Newer
Older
Presentations / Drell_Yan / ASweek_01_2017 / mchrzasz.tex
@Marcin Chrzaszcz Marcin Chrzaszcz on 14 Feb 2017 26 KB preesntations for K*mumu meeting
  1. \documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}
  2.  
  3. \usepackage[english]{babel}
  4. \usepackage{polski}
  5.  
  6.  
  7. \usetheme[
  8. bullet=circle, % Other option: square
  9. bigpagenumber, % circled page number on lower right
  10. topline=true, % colored bar at the top of the frame
  11. shadow=false, % Shading for beamer blocks
  12. watermark=BG_lower, % png file for the watermark
  13. ]{Flip}
  14.  
  15. %\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}
  16.  
  17. \usepackage[lf]{berenis}
  18. \usepackage[LY1]{fontenc}
  19. \usepackage[utf8]{inputenc}
  20.  
  21. %\usepackage{emerald}
  22. \usefonttheme{professionalfonts}
  23. \usepackage[no-math]{fontspec}
  24. \defaultfontfeatures{Mapping=tex-text} % This seems to be important for mapping glyphs properly
  25.  
  26. \setmainfont{Gillius ADF} % Beamer ignores "main font" in favor of sans font
  27. \setsansfont{Gillius ADF} % This is the font that beamer will use by default
  28. % \setmainfont{Gill Sans Light} % Prettier, but harder to read
  29.  
  30. \setbeamerfont{title}{family=\fontspec{Gillius ADF}}
  31.  
  32. \input t1augie.fd
  33.  
  34. %\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
  35. %\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
  36. % \newcommand{\handwriting}{} % If you prefer no special handwriting font or don't have augie
  37.  
  38. %% Gill Sans doesn't look very nice when boldfaced
  39. %% This is a hack to use Helvetica instead
  40. %% Usage: \textbf{\forbold some stuff}
  41. %\newcommand{\forbold}{\fontspec{Arial}}
  42.  
  43. \usepackage{graphicx}
  44. \usepackage[export]{adjustbox}
  45.  
  46. \usepackage{amsmath}
  47. \usepackage{amsfonts}
  48. \usepackage{amssymb}
  49. \usepackage{bm}
  50. \usepackage{colortbl}
  51. \usepackage{mathrsfs} % For Weinberg-esque letters
  52. \usepackage{cancel} % For "SUSY-breaking" symbol
  53. \usepackage{slashed} % for slashed characters in math mode
  54. \usepackage{bbm} % for \mathbbm{1} (unit matrix)
  55. \usepackage{amsthm} % For theorem environment
  56. \usepackage{multirow} % For multi row cells in table
  57. \usepackage{arydshln} % For dashed lines in arrays and tables
  58. \usepackage{siunitx}
  59. \usepackage{xhfill}
  60. \usepackage{grffile}
  61. \usepackage{textpos}
  62. \usepackage{subfigure}
  63. \usepackage{tikz}
  64.  
  65. %\usepackage{hepparticles}
  66. \usepackage[italic]{hepparticles}
  67.  
  68. \usepackage{hepnicenames}
  69.  
  70. % Drawing a line
  71. \tikzstyle{lw} = [line width=20pt]
  72. \newcommand{\topline}{%
  73. \tikz[remember picture,overlay] {%
  74. \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
  75. -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}
  76.  
  77.  
  78.  
  79. % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
  80. \usepackage{tikzfeynman} % For Feynman diagrams
  81. \usetikzlibrary{arrows,shapes}
  82. \usetikzlibrary{trees}
  83. \usetikzlibrary{matrix,arrows} % For commutative diagram
  84. % http://www.felixl.de/commu.pdf
  85. \usetikzlibrary{positioning} % For "above of=" commands
  86. \usetikzlibrary{calc,through} % For coordinates
  87. \usetikzlibrary{decorations.pathreplacing} % For curly braces
  88. % http://www.math.ucla.edu/~getreuer/tikz.html
  89. \usepackage{pgffor} % For repeating patterns
  90.  
  91. \usetikzlibrary{decorations.pathmorphing} % For Feynman Diagrams
  92. \usetikzlibrary{decorations.markings}
  93. \tikzset{
  94. % >=stealth', %% Uncomment for more conventional arrows
  95. vector/.style={decorate, decoration={snake}, draw},
  96. provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
  97. antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
  98. fermion/.style={draw=gray, postaction={decorate},
  99. decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
  100. fermionbar/.style={draw=gray, postaction={decorate},
  101. decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
  102. fermionnoarrow/.style={draw=gray},
  103. gluon/.style={decorate, draw=black,
  104. decoration={coil,amplitude=4pt, segment length=5pt}},
  105. scalar/.style={dashed,draw=black, postaction={decorate},
  106. decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
  107. scalarbar/.style={dashed,draw=black, postaction={decorate},
  108. decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
  109. scalarnoarrow/.style={dashed,draw=black},
  110. electron/.style={draw=black, postaction={decorate},
  111. decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
  112. bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
  113. }
  114.  
  115. % TIKZ - for block diagrams,
  116. % from http://www.texample.net/tikz/examples/control-system-principles/
  117. % \usetikzlibrary{shapes,arrows}
  118. \tikzstyle{block} = [draw, rectangle,
  119. minimum height=3em, minimum width=6em]
  120.  
  121.  
  122.  
  123.  
  124. \usetikzlibrary{backgrounds}
  125. \usetikzlibrary{mindmap,trees} % For mind map
  126. \newcommand{\degree}{\ensuremath{^\circ}}
  127. \newcommand{\E}{\mathrm{E}}
  128. \newcommand{\Var}{\mathrm{Var}}
  129. \newcommand{\Cov}{\mathrm{Cov}}
  130. \newcommand\Ts{\rule{0pt}{2.6ex}} % Top strut
  131. \newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut
  132.  
  133. \graphicspath{{images/}} % Put all images in this directory. Avoids clutter.
  134.  
  135. % SOME COMMANDS THAT I FIND HANDY
  136. % \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
  137. \newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
  138. \newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
  139. \newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
  140. \newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
  141. \newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
  142. %% "\alert" is already a beamer pre-defined
  143. \newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%
  144.  
  145. \def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}
  146.  
  147. \usepackage{gmp}
  148. \usepackage[final]{feynmp-auto}
  149.  
  150. \usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
  151. \bibliography{bib}
  152. \setbeamertemplate{bibliography item}[text]
  153.  
  154. \makeatletter\let\frametextheight\beamer@frametextheight\makeatother
  155.  
  156. % suppress frame numbering for backup slides
  157. % you always need the appendix for this!
  158. \newcommand{\backupbegin}{
  159. \newcounter{framenumberappendix}
  160. \setcounter{framenumberappendix}{\value{framenumber}}
  161. }
  162. \newcommand{\backupend}{
  163. \addtocounter{framenumberappendix}{-\value{framenumber}}
  164. \addtocounter{framenumber}{\value{framenumberappendix}}
  165. }
  166.  
  167.  
  168. \definecolor{links}{HTML}{2A1B81}
  169. %\hypersetup{colorlinks,linkcolor=,urlcolor=links}
  170.  
  171. % For shapo's formulas:
  172. \def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
  173. \def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
  174. \newcommand{\lsim}{\mathop{\lsi}}
  175. \newcommand{\gsim}{\mathop{\gsi}}
  176. \newcommand{\wt}{\widetilde}
  177. %\newcommand{\ol}{\overline}
  178. \newcommand{\Tr}{\rm{Tr}}
  179. \newcommand{\tr}{\rm{tr}}
  180. \newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
  181. \newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
  182. \newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
  183. \newcommand{\eV}{\rm{eV}}
  184. \newcommand{\keV}{\rm{keV}}
  185. \newcommand{\GeV}{\rm{GeV}}
  186. \newcommand{\TeV}{\rm{TeV}}
  187. \newcommand{\im}{\rm{Im}}
  188. \newcommand{\disp}{\displaystyle}
  189. \def\be{\begin{equation}}
  190. \def\ee{\end{equation}}
  191. \def\ba{\begin{eqnarray}}
  192. \def\ea{\end{eqnarray}}
  193. \def\d{\partial}
  194. \def\l{\left(}
  195. \def\r{\right)}
  196. \def\la{\langle}
  197. \def\ra{\rangle}
  198. \def\e{{\rm e}}
  199. \def\Br{{\rm Br}}
  200.  
  201.  
  202. \usepackage{pbsi}
  203. \usepackage[T1]{fontenc}
  204.  
  205. \def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace}
  206.  
  207.  
  208. \author{ {M. Chrzaszcz, K. M\"{u}eller}, A. Weiden }
  209. \institute{UZH}
  210. \title[Low Mass Drell-Yan at 7,8 and 13 $\rm TeV$]{Low Mass Drell-Yan at 7,8 and 13 $\rm TeV$ }
  211.  
  212.  
  213. \begin{document}
  214. \tikzstyle{every picture}+=[remember picture]
  215.  
  216. {
  217. \setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
  218. \begin{frame}[c]%{\phantom{title page}}
  219. \begin{center}
  220. \begin{center}
  221. \begin{columns}
  222. \begin{column}{0.75\textwidth}
  223. \flushright \bfseries \Huge {Low Mass Drell-Yan Status Report }
  224. \end{column}
  225. \begin{column}{0.02\textwidth}
  226. {~}
  227. \end{column}
  228. \begin{column}{0.23\textwidth}
  229. % \hspace*{-1.cm}
  230. \vspace*{-3mm}
  231. \includegraphics[width=0.6\textwidth]{lhcb-logo}
  232. \end{column}
  233. \end{columns}
  234. \end{center}
  235. \quad
  236. \vspace{3em}
  237. \begin{columns}
  238. \begin{column}{0.44\textwidth}
  239. \flushright \vspace{-1.8em} { \Large Marcin Chrzaszcz\\\vspace{-0.1em} Katharina M\"{u}eller\\\vspace{-0.1em} Andreas Weiden}
  240.  
  241. \end{column}
  242. \begin{column}{0.53\textwidth}
  243. \includegraphics[height=1.3cm]{uzh-transp}
  244. \end{column}
  245. \end{columns}
  246.  
  247. \vspace{1em}
  248. % \footnotesize\textcolor{gray}{With N. Serra, B. Storaci\\Thanks to the theory support from M. Shaposhnikov, D. Gorbunov}\normalsize\\
  249. \vspace{0.5em}
  250.  
  251. \textcolor{normal text.fg!50!Comment}{Analysis and Software Week, CERN\\February 1, 2017}
  252. \end{center}
  253. \end{frame}
  254. }
  255.  
  256.  
  257. \begin{frame}\frametitle{Introduction to Drell-Yan}
  258.  
  259. \begin{columns}
  260. \column{2.5in}
  261. \begin{itemize}
  262. \item Drell-Yan are process of two quark anihilations in which neutral current couples to two leptons.
  263. \item The cross section of this process depends on two components:
  264. \begin{itemize}
  265. \item Hard scattering process $\color{OrangeRed}{\Rrightarrow}$ NNLO pQCD.
  266. \item Parton Distribution Function (PDF).
  267. \end{itemize}
  268. \item Measurement of the cross section have a high sensitivity to the PDF
  269. \item Due to unique coverage $2<y<5$ LHCb probes the $Q^2-x$ region not covered by other experiments.
  270.  
  271. \end{itemize}
  272.  
  273. \column{2.5in}
  274. \includegraphics[width=0.95\textwidth]{images/feynmanDiagram_DrellYan_wRad.png}\\
  275. \includegraphics[width=0.85\textwidth]{images/Q2_x.png}
  276.  
  277. \end{columns}
  278.  
  279.  
  280. \end{frame}
  281.  
  282.  
  283. \begin{frame}\frametitle{Selection}
  284. \begin{itemize}
  285. \item Analysis based on 2011, 2012 data set. Now adding 2016.
  286. \item Trigger:
  287. \begin{itemize}
  288. \item \texttt{L0\_L0DiMuonDecision},
  289. \item \texttt{Hlt1DiMuonHighMassDecision},
  290. \item \texttt{Hlt2DiMuonDY(3,4)Decision}
  291. \end{itemize}
  292. \item Stripping:
  293. \begin{itemize}
  294. \item \texttt{StrippingDY2MuMuLine(3,4)}
  295. \end{itemize}
  296. \item Selection:
  297. \begin{itemize}
  298. \item $2<\eta^{\mu}<4.5$,
  299. \item $p^{\mu} > 10~\GeV$,
  300. \item $p_T^{\mu} > 3~\GeV$,
  301. \item $\chi^{2,\mu\mu}_{vtx}<5$,
  302. \item $10< m(\mu\mu) < 120~\GeV$.
  303. \end{itemize}
  304. \end{itemize}
  305. \end{frame}
  306.  
  307.  
  308. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  309. \begin{frame}\frametitle{Isolation}
  310. \begin{itemize}
  311. \item Drell-Yan unfortunately do not peak in mass $\twoheadrightarrow$ need another variable to control the purity.
  312. \item Instead we define an isolation variable:
  313. \begin{align*}
  314. \mu_{ {\rm{iso}}} = \log(p_T^{ cone}(\mu, 0.5) - p_T^{ cone}(\mu, 0.1))
  315. \end{align*}
  316. \item For two muons we take the maximum of the two isolations:
  317. \begin{align*}
  318. \mu\mu_{ {\rm{iso}}} = \max( \mu_{ {\rm{iso}}}^+, \mu_{ {\rm{iso}}}^-)
  319. \end{align*}
  320. \end{itemize}
  321. \begin{center}
  322. \begin{columns}
  323. \column{0.5\textwidth}
  324. \includegraphics[angle=-90,width=0.9\textwidth]{images/Z0_iso.pdf}
  325. \column{0.5\textwidth}
  326. \includegraphics[width=0.8\textwidth]{images/isolation.png}
  327. \end{columns}
  328.  
  329. \end{center}
  330. \end{frame}
  331.  
  332.  
  333. \begin{frame}
  334. \frametitle{Isolation as a function of mass}
  335. Normalized log(isolation) in selected mass bins:
  336. \begin{figure}
  337. \includegraphics[angle=-90,width=.52\linewidth]{{images/full_isolation_mass_selected_MC_2012_Down}}
  338. \includegraphics[angle=-90,width=.52\linewidth]{{images/full_isolation_mass_selected_Data_2012_Down}}
  339. \end{figure}
  340.  
  341. Backgrounds smear the isolation in data, especially away from resonances ({\color{orange}orange}). In MC very small mass-dependency, which we need to study.
  342.  
  343. Even at $Z$ peak ({\color{SkyBlue} blue} and {\color{PineGreen}green}), isolation bulk wider in data than in MC.
  344. \end{frame}
  345.  
  346. \begin{frame}
  347. \frametitle{Explanation of variables}
  348. \vspace{-1em}
  349. \begin{figure}
  350. \includegraphics[width=.8\linewidth]{images/bulk_variables.png}
  351. \end{figure}
  352. \[1 / \text{bulk fraction} = \frac{\int {\color{blue}isolated}}{\int {\color{red}bulk}}\]
  353. \end{frame}
  354.  
  355.  
  356.  
  357. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  358.  
  359.  
  360. \begin{frame}{Mass dependency of bulk}
  361. MC, 2012
  362. \centering
  363. \begin{figure}
  364. \includegraphics[angle=-90,width=.52\linewidth]{images/MC_isolation_mass_bulk_fraction}
  365. \includegraphics[angle=-90,width=.52\linewidth]{images/MC_isolation_mass_bulk_mean}
  366. \end{figure}
  367. Large mass-dependence of bulk fraction, but smaller mass-dependence of bulk mean.
  368. Difference between {\color{orange}MagUp} and {\color{pink}MagDown} to be investigated.
  369. \end{frame}
  370. \begin{frame}
  371. \frametitle{Effect of rapidity}
  372. \framesubtitle{$Z$-peak}
  373. Strong dependency of bulk fraction of rapidity.
  374. \begin{figure}
  375. \includegraphics[angle=-90,width=.7\linewidth]{images/Z_isolation_rapidity_bulk_fraction}
  376. \end{figure}
  377. 1 / bulk fraction under-estimated in MC.
  378. \end{frame}
  379. \begin{frame}
  380. \frametitle{Effect of rapidity}
  381. \framesubtitle{$Z$-peak}
  382. \begin{figure}
  383. \includegraphics[angle=-90,width=.52\linewidth]{images/Z_isolation_rapidity_bulk_mean}
  384. \includegraphics[angle=-90,width=.52\linewidth]{images/Z_isolation_rapidity_bulk_std}
  385. \end{figure}
  386. MC and data bulk mean and width agree at $Z$-peak. Data shows some dependency of bulk width for high $y$, MC not.
  387. \end{frame}
  388.  
  389. \begin{frame}
  390. \frametitle{Effect of rapidity}
  391. \framesubtitle{Full mass-range}
  392. \vspace{-0.4em}
  393. \begin{figure}
  394. \includegraphics[angle=-90,width=.7\linewidth]{images/full_rapidity_mass_selected_MC_2012_Down}
  395. \end{figure}
  396.  
  397. Rapidity distribution is not the same for different mass-bins (different regions in $x$). Working on finding out if mass dependence is given by this (to be finished by next week).
  398. \end{frame}
  399.  
  400.  
  401.  
  402. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  403. \begin{frame}\frametitle{Backgrounds}
  404. \begin{itemize}
  405. \item There are two sources of backgrounds:
  406. \begin{itemize}
  407. \item Heavy flavour decays.
  408. \item Mis-ID.
  409. \end{itemize}
  410. \item For fitting the $\mu\mu_{iso}$ we need to know both the signal and background distribution.
  411. \item Background templates can be determined from data
  412. \begin{itemize}
  413. \item Heavy flavour decays:\\
  414. $\looparrowright$ Requiring the $\chi^{2,\mu\mu}_{vtx}>16$\\
  415. $\looparrowright$ For cross-check $\rm IP>5~\rm mm$
  416. \item Miss-ID:\\
  417. $\looparrowright$ Require that both muons have the same sign.\\
  418. $\looparrowright$ For cross-check take the minimum bias stripping line.
  419. \end{itemize}
  420. \end{itemize}
  421. \end{frame}
  422.  
  423.  
  424.  
  425.  
  426. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  427. \begin{frame}\frametitle{Cross section calculations}
  428. \begin{itemize}
  429. \item To calculate the cross section the luminosity will be used:
  430. \end{itemize}
  431. \begin{align*}
  432. \sigma= \dfrac{ {\color{OliveGreen}{\varrho}} f^{{\rm MIG}}}{{\color{OliveGreen}{\mathcal{L}}} {\color{OliveGreen}{ \varepsilon^{{\rm SEL}}}}} \sum \dfrac{1}{\varepsilon^{{\rm TRIG}} \varepsilon^{{\rm MUID}} {\color{OliveGreen}{\varepsilon^{{\rm GEC}}}} \varepsilon^{{\rm TRACK}}},
  433. \end{align*}
  434. where\\
  435. \begin{itemize}
  436. \item $ {\color{OliveGreen}{\varrho}}$ signal fraction from the fit.
  437. \item $f^{{\rm MIG}}$ correction to bin-bin migration.
  438. \item $ {\color{OliveGreen}{\mathcal{L}}}$ integrated luminosity.
  439. \item $ {\color{OliveGreen}{\varepsilon^{{\rm SEL}}}}$ efficiency on the vertex requirement.
  440. \item $\varepsilon^{{\rm MUID}}$ muon identification efficiency.
  441. \item $ {\color{OliveGreen}{\varepsilon^{{\rm GEC}}}}$ global event cut efficiency.
  442. \item $\varepsilon^{{\rm TRACK}}$ tracking efficiency.
  443. \end{itemize}
  444. \end{frame}
  445.  
  446.  
  447.  
  448. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  449. \begin{frame}\frametitle{$ {\color{OliveGreen}{\varepsilon^{{\rm SEL}}}}$}
  450. \ARROW Evaluated using MC sample:\\{~}\\
  451.  
  452. \begin{center}
  453. \begin{tabular}{|c|c|}
  454. \hline
  455. $2011$ MagDown & $0.21320 \pm 0.00014$ \\
  456. $2011$ MagUp & $0.21306 \pm 0.00014$ \\
  457. $2012$ MagDown & $0.20402 \pm 0.00013$ \\
  458. $2012$ MagUp & $0.20372 \pm 0.00013$ \\
  459. \hline
  460. \end{tabular}
  461. \end{center}
  462.  
  463. \ARROW Good agreement between polarities!\\
  464. \ARROW $2012$ efficiency is lower than the $2011$.\\
  465. \ARROW Will merge the polarities:
  466. \begin{center}
  467. \begin{tabular}{|c|c|}
  468. \hline
  469. $2011$ & $0.21313 \pm 0.00010$ \\
  470. $2012$ & $0.20387 \pm 0.00009$ \\
  471.  
  472. \hline
  473. \end{tabular}
  474. \end{center}
  475.  
  476.  
  477.  
  478. \end{frame}
  479.  
  480.  
  481.  
  482. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  483. \begin{frame}\frametitle{$ {\color{OliveGreen}{\varepsilon^{{\rm GEC}}}}$}
  484. \ARROW Evaluated on data directly, by fitting the $\Gamma( {\rm SPDHits})$ to data:\\{~}\\
  485. \begin{columns}
  486. \column{0.1in}
  487. {~}\\
  488. \column{0.45\textwidth}
  489. \ARROW $2011$ data:
  490. \includegraphics[width=0.95\textwidth]{{images/spdhits_11_y_2_4.5_10500_60000}.png}
  491. \column{0.45\textwidth}
  492. \ARROW $2012$ data:
  493. \includegraphics[width=0.95\textwidth]{{images/spdhits_12_y_2_4.5_10500_60000}.png}
  494.  
  495. \end{columns}
  496.  
  497.  
  498.  
  499.  
  500. \end{frame}
  501.  
  502.  
  503. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  504. \begin{frame}\frametitle{$ {\color{OliveGreen}{\varepsilon^{{\rm GEC}}}}$}
  505. \ARROW Testing the $y - M_{\mu\mu}$ dependence:\\{~}\\
  506. \begin{columns}
  507. \column{0.1in}
  508. {~}\\
  509. \column{0.45\textwidth}
  510. \ARROW $2011$ data\\ $y \in(2,2.25)$\\ $M_{\mu\mu} \in (10.5,12)~\GeV$ :
  511. \includegraphics[width=0.95\textwidth]{{images/spdhits_11_y_2_2.25_10500_12000}.png}
  512. \column{0.45\textwidth}
  513. \ARROW $2012$ data\\ $y \in(2,2.25)$\\ $M_{\mu\mu} \in (10.5,12)~\GeV$ :
  514. \includegraphics[width=0.95\textwidth]{{images/spdhits_12_y_2_2.25_10500_12000}.png}
  515. \end{columns}
  516.  
  517. \ARROW We didn't observe a variation of the efficiency as a function of $M_{\mu\mu}$ and $y$.
  518.  
  519. \end{frame}
  520.  
  521.  
  522.  
  523.  
  524. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  525. \begin{frame}\frametitle{$ {\color{OliveGreen}{\varepsilon^{{\rm GEC}}}}$}
  526. \ARROW Proposed systematic:{~}\\
  527. \begin{columns}
  528. \column{0.1in}
  529. {~}\\
  530. \column{0.45\textwidth}
  531. \ARROW $2011$ data:
  532. \includegraphics[width=0.95\textwidth]{{images/eff11}.png}
  533. \column{0.45\textwidth}
  534. \ARROW $2012$ data:
  535. \includegraphics[width=0.95\textwidth]{{images/eff12}.png}
  536. \end{columns}
  537. {~}\\
  538. \ARROW Suggest the RMS as small systematic.
  539.  
  540. \end{frame}
  541.  
  542.  
  543.  
  544.  
  545.  
  546. \begin{frame}
  547. \frametitle{Conclusions}
  548. \begin{itemize}
  549. \item MC isolation template describes data at $Z$-peak reasonably well
  550. \item But some differences (mainly in $y$) exist, so have to take templates from data (MC can still serve as cross-check)
  551. \item Templates show a mass-dependence in MC (especially bulk fraction)
  552. \item Different mass-regions have different rapidity distributions
  553. \item Needs to be determined if mass-dependence is driven by rapidity-dependence
  554. \item 2016 MC requested
  555. \end{itemize}
  556. \end{frame}
  557.  
  558. \begin{frame}{Mass dependency of bulk}
  559. MC vs data, 2012
  560. \centering
  561. \begin{figure}
  562. \includegraphics[angle=-90,width=.52\linewidth]{images/full_isolation_mass_bulk_mean}
  563. \includegraphics[angle=-90,width=.52\linewidth]{images/full_isolation_mass_bulk_std}
  564. \end{figure}
  565. Near the $Z$-peak and the $\Upsilon$-peak good agreement.
  566.  
  567. Small mass-dependency even in MC ($value\%$).
  568. \end{frame}
  569. \begin{frame}
  570. \frametitle{Effect of multiplicity}
  571. Isolation should, in general, be dependent on multiplicity. First, check if multiplicity is mass dependent.
  572.  
  573. \begin{figure}
  574. \includegraphics[angle=-90,width=.52\linewidth]{images/full_nTracks_mass_selected_MC_2012_Down}
  575. \includegraphics[angle=-90,width=.52\linewidth]{images/full_nSPD_mass_selected_MC_2012_Down}
  576. \end{figure}
  577. No mass dependency of multiplicity ($nTracks$ and $nSPD$) in MC
  578. \end{frame}
  579. \begin{frame}
  580. \frametitle{Effect of multiplicity}
  581. At $Z$-peak ($ 60 < M_{\mu\mu} < 120 GeV/c^2$)
  582. Isolation not independent of $nTracks$:
  583.  
  584. \begin{figure}
  585. \includegraphics[angle=-90,width=.52\linewidth]{images/Z_isolation_nTracks_bulk_mean}
  586. \includegraphics[angle=-90,width=.52\linewidth]{images/Z_isolation_nTracks_bulk_std}
  587. \end{figure}
  588. In data, width and mean of bulk dependent on $nTracks$, in MC only mean.
  589. \end{frame}
  590. \begin{frame}
  591. \frametitle{Effect of multiplicity}
  592. At $Z$-peak ($ 60 < M_{\mu\mu} < 120 GeV/c^2$).
  593. Bulk width not independent of $nSPD$:
  594.  
  595. \begin{figure}
  596. \includegraphics[angle=-90,width=.52\linewidth]{Z_isolation_nSPD_bulk_mean}
  597. \includegraphics[angle=-90,width=.52\linewidth]{Z_isolation_nSPD_bulk_std}
  598. \end{figure}
  599. Mean of bulk agrees in data and MC.
  600. \end{frame}
  601.  
  602. \begin{frame}
  603. \frametitle{Multiplicity reweighting}
  604. {\color{orange}Data}, {\color{PineGreen}MC befor reweighting}, {\color{SkyBlue}MC after reweighting}
  605. \begin{figure}
  606. \includegraphics[angle=-90,width=.9\linewidth]{multiplicity_reweighting_md_MC}
  607. \end{figure}
  608. \end{frame}
  609.  
  610.  
  611.  
  612. \backupbegin
  613.  
  614. \begin{frame}\frametitle{Backup}
  615. \topline
  616.  
  617. \end{frame}
  618.  
  619. \backupend
  620.  
  621. \end{document}