Newer
Older
Presentations / Templates / Fancy_LHCb_CERN2 / mchrzasz.tex~
@Marcin Chrzaszcz Marcin Chrzaszcz on 26 Sep 2017 33 KB updated template for the HCb
  1. \documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}
  2.  
  3. \usepackage[english]{babel}
  4. \usepackage{polski}
  5.  
  6.  
  7. \usetheme[
  8. bullet=circle, % Other option: square
  9. bigpagenumber, % circled page number on lower right
  10. topline=true, % colored bar at the top of the frame
  11. shadow=false, % Shading for beamer blocks
  12. watermark=BG_lower, % png file for the watermark
  13. ]{Flip}
  14.  
  15. %\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}
  16.  
  17.  
  18. \usepackage[lf]{berenis}
  19. \usepackage[LY1]{fontenc}
  20. \usepackage[utf8]{inputenc}
  21.  
  22. \usefonttheme{professionalfonts}
  23. \usepackage[no-math]{fontspec}
  24. \defaultfontfeatures{Mapping=tex-text} % This seems to be important for mapping glyphs properly
  25.  
  26. \setmainfont{Times} % Beamer ignores "main font" in favor of sans font
  27. \setsansfont{Times} % This is the font that beamer will use by default
  28. % \setmainfont{Gill Sans Light} % Prettier, but harder to read
  29.  
  30. \setbeamerfont{title}{family=\fontspec{Times}}
  31.  
  32. \input t1augie.fd
  33.  
  34. %\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
  35. %\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
  36. % \newcommand{\handwriting}{} % If you prefer no special handwriting font or don't have augie
  37.  
  38. %% Gill Sans doesn't look very nice when boldfaced
  39. %% This is a hack to use Helvetica instead
  40. %% Usage: \textbf{\forbold some stuff}
  41. %\newcommand{\forbold}{\fontspec{Arial}}
  42.  
  43. \usepackage{graphicx}
  44. \usepackage[export]{adjustbox}
  45.  
  46. \usepackage{amsmath}
  47. \usepackage{amsfonts}
  48. \usepackage{amssymb}
  49. \usepackage{bm}
  50. \usepackage{colortbl}
  51. \usepackage{mathrsfs} % For Weinberg-esque letters
  52. \usepackage{cancel} % For "SUSY-breaking" symbol
  53. \usepackage{slashed} % for slashed characters in math mode
  54. \usepackage{bbm} % for \mathbbm{1} (unit matrix)
  55. \usepackage{amsthm} % For theorem environment
  56. \usepackage{multirow} % For multi row cells in table
  57. \usepackage{arydshln} % For dashed lines in arrays and tables
  58. \usepackage{siunitx}
  59. \usepackage{xhfill}
  60. \usepackage{grffile}
  61. \usepackage{textpos}
  62. \usepackage{subfigure}
  63. \usepackage{tikz}
  64.  
  65. %\usepackage{hepparticles}
  66. \usepackage[italic]{hepparticles}
  67.  
  68. \usepackage{hepnicenames}
  69.  
  70. % Drawing a line
  71. \tikzstyle{lw} = [line width=20pt]
  72. \newcommand{\topline}{%
  73. \tikz[remember picture,overlay] {%
  74. \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
  75. -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}
  76.  
  77.  
  78.  
  79. % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
  80. \usepackage{tikzfeynman} % For Feynman diagrams
  81. \usetikzlibrary{arrows,shapes}
  82. \usetikzlibrary{trees}
  83. \usetikzlibrary{matrix,arrows} % For commutative diagram
  84. % http://www.felixl.de/commu.pdf
  85. \usetikzlibrary{positioning} % For "above of=" commands
  86. \usetikzlibrary{calc,through} % For coordinates
  87. \usetikzlibrary{decorations.pathreplacing} % For curly braces
  88. % http://www.math.ucla.edu/~getreuer/tikz.html
  89. \usepackage{pgffor} % For repeating patterns
  90.  
  91. \usetikzlibrary{decorations.pathmorphing} % For Feynman Diagrams
  92. \usetikzlibrary{decorations.markings}
  93. \tikzset{
  94. % >=stealth', %% Uncomment for more conventional arrows
  95. vector/.style={decorate, decoration={snake}, draw},
  96. provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
  97. antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
  98. fermion/.style={draw=gray, postaction={decorate},
  99. decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
  100. fermionbar/.style={draw=gray, postaction={decorate},
  101. decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
  102. fermionnoarrow/.style={draw=gray},
  103. gluon/.style={decorate, draw=black,
  104. decoration={coil,amplitude=4pt, segment length=5pt}},
  105. scalar/.style={dashed,draw=black, postaction={decorate},
  106. decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
  107. scalarbar/.style={dashed,draw=black, postaction={decorate},
  108. decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
  109. scalarnoarrow/.style={dashed,draw=black},
  110. electron/.style={draw=black, postaction={decorate},
  111. decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
  112. bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
  113. }
  114.  
  115. % TIKZ - for block diagrams,
  116. % from http://www.texample.net/tikz/examples/control-system-principles/
  117. % \usetikzlibrary{shapes,arrows}
  118. \tikzstyle{block} = [draw, rectangle,
  119. minimum height=3em, minimum width=6em]
  120.  
  121.  
  122.  
  123.  
  124. \usetikzlibrary{backgrounds}
  125. \usetikzlibrary{mindmap,trees} % For mind map
  126. \newcommand{\degree}{\ensuremath{^\circ}}
  127. \newcommand{\E}{\mathrm{E}}
  128. \newcommand{\Var}{\mathrm{Var}}
  129. \newcommand{\Cov}{\mathrm{Cov}}
  130. \newcommand\Ts{\rule{0pt}{2.6ex}} % Top strut
  131. \newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut
  132.  
  133. \graphicspath{{images/}} % Put all images in this directory. Avoids clutter.
  134.  
  135. % SOME COMMANDS THAT I FIND HANDY
  136. % \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
  137. \newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
  138. \newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
  139. \newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
  140. \newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
  141. \newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
  142. %% "\alert" is already a beamer pre-defined
  143. \newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%
  144.  
  145. \def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}
  146.  
  147. \usepackage{gmp}
  148. \usepackage[final]{feynmp-auto}
  149.  
  150. \usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
  151. \bibliography{bib}
  152. \setbeamertemplate{bibliography item}[text]
  153.  
  154. \makeatletter\let\frametextheight\beamer@frametextheight\makeatother
  155.  
  156. % suppress frame numbering for backup slides
  157. % you always need the appendix for this!
  158. \newcommand{\backupbegin}{
  159. \newcounter{framenumberappendix}
  160. \setcounter{framenumberappendix}{\value{framenumber}}
  161. }
  162. \newcommand{\backupend}{
  163. \addtocounter{framenumberappendix}{-\value{framenumber}}
  164. \addtocounter{framenumber}{\value{framenumberappendix}}
  165. }
  166.  
  167.  
  168. \definecolor{links}{HTML}{2A1B81}
  169. %\hypersetup{colorlinks,linkcolor=,urlcolor=links}
  170.  
  171. % For shapo's formulas:
  172. \def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
  173. \def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
  174. \newcommand{\lsim}{\mathop{\lsi}}
  175. \newcommand{\gsim}{\mathop{\gsi}}
  176. \newcommand{\wt}{\widetilde}
  177. %\newcommand{\ol}{\overline}
  178. \newcommand{\Tr}{\rm{Tr}}
  179. \newcommand{\tr}{\rm{tr}}
  180. \newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
  181. \newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
  182. \newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
  183. \newcommand{\eV}{\rm{eV}}
  184. \newcommand{\keV}{\rm{keV}}
  185. \newcommand{\GeV}{\rm{GeV}}
  186. \newcommand{\im}{\rm{Im}}
  187. \newcommand{\disp}{\displaystyle}
  188. \def\be{\begin{equation}}
  189. \def\ee{\end{equation}}
  190. \def\ba{\begin{eqnarray}}
  191. \def\ea{\end{eqnarray}}
  192. \def\d{\partial}
  193. \def\l{\left(}
  194. \def\r{\right)}
  195. \def\la{\langle}
  196. \def\ra{\rangle}
  197. \def\e{{\rm e}}
  198. \def\Br{{\rm Br}}
  199. \def\LcTopmumu{\Lambda_c^{+} \to p \mu^+ \mu^-}
  200. \def\Lc{\Lambda_c^{+}}
  201. \def\mumu{\mu\mu}
  202. \newcommand{\BRof}[1]{\ensuremath{{\cal B}(#1)}\xspace}
  203.  
  204. \def\LcTopphi{\Lc \to p \Pphi (\mumu)}
  205. \def\Lcpomegano{\Lc \to p \omega}
  206.  
  207.  
  208.  
  209.  
  210. \def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace}
  211. \def\ARROWR{{\color{WildStrawberry}{$\Rrightarrow$}}\xspace}
  212. \def\pt{p_T}
  213. \def\mevc{MeV/c}
  214. \def\mevcc{MeV/c^2}
  215. \def\gevc{GeV/c}
  216. \def\gevcc{GeV/c^2}
  217. \author{ {Marcin Chrzaszcz} (CERN)}
  218. \institute{UZH}
  219. \title[Search for the $\Lambda_c^{+} \to p \mu^+ \mu^-$ decay ]{Search for the $\Lambda_c^{+} \to p \mu^+ \mu^-$ decay }
  220.  
  221. \date{25 September 2014}
  222.  
  223.  
  224. \begin{document}
  225. \tikzstyle{every picture}+=[remember picture]
  226.  
  227. {
  228. \setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
  229. \begin{frame}[c]%{\phantom{title page}}
  230. \begin{center}
  231. \begin{center}
  232. \begin{columns}
  233. \begin{column}{0.75\textwidth}
  234. \flushright \bfseries \Large {Search for the suppressed $\Lambda_c^{+} \to p \mu^+ \mu^-$ decay and observation of the $\Lambda_c^{+} \to p \omega$ decay}
  235. \end{column}
  236. \begin{column}{0.02\textwidth}
  237. {~}
  238. \end{column}
  239. \begin{column}{0.23\textwidth}
  240. % \hspace*{-1.cm}
  241. \vspace*{-3mm}
  242. \includegraphics[width=0.6\textwidth]{lhcb-logo}
  243. \end{column}
  244.  
  245. \end{columns}
  246. \end{center}
  247. \quad
  248. \vspace{3em}
  249. \begin{columns}
  250. \begin{column}{0.44\textwidth}
  251. \flushright \vspace{-2.8em} { \fontspec{Zapfino} Marcin Chrzaszcz\\\vspace{-0.1em}\small \href{mailto:mchrzasz@cern.ch}{mchrzasz@cern.ch}}
  252.  
  253. \end{column}
  254. \begin{column}{0.53\textwidth}
  255. \hspace{2.0cm}
  256. \includegraphics[height=1.6cm]{cern}
  257. \end{column}
  258. \end{columns}
  259.  
  260. \vspace{1em}
  261. \footnotesize{\large With M. Jezabek, T. Lesiak, B. Nowak, M. Witek (IFJ PAN)}
  262. \vspace{0.5em}
  263.  
  264. \textcolor{normal text.fg!50!Comment}{Tuesday meeting, CERN\\September 26, 2017}
  265. \end{center}
  266. \end{frame}
  267. }
  268.  
  269.  
  270. \begin{frame}{Yellow pages}
  271. \vspace{0.5em}
  272. \begin{minipage}{\textwidth}
  273. \ARROW Reviewers: Tom Blake(chair), Harry Cliff, Simon Eydelman(EB)\\
  274. \ARROW Twiki:\\
  275. \href{https://twiki.cern.ch/twiki/bin/viewauth/LHCbPhysics/Lc2PMuMu}{\url{https://twiki.cern.ch/twiki/bin/viewauth/LHCbPhysics/Lc2PMuMu}}\\
  276. \ARROW Review start: 31.03.2017\\
  277. \ARROW Fruitfull interactions with the review committee. \\
  278. \ARROW Unblinding: 18.07.2017\\
  279. \ARROW Minor changes to the analysis during the review.\\
  280. \begin{center}
  281. We would like to take this occasion and than Tom, Harry and Simon for fruitful, constructive and smooth review!
  282. \end{center}
  283. \end{minipage}
  284. \vspace*{2.cm}
  285. \end{frame}
  286.  
  287.  
  288.  
  289. \begin{frame}{Motivation}
  290. \vspace{0.5em}
  291. \begin{minipage}{\textwidth}
  292.  
  293.  
  294. \begin{columns}
  295. \column{0.1in}
  296. {~}\\
  297. \column{3in}
  298. \vspace{0.5em}
  299.  
  300. \ARROW SM predictions:\\
  301. ~~~~~~$\mathcal{O}(10^{-8})$\\
  302. \ARROW Long distance effects:\\
  303. ~~~~~~$\mathcal{O}(10^{-6})$\\
  304. ~~~~\\
  305. \ARROW Previous measurement done by Babar:\\
  306. ~~${\rm Br}(\Lambda_c^{+} \to p \mu^+ \mu^-) < 4.4\cdot 10^{-5}$ at 90\% CL\\
  307. \begin{center}
  308. \includegraphics[width=0.65\textwidth]{images/babar.png}\\
  309.  
  310. \end{center}
  311.  
  312.  
  313. \column{2in}
  314. \includegraphics[width=0.95\textwidth]{images/indeks1.jpg}\\
  315. \includegraphics[width=0.95\textwidth]{images/indeks2.jpg}\\
  316. \begin{exampleblock}{}
  317. Should be able to improve by \\a factor of 100!
  318. \end{exampleblock}
  319.  
  320.  
  321. \end{columns}
  322.  
  323. \end{minipage}
  324. \vspace*{2.cm}
  325. \end{frame}
  326.  
  327.  
  328.  
  329.  
  330.  
  331. \begin{frame}{Analysis strategy}
  332. \vspace{0.5em}
  333. \begin{minipage}{\textwidth}
  334.  
  335. \ARROW Normalization to $\Lambda_c^+ \to p \phi(\mu\mu)$.\\
  336. \ARROW Typical steps rare decays:
  337. \begin{itemize}
  338. \item Loose stripping selection.
  339. \item BDT1 used for first preselection.
  340. \item BDT2 used to further suppress the background.
  341. \item PID used to fight the peaking background.
  342. \end{itemize}
  343. \ARROW Search performed in several dimuon mass windows.\\
  344. \ARROW Selection optimized on $\rm CL_s$.\\
  345. \ARROW Unblinding and calculate the UL of BR using $\rm CL_s$.
  346. \pause
  347. \begin{center}
  348. \includegraphics[width=0.5\textwidth]{images/blind.jpg}
  349. \end{center}
  350. \end{minipage}
  351. \vspace*{2.cm}
  352. \end{frame}
  353.  
  354.  
  355.  
  356.  
  357. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  358.  
  359.  
  360.  
  361. \begin{frame}{Normalization channel}
  362. \vspace{0.5em}
  363. \begin{minipage}{\textwidth}
  364. \begin{columns}
  365. \column{0.1in}
  366. {~}\\
  367. \column{3in}
  368. {\Large Use the $\Lambda_c^{+} \to p \phi(\mu\mu)$.}\\
  369. \ARROW Same final state, same selection, a lot of systematics cancel.\\
  370. \ARROWR The Branching fraction of $\Lambda_c^{+} \to p \phi$ is known with $22~\%$.
  371.  
  372. {\Large Use the $\Lambda_c^{+} \to p K \pi$.}\\
  373. \ARROW More precisely known branching fraction (precision: $6.4~\%$).\\
  374. \ARROWR A lot of additional systematics due to different final states, different selections
  375.  
  376. \column{2in}
  377. \only<1>{
  378. \includegraphics[width=0.9\textwidth]{images/quovadis.jpg}
  379. }
  380. \only<2>{
  381. \includegraphics[width=0.9\textwidth]{images/quovadis2.jpg}
  382. }
  383. \end{columns}
  384. \begin{exampleblock}{We choose the $\Lambda_c^{+} \to p \phi(\mu\mu)$ option}
  385. \ARROWR In the most optimistic scenario where you assume the $22~\%$ systematic to go town to $6.4~\%$ the UL. \\
  386. In this case the UL gets worse $7.8~\%$.
  387. \end{exampleblock}
  388.  
  389.  
  390. \end{minipage}
  391. \vspace*{2.cm}
  392. \end{frame}
  393.  
  394.  
  395.  
  396.  
  397. \begin{frame}{Data sets and Stripping}
  398. \vspace{0.5em}
  399. \begin{minipage}{\textwidth}
  400. \ARROW 2011+2012 (aka Run1) Stripping 20.\\
  401. \begin{center}
  402.  
  403. \begin{tabular}{|c|c|}
  404. \hline
  405. Condition & ~~$\LcTopmumu$~~\\
  406. \hline
  407. $\mu^{\pm}$ and $p$ & \\
  408. $\pt$ & {$>300\mevc$} \\
  409. Track $\chi^2$/ndf & {$<3 $} \\
  410. IP $\chi^2$/ndf & {$>9 $} \\
  411. PID $\mu^\pm$ & PIDmu$ >$ -5 and (PIDmu - PIDK) $>$ 0 \\
  412. PID p & PIDp$>$10 \\
  413. \hline
  414. $\Lc$ & {~} \\
  415. $\Delta m$ & $<150\mevcc$ \\
  416. Vertex $\chi^2$ & {$<15$} \\
  417. IP $\chi^2$ & {$<225 $} \\
  418. $c\tau$ & {$>100\rm \mu m$} \\
  419. Lifetime fit $\chi^2$ & {$<225 $} \\
  420. %\hline
  421. %$m_{\mu^+\mu^-}$ & $> 450\mevcc$ \\
  422. %$m_{\mu^+\mu^+}$ & $> 250\mevcc$ \\
  423. \hline
  424. \end{tabular}
  425. \end{center}
  426. \end{minipage}
  427. \vspace*{2.cm}
  428. \end{frame}
  429.  
  430.  
  431. \begin{frame}{Preselection}
  432. \vspace{0.5em}
  433. \begin{minipage}{\textwidth}
  434. \ARROW Additional cuts:
  435. \begin{center}\begin{tabular}{|c|}
  436. \hline
  437. Common cuts \\
  438. \hline
  439. $m_{\mumu}$ $< 1400~\mevcc$ \\
  440. proton $ProbNNp > 0.1 $ \\ % Podzielic te ciecia i opisac gdzie t
  441. $\mu^+,\mu^-$ $ ProbNNmu > 0.1 $ \\
  442. $ 10~\gevc < p_{proton} < 100~\gevc $ \\
  443. \hline
  444. \end{tabular}\end{center}
  445.  
  446. \ARROW We define couple of dimuom mass regions:
  447. \begin{center}
  448. \begin{tabular}{|c | c|}
  449. \hline
  450. $m(\mu\mu)$ region & $\left[ \mevcc \right]$\\ \hline
  451. $\phi$ region & $\left[985, 1055\right]$\\
  452. $\omega$ region & $\left[759 , 805\right]$\\
  453. {\it{non resonant} } & $\left[210, 747 \right] \cup \left[817, 980 \right] \cup \left[1060, 1400\right]$ \\ \hline
  454. \end{tabular}
  455. \end{center}
  456.  
  457. \end{minipage}
  458. \vspace*{2.cm}
  459. \end{frame}
  460.  
  461.  
  462. \begin{frame}{Trigger}
  463. \vspace{0.5em}
  464. \begin{minipage}{\textwidth}
  465. \vspace{0.5em}
  466.  
  467. \ARROW We require the following triggers (all are TOS):
  468. \begin{itemize}
  469. \item L0
  470. \begin{itemize}
  471. \item L0MuonDecision
  472. \end{itemize}
  473. \item HLT1
  474. \begin{itemize}
  475. \item Hlt1TrackMuonDecision
  476. \item Hlt1DiMuonLowMassDecision
  477. \item Hlt1TrackAllL0Decision
  478. \end{itemize}
  479. \item HLT2
  480. \begin{itemize}
  481. \item Hlt2DiMuonDetachedDecision
  482. \item Hlt2CharmSemilep3bodyD2KMuMuDecision
  483. \item Hlt2CharmSemilepD2HMuMuDecision
  484. \end{itemize}
  485. \end{itemize}
  486.  
  487. \ARROW The TIS increase the signal yield by $<10~\%$ and were asked to be removed at the WG review stage.
  488.  
  489. \end{minipage}
  490. \vspace*{2.cm}
  491. \end{frame}
  492.  
  493.  
  494. \begin{frame}{BDT1 training}
  495. \vspace{0.5em}
  496. \begin{minipage}{\textwidth}
  497. \vspace{0.5em}
  498. \begin{columns}
  499.  
  500. \column{0.1in}
  501. {~}\\
  502.  
  503. \column{3in}
  504. \ARROW The normalization channel is also a rather ``rare decay'':\\
  505. ${\rm Br}(\Lambda_c^+ \to p \phi) \cdot {\rm Br}(\phi \to \mu \mu) = 3.1 \cdot 10^{-7}$\\
  506. \ARROW After the previous preselection a simple BDT is trained using variables that are well simulated in the MC. k-folding used ($k=10$)
  507. \ARROW The BDT1 (not surprisingly) likes the prompt $\Lambda_c$ rather the secondary ones.
  508. \begin{center}
  509. \includegraphics[angle=-90,width=0.7\textwidth]{images/BDT_pre_history.pdf}
  510.  
  511. \end{center}
  512.  
  513. \column{2in}
  514. \includegraphics[angle=-90,width=0.95\textwidth]{images/compare_BDT1_2011.pdf} \\
  515. \includegraphics[angle=-90,width=0.95\textwidth]{images/compare_BDT1_2012.pdf} \\
  516.  
  517. \end{columns}
  518. \end{minipage}
  519. \vspace*{2.cm}
  520. \end{frame}
  521.  
  522.  
  523.  
  524. \begin{frame}{BDT1 selection}
  525. \vspace{0.5em}
  526. \begin{minipage}{\textwidth}
  527. \ARROW The selection based on BDT1 is not optimised.\\
  528. \ARROW A loose cut:
  529. \begin{equation}
  530. {\rm BDT1} > -0.1 \nonumber
  531. \end{equation}
  532. \begin{center}
  533. \includegraphics[angle=-90,width=0.49\linewidth]{images//Lc2pPhi5_pre.pdf}
  534. \includegraphics[angle=-90,width=0.49\linewidth]{images/expected_bck5_pre.pdf}
  535.  
  536. \end{center}
  537. \ARROW The normalization channel peak is observed.
  538. \end{minipage}
  539. \vspace*{2.cm}
  540. \end{frame}
  541.  
  542.  
  543.  
  544. \begin{frame}{BDT2 selection}
  545. \vspace{0.5em}
  546. \begin{minipage}{\textwidth}
  547. \begin{columns}
  548.  
  549. \column{0.1in}
  550. {~}\\
  551.  
  552. \column{3in}
  553.  
  554. \ARROW Variables used:
  555.  
  556. \begin{footnotesize}
  557. \begin{itemize}
  558. \item
  559. flight distance - the one between the production and decay points.
  560. \item
  561. $\chi^2$ of flight distance,
  562. \item
  563. transformed decay time - $T=\exp{(-1000 \cdot \tau / {\mathrm{ns}})}$,
  564. \item
  565. IP - impact parameter with respect to primary vertex,
  566. \item
  567. $\chi^2$ of IP of $\Lc$
  568. \item
  569. $\log(\chi^2_{DTF})$,
  570. \item
  571. $p_T$ - transverse momentum of $\Lc$,
  572.  
  573. \item
  574. minimum of $\chi^2$ of $p$, $\mu^+$, $\mu^-$ w.r.t. primary vertex,
  575. \item
  576. transverse momenta
  577. \item
  578. minimum of $\chi^2$/NDF of track fit of $p$, $\mu^+$, $\mu^-$.
  579. \end{itemize}
  580. \end{footnotesize}
  581.  
  582.  
  583.  
  584. \column{2in}
  585. \vspace{3.0em}
  586. \includegraphics[angle=-90,width=0.95\textwidth]{images/compare_BDT2_2011.pdf} \\
  587.  
  588. \includegraphics[angle=-90,width=0.95\textwidth]{images/compare_BDT2_2012.pdf} \\
  589. \vspace{3.0em}
  590. {~}
  591. \end{columns}
  592. \end{minipage}
  593. \vspace*{2.cm}
  594. \end{frame}
  595.  
  596. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  597.  
  598.  
  599. \begin{frame}{BDT2}
  600. \vspace{0.5em}
  601. \begin{minipage}{\textwidth}
  602.  
  603. \begin{columns}
  604.  
  605. \column{0.02\textwidth}
  606. {~}\\
  607.  
  608. \column{0.48\textwidth}
  609. \begin{small}
  610. \ARROW After correcting the DATA/MC differences the BDT distribution shows a good DATA/MC agreement.\\
  611. \ARROW No mass correlation observed.
  612. \end{small}
  613. \includegraphics[angle=-90,width=0.95\textwidth]{images/mBDT2_profile.pdf}
  614.  
  615.  
  616. \column{0.48\textwidth}
  617.  
  618. \includegraphics[angle=-90,width=0.95\textwidth]{images/Comparison_BDT_data_mc_shifted.pdf}
  619.  
  620. \includegraphics[angle=-90,width=0.95\textwidth]{images/BDT_check_3mu_bkg_1.pdf}
  621.  
  622.  
  623. \column{0.02\textwidth}
  624. {~}\\
  625.  
  626.  
  627.  
  628. \end{columns}
  629.  
  630.  
  631. \end{minipage}
  632. \vspace*{2.cm}
  633. \end{frame}
  634.  
  635.  
  636.  
  637.  
  638. \begin{frame}{PID}
  639. \vspace{0.5em}
  640. \begin{minipage}{\textwidth}
  641. \begin{small}
  642.  
  643. \ARROW MC resampling is choose to correct the PID distributions:\\
  644. For MC samples the ProbNNp and ProbNNmu are drawn from the PIDCalib distributions.\\
  645.  
  646. \begin{columns}
  647. \column{0.5\textwidth}
  648.  
  649. \ARROWR The PIDCalib doesn't cover the low $\pt$ region for muons ($10\%$).\\
  650. \ARROWR Decided to use for them the $D_s \to \phi(\mu\mu)$ sample.\\
  651.  
  652. \includegraphics[angle=-90,width=0.95\textwidth]{images/Comparison_ProbNNmu_data_mc.pdf}
  653.  
  654.  
  655. \column{0.5\textwidth}
  656. \includegraphics[angle=-90,width=0.95\textwidth]{images/effmu_pid.pdf}\\
  657. \includegraphics[angle=-90,width=0.95\textwidth]{images/Comparison_ProbNNp_data_mc.pdf}
  658.  
  659.  
  660. \end{columns}
  661.  
  662.  
  663.  
  664. \end{small}
  665.  
  666. \end{minipage}
  667. \vspace*{2.cm}
  668. \end{frame}
  669.  
  670.  
  671.  
  672.  
  673.  
  674.  
  675. \begin{frame}{Selection optimization}
  676. \vspace{1.5em}
  677. \begin{minipage}{\textwidth}
  678. \begin{small}
  679. \begin{columns}
  680.  
  681. \column{0.01\textwidth}
  682. {~}\\
  683.  
  684. \column{0.68\textwidth}
  685.  
  686. \ARROW The final selection of the analysis is optimized!\\
  687. \ARROW $\rm CL_s$ method used.\\
  688. \ARROW Toy experiment used to find the optimum.
  689. {~}\\
  690. \begin{center}\begin{tabular}{lc}
  691. \hline
  692. Variable & Condition \\
  693. \hline
  694. BDT & $> 0.0$ \\
  695. $ProbNNp(p)$ & $> 0.68$ \\
  696. minimum $ProbNNmu(\mu^{\pm})$ & $> 0.38$ \\
  697. \hline
  698. \end{tabular}\end{center}
  699.  
  700.  
  701.  
  702. \includegraphics[angle=-90,width=0.5\linewidth]{images/Lc2pPhi5.pdf}
  703. \includegraphics[angle=-90,width=0.5\linewidth]{images/expected_bck5.pdf}
  704.  
  705. \column{0.3\textwidth}
  706. \includegraphics[width=0.99\textwidth]{images/scan_ul.pdf}
  707. \column{0.01\textwidth}
  708.  
  709.  
  710.  
  711.  
  712. \end{columns}
  713.  
  714.  
  715. \end{small}
  716.  
  717. \end{minipage}
  718. \vspace*{2.cm}
  719. \end{frame}
  720.  
  721.  
  722. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  723.  
  724.  
  725.  
  726. \begin{frame}{Peaking backgrounds}
  727. \vspace{1.5em}
  728. \begin{minipage}{\textwidth}
  729.  
  730.  
  731. \begin{columns}
  732.  
  733. \column{0.6\textwidth}
  734. \ARROW The tight PID cuts essentially kill the peaking bkg!\\
  735. \ARROW The only bkg left is the $\Lambda_c^{+} \to p \pi \pi$.\\
  736.  
  737. \begin{center}
  738. \includegraphics[angle=-90,width=0.80\linewidth]{images/mass_bkg_p2pi.pdf}
  739. \end{center}
  740. \ARROW Estimated contamination: \\$1.96 \pm 1.13$ \ARROWR assigned as systematic
  741. \column{0.4\textwidth}
  742.  
  743. \begin{center}
  744. \includegraphics[angle=-90,width=0.99\linewidth]{images/ref_Lc2pmumu.pdf} \\
  745. \includegraphics[angle=-90,width=0.99\linewidth]{images/ref_Lc2ppipi.pdf} \\
  746. \includegraphics[angle=-90,width=0.99\linewidth]{images/ref_Lc2pkpi.pdf} \\
  747. \includegraphics[angle=-90,width=0.99\linewidth]{images/ref_Ds2kmumu.pdf} \\
  748. \includegraphics[angle=-90,width=0.99\linewidth]{images/ref_Dp2kpipi.pdf}
  749. \vspace*{-1.0cm}
  750. \end{center}
  751.  
  752.  
  753. \end{columns}
  754.  
  755.  
  756. \end{minipage}
  757. \vspace*{2.cm}
  758. \end{frame}
  759.  
  760.  
  761.  
  762. \begin{frame}{Normalization}
  763. \vspace{1.5em}
  764. \begin{minipage}{\textwidth}
  765. \ARROW The gold equation:
  766.  
  767. \begin{equation*}
  768. {\frac{\BRof\LcTopmumu}{\BRof\LcTopphi} =
  769. \frac{\rm
  770. {\epsilon\mathstrut_{norm}}^{TOT}
  771. }{\rm
  772. {\epsilon\mathstrut_{sig}}^{TOT}
  773. }
  774. \times\frac{N_{\rm sig}}{N_{\rm norm}}, }
  775. \label{eq:normalization}
  776. \end{equation*}
  777. \ARROW We take advantage of the cancellation that:
  778.  
  779. \begin{equation*}
  780. {\frac{\rm {\epsilon\mathstrut_{norm}}^{TOT} }{\rm {\epsilon\mathstrut_{sig}}^{TOT}}}
  781. =
  782. {\frac{\rm {\epsilon\mathstrut_{norm}}^{STRIP}}{\rm {\epsilon\mathstrut_{sig}}^{STRIP}}}
  783. \times
  784. {\frac{\rm {\epsilon\mathstrut_{norm}}^{COMM}}{\rm {\epsilon\mathstrut_{sig}}^{COMM}}}
  785. \times
  786. {\frac{\rm {\epsilon\mathstrut_{norm}}^{SPEC}}{\rm {\epsilon\mathstrut_{sig}}^{SPEC}}} ,~~ {\frac{\rm {\epsilon\mathstrut_{norm}}^{i}}{\rm {\epsilon\mathstrut_{sig}}^{i}}} \simeq 1
  787. \label{eq:effprod}
  788. \end{equation*}
  789.  
  790. \begin{columns}
  791. \column{0.02\textwidth}
  792.  
  793. \column{0.56\textwidth}
  794. \ARROW In addition we have added 6 mass bins to increase the sensitivity.\\
  795. \ARROW Signal is modelled by a double Crystall Ball.
  796.  
  797. \column{0.4\textwidth}
  798. \includegraphics[width=0.85\textwidth]{images/massbin.png}
  799.  
  800. \column{0.02\textwidth}
  801.  
  802.  
  803. \end{columns}
  804.  
  805.  
  806.  
  807.  
  808.  
  809. \end{minipage}
  810. \vspace*{2.cm}
  811. \end{frame}
  812.  
  813.  
  814. \begin{frame}{Expected background}
  815. \vspace{1.5em}
  816. \begin{minipage}{\textwidth}
  817. \begin{small}
  818. \begin{columns}
  819.  
  820. \column{0.02\textwidth}
  821.  
  822. \column{0.48\textwidth}
  823. \ARROW Background modelled with a linear function.\\
  824.  
  825. \includegraphics[width=0.9\linewidth]{images/expected_bck5_obs_with_signal1.pdf}
  826.  
  827. \column{0.48\textwidth}
  828.  
  829.  
  830.  
  831. \begin{center}\begin{tabular}{|c|c|}
  832. \hline
  833. bin & no events \\
  834. \hline
  835. bin1 & $ 8.56136 \pm 0.540302 $ \\
  836. bin2 & $ 8.60318 \pm 0.536917 $ \\
  837. bin3 & $ 8.64582 \pm 0.536561 $ \\
  838. bin4 & $ 8.6887 \pm 0.539208 $ \\
  839. bin5 & $ 8.7304 \pm 0.544752 $ \\
  840. bin6 & $ 8.77226 \pm 0.553162 $ \\
  841. \hline
  842. \end{tabular}\end{center}
  843.  
  844.  
  845. \column{0.02\textwidth}
  846.  
  847.  
  848.  
  849. \end{columns}
  850.  
  851. \begin{columns}
  852.  
  853. \column{0.6\textwidth}
  854.  
  855. \includegraphics[angle=-90,width=0.49\linewidth]{images/br90rel.pdf}
  856. \includegraphics[angle=-90,width=0.49\linewidth]{images/br90abs.pdf}
  857.  
  858. \column{0.4\textwidth}
  859.  
  860.  
  861. \ARROW Expected upper limits:
  862. $\BRof\LcTopmumu < 5.91 \times 10^{-8}$ at 90~\% CL
  863.  
  864. \end{columns}
  865.  
  866.  
  867.  
  868.  
  869.  
  870. \end{small}
  871.  
  872.  
  873. \end{minipage}
  874. \vspace*{2.cm}
  875. \end{frame}
  876.  
  877.  
  878.  
  879.  
  880. \begin{frame}{Observed Upper limits}
  881. \vspace{1.5em}
  882. \begin{minipage}{\textwidth}
  883. \begin{columns}
  884.  
  885. \column{0.6\textwidth}
  886.  
  887. \ARROW After the green light from RC we have unblinded; no significant access of events have been observed.
  888. \ARROW We have set an UL:
  889. \begin{equation*}
  890. \BRof\LcTopmumu < 7.68 \times 10^{-8}~ \rm at 90~\%~CL
  891. \end{equation*}
  892.  
  893. \column{0.4\textwidth}
  894. \includegraphics[angle=-90,width=0.9\linewidth]{images/expected_bck5_obs_with_signal.pdf}
  895.  
  896.  
  897. \end{columns}
  898.  
  899. \includegraphics[angle=-90,width=0.45\linewidth]{images/br90rel_obs.pdf}
  900. \includegraphics[angle=-90,width=0.45\linewidth]{images/br90abs_obs.pdf}
  901.  
  902.  
  903. \end{minipage}
  904. \vspace*{2.cm}
  905. \end{frame}
  906.  
  907.  
  908.  
  909. \begin{frame}{By product :)}
  910. \vspace{1.5em}
  911. \begin{minipage}{\textwidth}
  912. \begin{columns}
  913.  
  914. \column{0.5\textwidth}
  915.  
  916. \ARROW We also looked at the $\omega$ dimuon region.\\
  917. \begin{exampleblock}{We observed an access}
  918. Using Wilks theorem we have calculated the singificance to be $5.0~\sigma$!
  919. \end{exampleblock}
  920. \ARROW This is the first observation of this decay!!!\\
  921. $\BRof\Lcpomegano = (7.6 \pm 2.6~(stat) \pm 0.9~(syst1) \pm 3.1~(syst2) )~\times 10^{-4}$
  922.  
  923. \column{0.5\textwidth}
  924. \includegraphics[angle=-90,width=0.99\textwidth]{images/Lc2pomega_DATA_mass_sel.pdf}\\
  925. \includegraphics[angle=-90,width=0.99\textwidth]{images/mumu_mass_fit_sel.pdf}
  926.  
  927.  
  928. \end{columns}
  929.  
  930.  
  931. \end{minipage}
  932. \vspace*{2.cm}
  933. \end{frame}
  934.  
  935.  
  936. \begin{frame}{Conclusion}
  937. \vspace{1.5em}
  938. \begin{minipage}{\textwidth}
  939. \begin{itemize}
  940. \item Improved the UL for $\BRof\LcTopmumu$ by two orders of magnitude!\\
  941. \pause
  942. \includegraphics[width=0.5\textwidth]{images/mr_bean_laboratory.jpg}
  943.  
  944. \item First time observed the decay $\Lcpomegano$!!
  945. \item Paper is beeing prepared, aiming PRL
  946. \item We would like to ask the collaboration for approving this analysis.
  947. \end{itemize}
  948. \begin{center}
  949. \end{center}
  950.  
  951. \end{minipage}
  952. \vspace*{2.cm}
  953. \end{frame}
  954.  
  955.  
  956.  
  957.  
  958. \backupbegin
  959.  
  960. \begin{frame}\frametitle{Backup}
  961. \topline
  962.  
  963. \end{frame}
  964.  
  965. \backupend
  966.  
  967. \end{document}