- \documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,tablFe}]{beamer}
-
- \usepackage[english]{babel}
- \usepackage{polski}
-
-
- \usetheme[
- bullet=circle, % Other option: square
- bigpagenumber, % circled page number on lower right
- topline=true, % colored bar at the top of the frame
- shadow=false, % Shading for beamer blocks
- watermark=BG_lower, % png file for the watermark
- ]{Flip}
-
- %\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}
-
-
- \usepackage[lf]{berenis}
- \usepackage[LY1]{fontenc}
- \usepackage[utf8]{inputenc}
-
- \usepackage{emerald}
- \usefonttheme{professionalfonts}
- \usepackage[no-math]{fontspec}
- \defaultfontfeatures{Mapping=tex-text} % This seems to be important for mapping glyphs properly
-
- \setmainfont{Gillius ADF} % Beamer ignores "main font" in favor of sans font
- \setsansfont{Gillius ADF} % This is the font that beamer will use by default
- % \setmainfont{Gill Sans Light} % Prettier, but harder to read
-
- \setbeamerfont{title}{family=\fontspec{Gillius ADF}}
-
- \input t1augie.fd
-
- %\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
- %\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
- % \newcommand{\handwriting}{} % If you prefer no special handwriting font or don't have augie
-
- %% Gill Sans doesn't look very nice when boldfaced
- %% This is a hack to use Helvetica instead
- %% Usage: \textbf{\forbold some stuff}
- %\newcommand{\forbold}{\fontspec{Arial}}
-
- \usepackage{graphicx}
- \usepackage[export]{adjustbox}
-
- \usepackage{amsmath}
- \usepackage{amsfonts}
- \usepackage{amssymb}
- \usepackage{bm}
- \usepackage{colortbl}
- \usepackage{mathrsfs} % For Weinberg-esque letters
- \usepackage{cancel} % For "SUSY-breaking" symbol
- \usepackage{slashed} % for slashed characters in math mode
- \usepackage{bbm} % for \mathbbm{1} (unit matrix)
- \usepackage{amsthm} % For theorem environment
- \usepackage{multirow} % For multi row cells in table
- \usepackage{arydshln} % For dashed lines in arrays and tables
- \usepackage{siunitx}
- \usepackage{xhfill}
- \usepackage{grffile}
- \usepackage{textpos}
- \usepackage{subfigure}
- \usepackage{tikz}
-
- %\usepackage{hepparticles}
- \usepackage[italic]{hepparticles}
-
- \usepackage{hepnicenames}
-
- % Drawing a line
- \tikzstyle{lw} = [line width=20pt]
- \newcommand{\topline}{%
- \tikz[remember picture,overlay] {%
- \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
- -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}
-
-
-
- % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
- \usepackage{tikzfeynman} % For Feynman diagrams
- \usetikzlibrary{arrows,shapes}
- \usetikzlibrary{trees}
- \usetikzlibrary{matrix,arrows} % For commutative diagram
- % http://www.felixl.de/commu.pdf
- \usetikzlibrary{positioning} % For "above of=" commands
- \usetikzlibrary{calc,through} % For coordinates
- \usetikzlibrary{decorations.pathreplacing} % For curly braces
- % http://www.math.ucla.edu/~getreuer/tikz.html
- \usepackage{pgffor} % For repeating patterns
-
- \usetikzlibrary{decorations.pathmorphing} % For Feynman Diagrams
- \usetikzlibrary{decorations.markings}
- \tikzset{
- % >=stealth', %% Uncomment for more conventional arrows
- vector/.style={decorate, decoration={snake}, draw},
- provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
- antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
- fermion/.style={draw=gray, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
- fermionbar/.style={draw=gray, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
- fermionnoarrow/.style={draw=gray},
- gluon/.style={decorate, draw=black,
- decoration={coil,amplitude=4pt, segment length=5pt}},
- scalar/.style={dashed,draw=black, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
- scalarbar/.style={dashed,draw=black, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
- scalarnoarrow/.style={dashed,draw=black},
- electron/.style={draw=black, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
- bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
- }
-
- % TIKZ - for block diagrams,
- % from http://www.texample.net/tikz/examples/control-system-principles/
- % \usetikzlibrary{shapes,arrows}
- \tikzstyle{block} = [draw, rectangle,
- minimum height=3em, minimum width=6em]
-
-
-
-
- \usetikzlibrary{backgrounds}
- \usetikzlibrary{mindmap,trees} % For mind map
- \newcommand{\degree}{\ensuremath{^\circ}}
- \newcommand{\E}{\mathrm{E}}
- \newcommand{\Var}{\mathrm{Var}}
- \newcommand{\Cov}{\mathrm{Cov}}
- \newcommand\Ts{\rule{0pt}{2.6ex}} % Top strut
- \newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut
-
- \graphicspath{{images/}} % Put all images in this directory. Avoids clutter.
-
- % SOME COMMANDS THAT I FIND HANDY
- % \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
- \newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
- \newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
- \newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
- \newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
- \newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
- %% "\alert" is already a beamer pre-defined
- \newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%
-
- \def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}
-
- \usepackage{gmp}
- \usepackage[final]{feynmp-auto}
-
- \usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
- \bibliography{bib}
- \setbeamertemplate{bibliography item}[text]
-
- \makeatletter\let\frametextheight\beamer@frametextheight\makeatother
-
- % suppress frame numbering for backup slides
- % you always need the appendix for this!
- \newcommand{\backupbegin}{
- \newcounter{framenumberappendix}
- \setcounter{framenumberappendix}{\value{framenumber}}
- }
- \newcommand{\backupend}{
- \addtocounter{framenumberappendix}{-\value{framenumber}}
- \addtocounter{framenumber}{\value{framenumberappendix}}
- }
-
-
- \definecolor{links}{HTML}{2A1B81}
- %\hypersetup{colorlinks,linkcolor=,urlcolor=links}
-
- % For shapo's formulas:
- \def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
- \def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
- \newcommand{\lsim}{\mathop{\lsi}}
- \newcommand{\gsim}{\mathop{\gsi}}
- \newcommand{\wt}{\widetilde}
- %\newcommand{\ol}{\overline}
- \newcommand{\Tr}{\rm{Tr}}
- \newcommand{\tr}{\rm{tr}}
- \newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
- \newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
- \newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
- \newcommand{\eV}{\rm{eV}}
- \newcommand{\keV}{\rm{keV}}
- \newcommand{\GeV}{\rm{GeV}}
- \newcommand{\im}{\rm{Im}}
- \newcommand{\disp}{\displaystyle}
- \def\be{\begin{equation}}
- \def\ee{\end{equation}}
- \def\ba{\begin{eqnarray}}
- \def\ea{\end{eqnarray}}
- \def\d{\partial}
- \def\l{\left(}
- \def\r{\right)}
- \def\la{\langle}
- \def\ra{\rangle}
- \def\e{{\rm e}}
- \def\Br{{\rm Br}}
-
- \definecolor{brique}{cmyk}{0, 1, 1, 0.5}
- \definecolor{vert}{cmyk}{1, 0, 0.5, 0.5}
- \definecolor{marron}{rgb}{0.64,0.16,0.16}
- \definecolor{darkblue}{rgb}{0.,0.,0.25}
- \definecolor{darkgreen}{rgb}{0.,0.5,0.}
- \definecolor{green}{rgb}{0.2,0.6,0.2}
- \definecolor{lightgreen}{rgb}{0.4,1,0.4}
- \definecolor{verylightgreen}{rgb}{0.7,1,0.7}
- \def\cgreen{\color{green}}
-
- \newcommand{\av}[1]{\langle #1 \rangle}
- \newcommand{\intbin}[1]{\av{#1}_{\rm bin}}
- \newcommand{\bin}{{\rm bin}}
-
-
-
-
- \def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace}
- \def\ARROWL{{\color{JungleGreen}{$\Lleftarrow$}}\xspace}
-
- \def\ARROWR{{\color{WildStrawberry}{$\Rrightarrow$}}\xspace}
-
- \author{ {\fontspec{Trebuchet MS}Marcin Chrz\k{a}szcz, Nazila Mahmoudi} }
- \institute{UZH}
- \title[Reinterpretation of Flavour Constraints]{Reinterpretation of Flavour Constraints}
- \date{25 September 2014}
-
-
-
- \begin{document}
- \tikzstyle{every picture}+=[remember picture]
-
- {
- \setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
- \begin{frame}[c]%{\phantom{title page}}
- \begin{center}
- \begin{center}
- \begin{columns}
- \begin{column}{0.95\textwidth}
- \flushright\fontspec{Trebuchet MS}\bfseries \Huge {(Re)interpretation of Flavour Constraints}
- \end{column}
- \begin{column}{0.02\textwidth}
- {~}
- \end{column}
- % \begin{column}{0.23\textwidth}
- % \hspace*{-1.cm}
- % \vspace*{-3mm}
- % \includegraphics[width=0.6\textwidth]{lhcb-logo}
- % \end{column}
-
- \end{columns}
- \end{center}
- \quad
- \vspace{2em}
-
-
-
-
- {\fontspec{Trebuchet MS} \Large Marcin Chrząszcz}\\
- University of Zurich \& Polish Academy of Sciences\\
- \vspace{1em}
- {\fontspec{Trebuchet MS} \Large Nazila Mahmoudi}\\
- Lyon University \& CERN TH
-
- \vspace{1em}
- \footnotesize\textcolor{gray}{In Collaboration with:\\}\normalsize
- F. Bernlochner, P. Jackson, P.Scott, M.White, N.Serra
- \vspace{3.5em}
-
- \textcolor{normal text.fg!50!Comment}{(Re)interpreting the results of new physics searches at the LHC\\CERN, December 12, 2016}
- \end{center}
- \end{frame}
- }
-
-
- \begin{frame}[c]{Outline}
- \begin{minipage}{\textwidth}
-
- \ARROW Theoretical framework for $B$ decays\\[3.mm]
- \ARROW $B \to K^* \ell^+ \ell^-$ observables and calculations\\[3.mm]
- \ARROW Which data do Flavour factories publish\\[3.mm]
- \ARROW New Physics searches\\[3.mm]
- \ARROW What would be the best way to exchange the information?\\[3.mm]
- \ARROW Wilson Coefficients fits with \textbf{GAMBIT}\\[3.mm]
- \ARROW Questions for discussion
-
- \end{minipage}
- \vspace*{2.cm}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%
- % Nazila
- %%%%%%%%%%%%%%%%%%%%%
- \begin{frame}
-
- \begin{center}
- \begin{Huge}
- Theoretical framework for $\PB$ decays.
- \end{Huge}
- \end{center}
-
- \end{frame}
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}{Theoretical framework for $B$ decays}
- \begin{footnotesize}
- \vspace*{0.2cm}\hspace*{0.2cm}{\color{brique} \Large A multi-scale problem}\vspace*{0.2cm}
- \begin{itemize}
- \item new physics: $\Lambda_{\mathrm{NP}}\gtrsim$ TeV\vspace*{0.05cm}
- \item electroweak interactions: $M_W\sim 80$ GeV\vspace*{0.05cm}
- \item hadronic effects: $m_b\sim 5$ GeV\vspace*{0.05cm}
- \item QCD interactions: $\Lambda_{\mathrm{QCD}}\sim 0.2$ GeV\vspace*{0.2cm}
- \end{itemize}\pause
- \hspace*{2.cm}{\color{brique} \Large $\Rightarrow$ Effective field theory approach:\\}\vspace*{0.1cm}
- \hspace*{1.cm}{\color{brique}separation between low and high energies using Operator Product Expansion} \vspace*{0.2cm}
- \begin{itemize}
- \item short distance: Wilson coefficients, computed perturbatively\vspace*{0.cm}
- \item long distance: local operators
- \end{itemize}
-
- \begin{center}
- {\color{darkblue}$\displaystyle {\cal H}_{\rm eff} = -\frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \, \Bigl(\,\sum_{i=1\cdots10,S,P} \bigl(C_{i}(\mu) \mathcal{O}_i(\mu)+C'_{i}(\mu) \mathcal{O}'_i(\mu)\bigr)\Bigr)$}
- \end{center}
- \vspace*{1mm}\pause
- \hspace*{2mm} New physics:\\[1mm]
- \begin{itemize}
- \item Corrections to the Wilson coefficients: $C_{i} \rightarrow C_{i}+{\color{brique}\Delta C_{i}^{NP}}$
- \item Additional operators: ${\color{brique}\displaystyle\sum_{j} C_{j}^{NP}\mathcal{O}_j^{NP}}$
- \end{itemize}
-
- \end{footnotesize}
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \frame { \frametitle{$\mathcal{O}$perators}
- \begin{footnotesize}
-
- \vspace*{-0.3cm}
- \begin{columns}
- \begin{column}[c]{0.3cm}
- ~
- \end{column}
- \begin{column}[c]{6.6cm}
- $\mathcal{O}_1 = (\bar{s} \gamma_{\mu} T^a P_L c)(\bar{c} \gamma^{\mu} T^a P_L b)$\\
- $\mathcal{O}_2 = (\bar{s} \gamma_{\mu} P_L c)(\bar{c} \gamma^{\mu} P_L b)$\\[1.cm]
- $\mathcal{O}_3 = (\bar{s} \gamma_{\mu} P_L b) {\sum_q} (\bar{q} \gamma^{\mu} q)$\\
- $\mathcal{O}_4 = (\bar{s} \gamma_{\mu} T^a P_L b) {\sum_q} (\bar{q} \gamma^{\mu} T^a q)$\\
- $\mathcal{O}_5 = (\bar{s} \gamma_{\mu_1}\gamma_{\mu_2}\gamma_{\mu_3} P_L b) {\sum_q} (\bar{q} \gamma^{\mu_1}\gamma^{\mu_2}\gamma^{\mu_3} q)$\\
- $\mathcal{O}_6 = (\bar{s} \gamma_{\mu_1}\gamma_{\mu_2}\gamma_{\mu_3} T^a P_L b) {\sum_q} (\bar{q} \gamma^{\mu_1}\gamma^{\mu_2}\gamma^{\mu_3} T^a q)$\\[0.5cm]
- $\mathcal{O}_7 = \frac{e}{16\pi^2} \Big[ \bar{s} \sigma^{\mu \nu} (m_s P_L + m_b P_R) b \Big] F_{\mu \nu}$\\
- $\mathcal{O}_8 = \frac{g}{16\pi^2} \Big[ \bar{s} \sigma^{\mu \nu} (m_s P_L + m_b P_R) T^a b \Big] G_{\mu \nu}^a$\\[1.cm]
- $\mathcal{O}_9 = \frac{e^2}{(4\pi)^2} (\overline{s} \gamma^\mu b_L) (\bar{l} \gamma_\mu l)$\\
- $\mathcal{O}_{10} = \frac{e^2}{(4\pi)^2} (\overline{s} \gamma^\mu b_L) (\bar{l} \gamma_\mu \gamma_5 l)$
- \end{column}
- \begin{column}[c]{5.cm}
- \begin{center}
- \includegraphics[height=1.7cm]{O1O2.png}\\[0.3cm]
- \includegraphics[height=1.7cm]{QCDpenguins.png}
- \includegraphics[height=1.7cm]{EWpenguins.png}\\[0.3cm]
- \includegraphics[height=1.7cm]{O7O8.png}\\[0.3cm]
- \includegraphics[height=1.7cm]{O9O10.png}
- \end{center}
- \end{column}
- \end{columns}
- \end{footnotesize}
-
- }
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \frame { \frametitle{Wilson coefficients}
- %
- \begin{footnotesize}
-
- \begin{columns}
- \begin{column}[c]{11.4cm}
- {\large\bf\color{brique}Two main steps:}
- \vspace*{0.4cm}
- \begin{itemize}
- \item Calculating $C^{eff}_i(\mu)$ at scale $\mu \sim M_W$ by requiring matching between the effective and full theories
- {\color{vert}\begin{equation*}
- C^{eff}_i(\mu) = C^{(0)eff}_i(\mu) + \dfrac{\alpha_s(\mu)}{4 \pi} C^{(1)eff}_i(\mu) + \cdots
- \end{equation*}}
- %
- \item Evolving the $C^{eff}_i(\mu)$ to scale $\mu \sim m_b$ using the RGE:
- {\color{vert}\begin{equation*}
- \mu \dfrac{d}{d \mu} C_i^{eff}(\mu) = C_j^{eff}(\mu) \gamma^{eff}_{ji}(\mu)
- \end{equation*}}
- %
- driven by the anomalous dimension matrix $\hat{\gamma}^{eff}(\mu)$\\[0.5cm]
- % {\color{vert}\begin{equation*}
- % \hat{\gamma}^{eff}(\mu) = \dfrac{\alpha_s (\mu)}{4 \pi} \hat{\gamma}^{(0)eff}
- % + \dfrac{\alpha_s^2(\mu)}{(4 \pi)^2} \hat{\gamma}^{(1)eff} + \cdots
- % \end{equation*}}
- \end{itemize}
- SM contributions to $C_i(\mu_b)$ are known to NNLO QCD and NLO EW/QED
- \end{column}
- \end{columns}
- \end{footnotesize}
-
- }
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \frame { \frametitle{Hadronic quantities}
- \begin{footnotesize}
-
- \begin{columns}
- \begin{column}[c]{10.cm}
- {\bf To compute the amplitudes:}\\[0.1cm]
- \hspace*{1.cm}$\mathcal{A}(A \to B)= \langle B|{\cal H}_{\rm eff}|A \rangle = \frac{G_F}{\sqrt2} \sum_i \lambda_i C_i(\mu) \langle B|\mathcal{O}_i|A \rangle (\mu)$\\[0.2cm]
-
- {\color{brique}$\langle B|\mathcal{O}_i|A \rangle$: hadronic matrix element}\\[0.6cm]
-
- {\bf How to compute matrix elements?}\\[0.1cm]
- \hspace*{0.5cm}$\rightarrow$ Model building, Lattice simulations, Light flavour symmetries, Heavy flavour symmetries, ...\\[0.1cm]
- \hspace*{0.5cm}$\rightarrow$ Describe hadronic matrix elements in terms of {\bf hadronic quantities}\\[0.7cm]
-
- {\bf Two types of hadronic quantities:}\\[0.1cm]
- \begin{itemize}
- \item {\color{brique}\bf Decay constants}: {\small Probability amplitude of hadronising quark pair into a given hadron}\\[0.1cm]
- \item {\color{brique}\bf Form factors}: {\small Transition from a meson to another through flavour change}
- \end{itemize}
- \end{column}
- \end{columns}
-
- \end{footnotesize}
-
- }
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \frame { \frametitle{$B \to K^* \ell^+ \ell^-$ -- Angular distributions}
- \begin{footnotesize}
-
- {\color{brique}\bf Angular distributions}
- \begin{columns}
- \begin{column}[c]{7.cm}
- The full angular distribution of the decay $\bar{B}^{0} \to \bar K^{*0} \ell^+ \ell^-$ ($\bar K^{*0} \to K^- \pi^+$) is completely described by four independent kinematic variables:\\ {\color{brique}$q^2$} (dilepton invariant mass squared), {\color{brique}$\theta_\ell$, $\theta_{K^*}$, $\phi$}\\
- \end{column}
- \begin{column}[c]{5.cm}
- \begin{center}
- \begin{figure}[pb]
- \vspace*{-1.3cm}\hspace*{-0.7cm}\includegraphics[width=6.cm]{angulardist2.png}\\[0.cm]
- \end{figure}
- \end{center}
- \end{column}
- \end{columns}
- \pause
- \begin{columns}
- \begin{column}[c]{0.2cm}
- ~\end{column}
- \begin{column}[c]{8.cm}
- Main operators:\\[0.2cm]
- $\mathcal{O}_9= \frac{e^2}{(4\pi)^2} (\overline{s} \gamma^\mu b_L) (\bar{\ell} \gamma_\mu \ell)$,
- \hspace*{0.14cm}$\mathcal{O}_{10}= \frac{e^2}{(4\pi)^2} (\overline{s} \gamma^\mu b_L) (\bar{\ell} \gamma_\mu \gamma_5 \ell) $\\[0.cm]
- % $\mathcal{O}_S=\frac{e^2}{16\pi^2}(\bar{s}^{\alpha}_Lb^{\alpha}_R)(\bar{\ell}\,\ell)$,
- % \hspace*{0.6cm}$\mathcal{O}_P=\frac{e^2}{16\pi^2}(\bar{s}^{\alpha}_Lb^{\alpha}_R)(\bar{\ell}\gamma_5 \ell)$
- \end{column}
- \begin{column}[c]{5.cm}
- \begin{center}
- \visible<2>{\hspace*{-1.2cm}\includegraphics[width=2.cm]{bkmumu1.pdf}~\includegraphics[width=2.cm]{bkmumu2.pdf}}
- \end{center}
- \end{column}
- \end{columns}
- {\vspace*{-0.1cm}\hspace*{1.cm}\tiny \bf \color{vert} F. Kruger et al., Phys. Rev. D 61 (2000) 114028;\\[-0.1cm]
- \hspace*{1.cm}W. Altmannshofer et al., JHEP 0901 (2009) 019; U. Egede et al., JHEP 1010 (2010) 056}\\[0.2cm]
-
- {\color{brique}\bf Differential decay distribution:}
- \begin{equation*}
- \frac{d^4\Gamma}{dq^2\, d\cos{\color{brique}\theta_\ell}\, d\cos{\color{brique}\theta_{V}}\, d{\color{brique}\phi}} =
- \frac{9}{32\pi} {\color{blue}J}(q^2, {\color{brique}\theta_\ell}, {\color{brique}{\color{brique}\theta_{V}}}, {\color{brique}{\color{brique}\phi}})
- \end{equation*}
-
- ${\color{blue}J}(q^2, {\color{brique}\theta_\ell}, {\color{brique}\theta_V}, {\color{brique}\phi}) = \sum_i {\color{blue}J_i}(q^2) \, f_i({\color{brique}\theta_\ell}, {\color{brique}\theta_V}, {\color{brique}\phi})$ \\[0.1cm]
-
- \hspace*{3.3cm}{ $^\searrow$ angular coefficients ${\color{blue}J_{1-9}}$}\\[0.cm]
- \hspace*{3.3cm}{$^\searrow$ functions of the transversity amplitudes $A_0$, $A_\parallel$, $A_\perp$, $A_t$, and $A_S$, Transversity amplitudes: functions of Wilson coefficients and form factors}
- \end{footnotesize}
-
- }
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \frame { \frametitle{$B \to K^* \ell^+ \ell^-$ -- Amplitudes}
- \begin{footnotesize}
-
- A closer look to the Effective Hamiltonian:
- \[
- {\cal H}_{\rm eff} = {\cal H}_{\rm eff}^{\rm had} + {\cal H}_{\rm
- eff}^{\rm sl} \nonumber
- \]
- % \hspace*{5.5cm}{\small ``Naive'' factorisation of leptonic and hadronic parts}\\[0.1cm]
- \[
- {\cal H}_{\rm eff}^{\rm sl} = - \frac{4 G_F}{\sqrt{2}} V_{tb}V_{ts}^{*} \Big[
- \sum_{i=7,9,10} C_i^{(\prime)} O_i^{(\prime)} \Big]\nonumber
- \]
- $\langle \bar{K}^* | {\cal H}_{\rm eff}^{\rm sl} | \bar{B} \rangle$: \textcolor{darkgreen}{$B \to K^*$ form factors $V, A_{0,1,2}, T_{1,2,3}$} \\[0.1cm]
- Transversity amplitudes:
- \begin{align*}
- A_\perp^{L,R} &\simeq N_\perp \left\{ ({\color{orange}C_9^{+}}\mp {\color{orange}C_{10}^{+}}) \frac{\textcolor{darkgreen}{V(q^2)}}{m_B+m_{K^*}} +\frac{2m_b}{q^2} {\color{orange}C_7^{+}} \textcolor{darkgreen}{T_1(q^2)} \right\} \nonumber\\
- A_\parallel^{L,R} &\simeq N_\parallel \left\{ ({\color{orange}C_9^{-}}\mp {\color{orange}C_{10}^{-}}) \frac{\textcolor{darkgreen}{A_1(q^2)}}{m_B-m_{K^*}} +\frac{2m_b}{q^2} {\color{orange}C_7^{-}} \textcolor{darkgreen}{T_2(q^2)} \right\} \nonumber\\
- A_0^{L,R} &\simeq N_0 \Big\{ ({\color{orange}C_9^{-}}\mp {\color{orange}C_{10}^{-}})\left[ (\ldots)\textcolor{darkgreen}{A_1(q^2)}+(\ldots)\textcolor{darkgreen}{A_2(q^2)} \right]\nonumber \\
- &\qquad \qquad+2m_b {\color{orange}C_7^{-}}\left[ (\ldots)\textcolor{darkgreen}{T_2(q^2)}+(\ldots)\textcolor{darkgreen}{T_3(q^2)} \right] \Big\} \nonumber \\
- A_S &= N_S ({\color{orange}C_S}- {\color{orange}C_S^\prime})\textcolor{darkgreen}{A_0 (q^2)} \nonumber
- \end{align*}
- \vspace*{-0.6cm}\[ {\color{gray} \hspace*{4.cm}\left( C_{i}^\pm \equiv C_i \pm C_i^\prime \right)} \nonumber\]
- \end{footnotesize}
-
- }
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \frame { \frametitle{$B \to K^* \ell^+ \ell^-$ -- Amplitudes}
- \begin{footnotesize}
-
- \vspace*{0.12cm}A closer look to the Effective Hamiltonian:
- \[
- {\cal H}_{\rm eff} = {\cal H}_{\rm eff}^{\rm had} + {\cal H}_{\rm
- eff}^{\rm sl} \nonumber
- \]
- \vspace*{-0.3cm}
- \[
- {\cal H}_{\rm eff}^{\rm had} =
- -\frac{4 G_F}{\sqrt{2}} V_{tb}V_{ts}^{*} \left[
- \sum_{i=1\dots 6} C_i O_i + C_{8}O_{8} \right]
- \]
- \begin{align*}\nonumber
- \mathcal A^{\rm (had)}_\lambda = &- i \frac{e^2}{q^2} {\color{red}\int \!\! d^4x e^{- i q \cdot x}
- \langle \ell^+ \ell^- | j_\mu^{\rm em, lept}(x) | 0 \rangle} \\ \nonumber
- &\times {\color{blue} \int \!\! d^4 y\, e^{i q \cdot y} \langle \bar{K}^*_\lambda | T \{ j^{\rm em, had, \mu}(y)
- {\mathcal H}^{\rm had}_{\rm eff}(0) \} | \bar B \rangle}\\ \nonumber
- \equiv &\frac{e^2}{q^2} \epsilon_\mu{\color{red} L_V^\mu } \Big[ \underbrace{ {\color{blue} {\rm LO \; in} \; {\cal O}(\frac{\Lambda}{m_b},\frac{\Lambda}{E_{K^*}})}}_{\parbox{2.3cm}{\small Non-Fact., QCDf
- %\\ {\tiny \bf \color{vert}Beneke et al., 0106067; 0412400}
- }} +\underbrace{{\color{blue} ~~~h_\lambda(q^2)~~~}}_{\parbox{2.cm}{\footnotesize power corrections\\[0.1cm] \visible<2->{$\to$ {\bf unknown}
- %\\ {\tiny \bf \color{vert}partial calculation:\\ Khodjamirian et al.,\\ 1006.4945}
- }}} \Big]
- \end{align*}%
- \vspace*{0.1cm}
- \visible<3>{%
- \begin{center}
- {\small The observed deviations from the SM can be explained with 20-50\% non-factorisable power corrections at the
- observable level {\tiny \bf \color{vert}(Ciuchini et al., 1512.07157)}\\[0.2cm]
- This corresponds to more than 150\% error at the amplitude level for the critical bins!}
- \end{center}
- }
- \vspace*{0.35cm}
- \end{footnotesize}
-
- }
-
-
- \frame { \frametitle{$B \to K^* \mu^+ \mu^-$ -- Optimized observables}
- \begin{align*}
- %
- \av{P_1}_{\rm bin}&= \frac12 \frac{\int_{{\rm bin}} dq^2 [J_3+\bar J_3]}{\int_{{\rm bin}} dq^2 [J_{2s}+\bar J_{2s}]}
- &
- % \av{P_1^{CP} }_{\rm bin}&= \frac12 \frac{\int_{{\rm bin}} dq^2 [J_3-\bar J_3]}{\int_{{\rm bin}} dq^2 [J_{2s}+\bar J_{2s}]}\ ,\label{p1}\\
- %
- \av{P_2}_{\rm bin} &= \frac18 \frac{\int_{{\rm bin}} dq^2 [J_{6s}+\bar J_{6s}]}{\int_{{\rm bin}} dq^2 [J_{2s}+\bar J_{2s}]}\\
- % & \av{P_2^{CP} }_{\rm bin} &= \frac18 \frac{\int_{{\rm bin}} dq^2 [J_{6s}-\bar J_{6s}]}{\int_{{\rm bin}} dq^2 [J_{2s}+\bar J_{2s}]}\ ,\\
- %
- % \av{P_3}_{\rm bin} &= -\frac14 \frac{\int_{{\rm bin}} dq^2 [J_9+\bar J_9]}{\int_{{\rm bin}} dq^2 [J_{2s}+\bar J_{2s}]}\ ,
- % & \av{P_3^{CP} }_{\rm bin} &= -\frac14 \frac{\int_{{\rm bin}} dq^2 [J_9-\bar J_9]}{\int_{{\rm bin}} dq^2 [J_{2s}+\bar J_{2s}]}\ ,\\
- %
- \av{P'_4}_{\rm bin} &= \frac1{{\cal N}_\bin^\prime} \int_{{\rm bin}} dq^2 [J_4+\bar J_4]
- &
- % \av{{P'_4}^{CP} }_{\rm bin} &= \frac1{{\cal N}_\bin^\prime} \int_{{\rm bin}} dq^2 [J_4-\bar J_4]\ ,\\
- %
- \av{P'_5}_{\rm bin} &= \frac1{2{\cal N}_\bin^\prime} \int_{{\rm bin}} dq^2 [J_5+\bar J_5]\\
- % & \av{{P'_5}^{CP} }_{\rm bin} &= \frac1{2{\cal N}_\bin^\prime} \int_{{\rm bin}} dq^2 [J_5-\bar J_5]\ ,\\
- %
- \av{P'_6}_{\rm bin} &= \frac{-1}{2{\cal N}_\bin^\prime} \int_{{\rm bin}} dq^2 [J_7+\bar J_7]
- &
- % \av{{P'_6}^{CP} }_{\rm bin} &= \frac{-1}{2{\cal N}_\bin^\prime} \int_{{\rm bin}} dq^2 [J_7-\bar J_7]\ ,\\
- %
- \av{P'_8}_{\rm bin} &= \frac{-1}{{\cal N}_\bin^\prime} \int_{{\rm bin}} dq^2 [J_8+\bar J_8]
- % & \av{{P'_8}^{CP} }_{\rm bin} &= \frac{-1}{{\cal N}_\bin^\prime} \int_{{\rm bin}} dq^2 [J_8-\bar J_8]\ .
- %
- \end{align*}
- %
- % where the normalization ${\cal N}_\bin^\prime$ is defined as
- %
- with {\footnotesize \[{\cal N}_\bin^\prime = {\textstyle \sqrt{-\int_\bin dq^2 [J_{2s}+\bar J_{2s}] \int_{{\rm bin}} dq^2 [J_{2c}+\bar J_{2c}]}}\]}\\[6mm]
- $+$ CP violating clean observables and other combinations\\[2mm]
- {\vspace*{-0.cm}\hspace*{5.cm}\tiny \bf \color{vert}U.~Egede et al., JHEP {\bf 0811} (2008) 032, JHEP {\bf 1010} (2010) 056}\\
- {\vspace*{-0.1cm}\hspace*{5.cm}\tiny \bf \color{vert}J.~Matias et al., JHEP {\bf 1204} (2012) 104}\\
- {\vspace*{-0.1cm}\hspace*{5.cm}\tiny \bf \color{vert}S.~Descotes-Genon et al., JHEP 1305 (2013) 137}\\
- % Sebastien Descotes-Genon (Orsay, LPT), Tobias Hurth (Mainz U., Inst. Phys.), Joaquim Matias, Javier Virto, JHEP 1305 (2013) 137
- }
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-
- %%%%%%%%%%%%%%%%%%%%%%
- % Marcin
- %%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}
- \begin{center}
- \begin{Huge}
- Flavour measurements
- \end{Huge}
- \end{center}
-
- \end{frame}
- \begin{frame}\frametitle{Detector effects 1/2}
- {~}\\
- \ARROW In Flavour factories because we usually measure the properties of a $\PB$ meson decay we can
- provide the measurements that are corrected for the detector effects!\\
- \begin{center}
- \includegraphics[width=0.95\textwidth]{images/andy.png}\let\thefootnote\relax\footnote
- {Thanks to Andy Buckley for the plot.}
- \end{center}
- \ARROW The differences that ''Reco recovery'' doesn't recover are recovered at the analysis stage.\\
- \ARROW Some imperfections (usually small), are assigned as systematics!
-
-
- \end{frame}
-
- \begin{frame}\frametitle{Detector effects 2/2}
- {~}\\
- \begin{minipage}{\textwidth}
- \begin{footnotesize}
-
- \ARROW For example: measurement of angular coefficients of $\PB \to \PKstar \Pmu \Pmu$, \href{https://arxiv.org/abs/1512.04442}{\color{blue}arXiv::1512.04442}, \href{https://arxiv.org/abs/1604.04042}{\color{blue}arXiv::1604.04042}
-
- \only<1>{
- \begin{center}
- \includegraphics[width=0.75\textwidth]{images/acc.png}
- \end{center}
- }
- \only<2>{
- \begin{center}
- \includegraphics[width=0.75\textwidth]{images/effbelle.png}
- \end{center}
- }
- \only<3>{
- \begin{center}
- \includegraphics[width=0.75\textwidth]{images/jpsi.png}
- \end{center}
- }
- \ARROW In Flavour physics we have ways to ensure we control our detector effects.
-
-
- \end{footnotesize}
- \end{minipage}
-
- \end{frame}
-
-
- \begin{frame}\frametitle{Published data format}
- {~}\\
- \begin{minipage}{\textwidth}
- \begin{footnotesize}
-
- \ARROW There are number of ways the B-factories publish their results.\\
- \ARROW Most of the time the information to links are on the collaboration web pages:\\
-
-
- \begin{columns}
- \column{0.5\textwidth}
- \includegraphics[width=0.95\textwidth]{images/bellepub.png}
- \column{0.5\textwidth}
- \includegraphics[width=0.95\textwidth]{images/lhcbpub.png}
-
-
- \end{columns}
- \href{http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary_all.html}{\url{http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary_all.html}}\\
-
- \href{http://belle.kek.jp/belle/publications.html}{\url{http://belle.kek.jp/belle/publications.html}}\\
-
- \href{http://www.slac.stanford.edu/BFROOT/www/pubs/babarpubs.html}
- {\url{http://belle.kek.jp/belle/publications.html}}
-
-
- \end{footnotesize}
- \end{minipage}
-
- \end{frame}
-
- \begin{frame}\frametitle{CERN document server}
- {~}\\
- \begin{minipage}{\textwidth}
- \begin{footnotesize}
- \only<1>{
- \begin{center}
- \includegraphics[width=0.95\textwidth]{images/cds.png}
- \end{center}
- }
- \only<2>{
- \begin{center}
- \includegraphics[width=0.95\textwidth]{images/cds2.png}
- \end{center}
- }
- \ARROW Figure on \texttt{CDS} and \texttt{LHCb publications page} available in many formats: \texttt{.pdf}, \texttt{.eps}, \texttt{.png}, \texttt{ROOT\_.C}\\
- \ARROW No need to read the numbers from the plot any more!\\
- \ARROW Supplementary material not included in the paper\\
- (usually material that did not fit paper due to space constraints)
- \end{footnotesize}
- \end{minipage}
-
- \end{frame}
-
-
-
- \begin{frame}\frametitle{Unification of format}
- {~}\\
- \begin{minipage}{\textwidth}
- \begin{footnotesize}
- \ARROW More and more results are being published on HepData make them ''one click away'' to get.
- \begin{center}
- \includegraphics[width=0.95\textwidth]{images/hepdata.png}
- \end{center}
-
- \end{footnotesize}
- \end{minipage}
-
- \end{frame}
-
- \begin{frame}\frametitle{Unification of format}
- {~}\\
- \begin{minipage}{\textwidth}
- \ARROW More and more papers from Flavour community are appearing on \texttt{HepData}.\\
- \begin{columns}
- \column{0.05\textwidth}
- {~}\\
- \column{0.30\textwidth}
- \includegraphics[width=0.95\textwidth]{images/babar.png}
- \column{0.30\textwidth}
- \includegraphics[width=0.95\textwidth]{images/belle.png}
- \column{0.30\textwidth}
- \includegraphics[width=0.95\textwidth]{images/lhcb.png}
- \column{0.05\textwidth}
- {~}\\
- \end{columns}
-
- \end{minipage}
-
- \end{frame}
-
-
-
-
-
- \begin{frame}\frametitle{This is not the end of the story!!}
- {~}\\
- \begin{minipage}{\textwidth}
- \begin{footnotesize}
- \ARROW Even if experimentalist publish a number there is always a chance that the data might be misinterpreted by theorists.\\
- \pause
- \ARROW Many times the error gets symmetrized, the correlation neglected, or worse...\\
- \begin{exampleblock}{Publish likelihood?}
- \ARROWR The proposal that I would like to make for discussion is that HepData portal (or similar) would have a possibility that experiments could publish the whole multidim. likelihood function.\\
- \ARROWR In this way we ensure that the function will be used as the experiment intended to.
- \end{exampleblock}
-
-
- \end{footnotesize}
- \end{minipage}
-
- \end{frame}
- \iffalse
-
-
- \begin{frame}{Global analysis}
- {~}
- \begin{minipage}{\textwidth}
-
- \begin{itemize}
- \item \textbf{Operator Product Expansion and Effective Field Theory}
- \end{itemize}
- \begin{columns}
- \column{0.1in}{~}
- \column{3.2in}
- \begin{footnotesize}
-
-
- \begin{align*}
- H_{eff} = - \dfrac{4G_f}{\sqrt{2}} V V^{\prime \ast}\ \sum_i \left[\underbrace{C_i(\mu)O_i(\mu)}_\text{left-handed} +\
- \underbrace{C'_i(\mu)O'_i(\mu)}_\text{right-handed}\right],
- \end{align*}
- \end{footnotesize}
- \column{2in}
- \begin{tiny}
- \begin{description}
- \item[i=1,2] Tree
- \item[i=3-6,8] Gluon penguin
- \item[i=7] Photon penguin
- \item[i=9.10] EW penguin
- \item[i=S] Scalar penguin
- \item[i=P] Pseudoscalar penguin
- \end{description}
-
- \end{tiny}
- \end{columns}
- where $C_i$ are the Wilson coefficients and $O_i$ are the corresponding effective operators.
- \begin{center}
- \includegraphics[width=0.85\textwidth,height=3cm]{images/all.png}
-
- \end{center}
- \end{minipage}
- \vspace*{2.1cm}
- \end{frame}
-
-
- \begin{frame}{Analysis of Rare decays}
- \begin{footnotesize}
-
- %{\Large Since a long time ago...} \\ \medskip
- %\hspace*{1.4cm}$\Rightarrow$ $b \to s \gamma$ and $b \to s \ell\ell $ {\bf Flavour Changing Neutral Currents} have been used as {\bf \cred Our Portal} \\ to explore the fundamental theory beyond SM. \\
- %\medskip
- %\medskip
- %\hfill....... with not much success till 2013.\hspace*{1cm}
- %\bigskip
-
- Analysis of FCNC in a model-independent approach, effective Hamiltonian:
- \vspace*{-0.1cm}
- \begin{columns}
- \begin{column}{1cm}
- {~}
- \end{column}
- \begin{column}{8cm}
- \begin{equation*}
- b\to s\gamma(^*): {\mathcal H}^{SM}_{\Delta F=1} \propto \sum_{i=1}^{10} V_{ts}^* V_{tb} {\cgreen C_i} \alert{ {\cal O}_i} + \ldots
- \end{equation*}
-
- \vspace{-0.2cm}
-
- \begin{itemize}
- \item $\alert{ {\cal O}_7} = \frac{e}{16 \pi^2}m_b\, (\bar s\sigma^{\mu\nu} P_R b) F_{\mu\nu}\,$ %\quad [real or soft photon]
- \item $\alert{ {\cal O}_9}=\frac{e^2}{16 \pi^2}(\bar{s}\gamma_\mu P_L b) (\bar\ell\gamma_\mu\ell)$
- %\quad [$b\to s\mu\mu$ via $Z$/hard $\gamma$]
- \item $\alert{ {\cal O}_{10}}=\frac{e^2}{16 \pi^2}(\bar{s}\gamma_\mu P_L b) (\bar\ell\gamma_\mu\gamma_5\ell)$, ...
- %\quad [$b\to s\mu\mu$ via $Z$]
- \end{itemize}
- \end{column}
- \begin{column}{5.5cm}
- \includegraphics[width=3.5cm]{images/qum1.png}
- %\includegraphics[width=3cm]{bsll.pdf}
- \end{column}
- \end{columns}
-
- %\hspace*{5cm} with no clear success yet...
- %\bigskip
-
-
- %\centerline{{\bf Goal}: \underline{Decode the short distance physics to find a smoking gun of BSM}\hspace*{2cm}}
-
-
- \bigskip
- \hspace*{0.0cm} $\bullet$ {\bf SM} Wilson coefficients up to NNLO + e.m. corrections at $\mu_{ref}=4.8$ GeV [{\cgreen Misiak et al.}]: $${\cal C}_7^{\rm SM}=-0.29,\, {\cal C}_9^{\rm SM}=4.1,\, {\cal C}_{10}^{\rm SM}=-4.3$$
- %BUT, like in the film there is always the good, the bad and the ugly.
- \bigskip
- $\bullet$ {\bf NP} changes short distance ${\cal C}_i-{\cal C}_i^{\rm SM}={\cal C}_i^{\rm NP}$ and induce new operators, like ${\cal O}^\prime_{7,9,10}={\cal O}_{7,9,10}\,\, (P_L \leftrightarrow P_R)$ ... also scalars, pseudoescalar, tensor operators...%\bigskip
-
- \begin{exampleblock}{Product placement}
- There are many groups doing this kind of Willson Coefficients fits: \href{https://arxiv.org/abs/1510.04239}{1510.04239}, etc.
- \end{exampleblock}
-
- \end{footnotesize}
-
- \end{frame}
-
-
- \fi
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % GAMBIT
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}
-
- \begin{center}
- \begin{Huge}
- Global fits
- \end{Huge}
- \end{center}
-
- \end{frame}
-
-
- \begin{frame}
- \frametitle{\textbf{GAMBIT}: a \textit{second-generation} global fit code}
-
- GAMBIT: The \alert{G}lobal \alert{A}nd \alert{M}odular \alert{B}SM \alert{I}nference \alert{T}ool
- \vspace{5mm}
-
- Overriding principles of GAMBIT: flexibility and modularity
- \begin{itemize}
- \item General enough to allow fast definition of new datasets and theoretical models
- \item Plug and play scanning, physics and likelihood packages
- \item Extensive model database -- not just small modifications to constrained MSSM (NUHM, etc), and not just SUSY!
- \item Extensive observable/data libraries (likelihood modules)
- \item Many statistical options -- Bayesian/frequentist, likelihood definitions, scanning algorithms
- \item A smart and \textit{fast} LHC likelihood calculator
- \item Massively parallel
- \item Full open-source code release soon!
- \item Hear more in Anders Kvellestad tmr!
- \end{itemize}
-
- \end{frame}
-
- \begin{frame}
- \frametitle{The GAMBIT Collaboration}
-
- \begin{columns}
- \column{0.7\textwidth}
- 30 Members, 16 institutions, 10 countries,
- 11 Experiments, 4 major theory codes\\ \vspace{2mm}
- \scriptsize
- \begin{tabular}{l l}
- \textbf{ATLAS} & A.\ Buckley, C.\ Rogan,\\
- & M.\ White, \vspace{0.5mm}\\
- \textbf{Flavour exp.} & F.\ Bernlochner, M.\ Chrzaszcz, P.\ Jackson, N.\ Serra\vspace{0.5mm}\\
- \textbf{Fermi-LAT} & J.\ Conrad, J.\ Edsj\"o, G.\ Martinez\\
- & P.\ Scott\vspace{0.5mm}\\
- \textbf{CTA} & C. Bal\'azs, T.\ Bringmann, \\
- & J.\ Conrad, M.\ White\vspace{0.5mm}\\
- \textbf{HESS} & J.\ Conrad \vspace{0.5mm}\\
- \textbf{IceCube} & J.\ Edsj\"o, P.\ Scott\vspace{0.5mm}\\
- \textbf{AMS-02} & A.\ Putze\vspace{0.5mm}\\
- \textbf{CDMS, DM-ICE} & L. Hsu\vspace{0.5mm}\\
- \textbf{XENON/DARWIN} & J.\ Conrad\vspace{0.5mm}\\
- \textbf{Theory} & P.\ Athron, C. Bal\'azs, T.\ Bringmann, \\
- & J.\ Cornell, L.\ Dal, J.\ Edsj\"o, B.\ Farmer,\\
- & A.\ Krislock, A.\ Kvellestad, M.\ Pato, \\
- & F.\ Mahmoudi, A.\ Raklev, P.\ Scott,\\
- & C.\ Weniger, M.\ White \\
- \end{tabular}\vspace{2mm}
-
- {+recently joined: T. Gonzales, J. McKay, R. Ruiz, R. Trotta}\\
- {-recently retired: A.\ Saavedra, C.\ Savage}
- \column{0.4\textwidth}
- \vspace{-15mm}
- \includegraphics[width=\linewidth]{Logo2full}\\\vspace{3mm}
- \includegraphics[width=\linewidth]{GroupPhoto}
- \end{columns}
-
- \end{frame}
-
-
-
- \begin{frame}\frametitle{Global Analysis with Gambit}
- {~}\\
- \begin{minipage}{\textwidth}
- \begin{footnotesize}
-
- \begin{columns}
- \begin{column}[c]{11.4cm}
-
- \begin{itemize}
- \item Wilson coefficients and $b \to s \ell^+ \ell^-$ observables implemented in {\bf\color{brique}SuperIso}\\[0.4cm]
- \item {\bf\color{brique}SuperIso}: public code for calculating flavour physics observables
- {\hspace*{3.cm}\tiny \bf \color{vert}Mahmoudi, CPC 178 (2008) 745; CPC 180 (2009) 1579, CPC 180 (2009) 1718}\\[-0.1cm]
- {\hspace*{3.cm}\tiny \bf \color{vert} available from http://superiso.in2p3.fr/}\\[0.4cm]
- \item {\bf\color{brique}SuperIso} interfaced into {\bf\color{brique}GAMBIT} through the flavour physics module {\bf\color{brique}FlavBit}\\[0.2cm]
-
- {\hspace*{3.cm}\tiny \bf \color{vert}Web page: http://gambit.hepforge.org/}\\[0.4cm]
- \item {\bf\color{brique}FlavBit} determines the likelihoods by comparing the theoretical evaluations and the experimental results taking into account the experimental and theoretical correlations.
-
- \item In this study we used:
- \begin{itemize}
- \item $\PB \to \PKstar \Pmu \Pmu$ with all the $q^2$ bins and correlations matrices from HepData!
- \item $\PB _{s/d} \to \Pmu \Pmu$
- \item $\Pbeauty \to \Pstrange \gamma$
- \end{itemize}
-
-
- \end{itemize}
-
- \end{column}
- \end{columns}
-
- \end{footnotesize}
- \end{minipage}
-
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \iffalse
- \begin{frame}\frametitle{Global Analysis with Gambit - Results}
- {~}\\
- \begin{minipage}{\textwidth}
- \begin{footnotesize}
-
-
-
- \end{footnotesize}
- \end{minipage}
-
- \end{frame}
- \fi
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- \begin{frame}\frametitle{Global Analysis with Gambit - Results}
- {~}\\
- \begin{minipage}{\textwidth}
- \begin{footnotesize}
-
- \begin{columns}
- \begin{column}[c]{5.2cm}
- \includegraphics[width=0.85\textwidth]{{plots/plot_WC_1_like1D_WC_MN}.pdf}\\
- \includegraphics[width=0.85\textwidth]{{plots/plot_WC_2_like1D_WC_MN}.pdf}
- \end{column}
-
- \begin{column}[c]{6.0cm}
- \includegraphics[angle=-90,width=0.45\textwidth]{images/AFBPad.pdf}
- \includegraphics[angle=-90,width=0.45\textwidth]{images/P5pPadOverlay.pdf}\\
- \includegraphics[width=0.9\textwidth]{{plots/plot_WC_2_3_like2D_WC_MN}.pdf}\\
- \ARROW Tension if $\Delta C_9$ observed!\\
- \ARROW Other coefficients within SM predictions.\\
- \ARROW $C_{10}$ still has a big uncertainty.
-
- \end{column}
-
-
- \end{columns}
-
- \end{footnotesize}
- \end{minipage}
-
- \end{frame}
-
-
- \begin{frame}\frametitle{Conclusions}
- {~}\\
- \begin{minipage}{\textwidth}
-
- \ARROW Flavour physics is a powerful tool to constrain NP models!\\
- \ARROW Measurements are becoming more complex!\\
- \ARROW Ability to publish the full multidim. likelihoods soon will be needed!\\
- \ARROW \textbf{GAMBIT} is the new player for fitting Flavour observables and will be made public soon.\\
- \ARROW $3-4~\sigma$ deviations are present and Run2 data should clear the picture where it's NP or not.
-
- \end{minipage}
-
-
-
- \end{frame}
-
-
-
-
-
- \backupbegin
-
- \begin{frame}\frametitle{Backup}
- \topline
-
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \frame { \frametitle{Numerical approach}
-
-
-
- }
-
-
-
-
- \backupend
-
- \end{document}