $Q^2 (6,7)$\\ \includegraphics[scale=0.15 ]{PLOTS_FOLDING/Q2_7_S5.png}\\ $Q^2 (7,8)$\\ \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Pull plots S3} \begin{columns} \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_FOLDING/Q2_8_S5.png} \\ $Q^2 (15,16)$\\ \includegraphics[scale=0.15 ]{PLOTS_FOLDING/Q2_9_S5.png} \\ $Q^2 (16,17)$\\ \column{2.5in} \includegraphics[scale=0.15 ]{PLOTS_FOLDING/Q2_10_S5.png} \\ $Q^2 (17,18)$\\ \includegraphics[scale=0.15 ]{PLOTS_FOLDING/Q2_11_S5.png}\\ $Q^2 (18,19)$\\ \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Conclusions of fitting} \begin{itemize} \item Preliminary I see small bias, and error problems in the fits. To be x-checked. \item Need to check that unfolding doesn't do any harm. \item Hight fail rate! To be investigated. \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Error summary} \begin{columns} \column{1.5in} \begin{tabular}{| c | c| c | } \hline $q^2$ & $Err. S_5^{MM}$ & $Err. S_5^{fit}$ \\ \hline \hline $0$ & $0.047$ & $0.044$ \\ \hline $1$ & $0.093$ & $0.079$ \\ \hline $2$ & $0.097$ & $0.080$ \\ \hline $3$ & $0.099$ & $0.080$ \\ \hline $4$ & $0.092$ & $0.072$ \\ \hline $5$ & $0.091$ & $0.069$ \\ \hline $6$ & $0.087$ & $0.063$ \\ \hline $7$ & $0.074$ & $0.053$ \\ \hline $8$ & $0.071$ & $0.058$ \\ \hline $9$ & $0.072$ & $0.061$ \\ \hline $10$ & $0.067$ & $0.072$ \\ \hline $11$ & $0.088$ & $0.094$ \\ \hline \hline \end{tabular} \column{2.0in} \begin{itemize} \item On average MM are $18\%$ worse here(improvement from 25\% reported by Christoph). \item Still errors do not have full systematics. \item One expects the difference to shrink even more. \end{itemize} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{To do list} Before the Easter: \begin{itemize} \item Do include unfolding inside the fits. \item Repeat all the fits without folding. \item Compare all numbers! \end{itemize} \end{frame} \end{document}