Newer
Older
Presentations / Drell_Yan / LHCbweek_12_2015 / mchrzasz.tex~
@mchrzasz mchrzasz on 5 Dec 2015 15 KB LHCb week presention for kucharcz
\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}

\usepackage[english]{babel} 
\usepackage{polski}         


\usetheme[
	bullet=circle,		% Other option: square
	bigpagenumber,		% circled page number on lower right
	topline=true,			% colored bar at the top of the frame 
	shadow=false,			% Shading for beamer blocks
	watermark=BG_lower,	% png file for the watermark
	]{Flip}

%\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}
                            

\usepackage[lf]{berenis}
\usepackage[LY1]{fontenc}
\usepackage[utf8]{inputenc}

\usepackage{emerald}
\usefonttheme{professionalfonts}
\usepackage[no-math]{fontspec}		
\defaultfontfeatures{Mapping=tex-text}	% This seems to be important for mapping glyphs properly

\setmainfont{Gillius ADF}			% Beamer ignores "main font" in favor of sans font
\setsansfont{Gillius ADF}			% This is the font that beamer will use by default
% \setmainfont{Gill Sans Light}		% Prettier, but harder to read

\setbeamerfont{title}{family=\fontspec{Gillius ADF}}

\input t1augie.fd

%\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
%\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
% \newcommand{\handwriting}{}	% If you prefer no special handwriting font or don't have augie

%% Gill Sans doesn't look very nice when boldfaced
%% This is a hack to use Helvetica instead
%% Usage: \textbf{\forbold some stuff}
%\newcommand{\forbold}{\fontspec{Arial}}

\usepackage{graphicx}
\usepackage[export]{adjustbox}

\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{colortbl}
\usepackage{mathrsfs} 			% For Weinberg-esque letters
\usepackage{cancel}				% For "SUSY-breaking" symbol
\usepackage{slashed}            % for slashed characters in math mode
\usepackage{bbm}                % for \mathbbm{1} (unit matrix)
\usepackage{amsthm}				% For theorem environment
\usepackage{multirow}			% For multi row cells in table
\usepackage{arydshln} 			% For dashed lines in arrays and tables
\usepackage{siunitx}
\usepackage{xhfill}
\usepackage{grffile}
\usepackage{textpos}
\usepackage{subfigure}
\usepackage{tikz}

%\usepackage{hepparticles}    
\usepackage[italic]{hepparticles}     

\usepackage{hepnicenames} 

% Drawing a line
\tikzstyle{lw} = [line width=20pt]
\newcommand{\topline}{%
  \tikz[remember picture,overlay] {%
    \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
             -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}



% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\usepackage{tikzfeynman}		% For Feynman diagrams
\usetikzlibrary{arrows,shapes}
\usetikzlibrary{trees}
\usetikzlibrary{matrix,arrows} 				% For commutative diagram
% http://www.felixl.de/commu.pdf
\usetikzlibrary{positioning}				% For "above of=" commands
\usetikzlibrary{calc,through}				% For coordinates
\usetikzlibrary{decorations.pathreplacing}  % For curly braces
% http://www.math.ucla.edu/~getreuer/tikz.html
\usepackage{pgffor}							% For repeating patterns

\usetikzlibrary{decorations.pathmorphing}	% For Feynman Diagrams
\usetikzlibrary{decorations.markings}
\tikzset{
	% >=stealth', %%  Uncomment for more conventional arrows
	vector/.style={decorate, decoration={snake}, draw},
	provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
	antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
	fermion/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
	fermionbar/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
	fermionnoarrow/.style={draw=gray},
	gluon/.style={decorate, draw=black,
		decoration={coil,amplitude=4pt, segment length=5pt}},
	scalar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	scalarbar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
	scalarnoarrow/.style={dashed,draw=black},
	electron/.style={draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
}

% TIKZ - for block diagrams, 
% from http://www.texample.net/tikz/examples/control-system-principles/
% \usetikzlibrary{shapes,arrows}
\tikzstyle{block} = [draw, rectangle, 
minimum height=3em, minimum width=6em]




\usetikzlibrary{backgrounds}
\usetikzlibrary{mindmap,trees}	% For mind map
\newcommand{\degree}{\ensuremath{^\circ}}
\newcommand{\E}{\mathrm{E}}
\newcommand{\Var}{\mathrm{Var}}
\newcommand{\Cov}{\mathrm{Cov}}
\newcommand\Ts{\rule{0pt}{2.6ex}}       % Top strut
\newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut

\graphicspath{{images/}}	% Put all images in this directory. Avoids clutter.

% SOME COMMANDS THAT I FIND HANDY
% \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
\newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
\newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
\newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
\newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
\newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
%% "\alert" is already a beamer pre-defined
\newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%

\def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}

\usepackage{gmp}
\usepackage[final]{feynmp-auto}

\usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
\bibliography{bib}
\setbeamertemplate{bibliography item}[text]

\makeatletter\let\frametextheight\beamer@frametextheight\makeatother

% suppress frame numbering for backup slides
% you always need the appendix for this!
\newcommand{\backupbegin}{
	\newcounter{framenumberappendix}
	\setcounter{framenumberappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
	\addtocounter{framenumberappendix}{-\value{framenumber}}
	\addtocounter{framenumber}{\value{framenumberappendix}} 
}


\definecolor{links}{HTML}{2A1B81}
%\hypersetup{colorlinks,linkcolor=,urlcolor=links}

% For shapo's formulas:
\def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\newcommand{\lsim}{\mathop{\lsi}}
\newcommand{\gsim}{\mathop{\gsi}}
\newcommand{\wt}{\widetilde}
%\newcommand{\ol}{\overline}
\newcommand{\Tr}{\rm{Tr}}
\newcommand{\tr}{\rm{tr}}
\newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
\newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
\newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
\newcommand{\eV}{\rm{eV}}
\newcommand{\keV}{\rm{keV}}
\newcommand{\GeV}{\rm{GeV}}
\newcommand{\im}{\rm{Im}}
\newcommand{\disp}{\displaystyle}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\ba{\begin{eqnarray}}
\def\ea{\end{eqnarray}}
\def\d{\partial}
\def\l{\left(}
\def\r{\right)}
\def\la{\langle}
\def\ra{\rangle}
\def\e{{\rm e}}
\def\Br{{\rm Br}}



\author{ {\fontspec{Trebuchet MS}Marcin Chrz\k{a}szcz} (Universit\"{a}t Z\"{u}rich)}
\institute{UZH}
\title[Low Mass Drell-Yan Status Report ]{Low Mass Drell-Yan Status Report }
\date{7 September 2015}


\begin{document}
\tikzstyle{every picture}+=[remember picture]

{
\setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
\begin{frame}[c]%{\phantom{title page}} 
\begin{center}
\begin{center}
	\begin{columns}
		\begin{column}{0.75\textwidth}
			\flushright\fontspec{Trebuchet MS}\bfseries \Huge {Low Mass Drell-Yan Status Report }
		\end{column}
                \begin{column}{0.02\textwidth}
                  {~}
                  \end{column}
                \begin{column}{0.23\textwidth}
                 % \hspace*{-1.cm}
                  \vspace*{-3mm}
                  \includegraphics[width=0.6\textwidth]{lhcb-logo}
                  \end{column}
	        
	\end{columns}
\end{center}
	\quad
	\vspace{3em}
\begin{columns}
\begin{column}{0.44\textwidth}
\flushright \vspace{-1.8em} {\fontspec{Trebuchet MS} \Large Marcin ChrzÄ…szcz\\\vspace{-0.1em} Katharina M\"{u}eller Nicola Chiapolini}

\end{column}
\begin{column}{0.53\textwidth}
\includegraphics[height=1.3cm]{uzh-transp}
\end{column}
\end{columns}

\vspace{1em}
%		\footnotesize\textcolor{gray}{With N. Serra, B. Storaci\\Thanks to the theory support from M. Shaposhnikov, D. Gorbunov}\normalsize\\
\vspace{0.5em}

	\textcolor{normal text.fg!50!Comment}{Electroweak WG, CERN\\September 7, 2015}
\end{center}
\end{frame}
}


\begin{frame}\frametitle{Introduction to Drell-Yan}

\begin{columns}
\column{2.5in}
\begin{itemize}
\item Drell-Yan are process of two quark anihilations in which neutral coupling to two leptons.
\item The cross section of this process depends on two components:
\begin{itemize}
\item Hard scattering process $\color{OrangeRed}{\Rrightarrow}$ NNLO pQCD.
\item Parton Distribution Function (PDF).
\end{itemize}
\item Measurement of the cross section have a high sensitivity to the PDF
\item Due to unique coverage $2<y<5$ LHCb probes the $Q^2-x$ region not covered by other experiments.

\end{itemize}

\column{2.5in}
\includegraphics[width=0.95\textwidth]{images/feynmanDiagram_DrellYan_wRad.png}\\
\includegraphics[width=0.85\textwidth]{images/Q2_x.png}

\end{columns}


\end{frame}


\begin{frame}\frametitle{Selection}
\begin{itemize}
\item Main topic of Nicolas PhD.
\item Analysis based on 2011 data set.
\item Trigger: 
\begin{itemize}
\item \texttt{L0\_L0DiMuonDecision}, 
\item \texttt{Hlt1DiMuonHighMassDecision},
\item \texttt{Hlt2DiMuonDY(3,4)Decision}
\end{itemize}
\item Stripping: 
\begin{itemize}
\item \texttt{StrippingDY2MuMuLine(3,4)}
\end{itemize}
\item Selection: 
\begin{itemize}
\item $2<\eta^{\mu}<4.5$,
\item $p^{\mu} > 10~\GeV$,
\item $p_T^{\mu} > 3~\GeV$,
\item $\chi^{2,\mu\mu}_{vtx}<5$,
\item $10< m(\mu\mu) < 120~\GeV$.
\end{itemize} 
\end{itemize}
\end{frame}

\begin{frame}\frametitle{Bins of search}
$\Rrightarrow$ The measurement will be performed in the bins of dimuon mass and pseudo-rapidity:
\includegraphics[width=0.8\textwidth]{images/table.png}

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Isolation}
\begin{itemize}
\item Drell-Yan unfortunately do not peak in mass $\twoheadrightarrow$ need another variable to control the purity.
\item Instead we define an isolation variable:
\begin{align*}
\mu_{ {\rm{iso}}} = \log(p_T^{ cone}(\mu, 0.5) - p_T^{ cone}(\mu, 0.1))
\end{align*}
\item For two muons we take the maximum of the two isolations:
\begin{align*}
\mu\mu_{ {\rm{iso}}} = \max( \mu_{ {\rm{iso}}}^+, \mu_{ {\rm{iso}}}^-)
\end{align*}
\end{itemize}
\begin{center}
\begin{columns}
\column{0.5\textwidth}
\includegraphics[angle=-90,width=0.9\textwidth]{images/Z0_iso.pdf}
\column{0.5\textwidth}
\includegraphics[width=0.8\textwidth]{images/iso.png}
\end{columns}

\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Isolation mass dependence}
\begin{itemize}
\item Unfortunately the $\mu\mu_{iso}$ is showing some mass dependence:
\end{itemize}
\begin{center}
\includegraphics[width=0.75\textwidth]{images/DY.png}
\end{center}


\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Backgrounds}
\begin{itemize}
\item There are two sources of backgrounds:
\begin{itemize}
\item Heavy flavour decays.
\item Mis-ID.
\end{itemize}
\item For fitting the $\mu\mu_{iso}$ we need to know both the signal and background distribution.
\item Background templates can be determined from data
\begin{itemize}
\item Heavy flavour decays:\\
$\looparrowright$ Requiring the $\chi^{2,\mu\mu}_{vtx}>16$\\
$\looparrowright$ For cross-check $\rm IP>5~\rm mm$
\item Miss-ID:\\
$\looparrowright$ Require that both muons have the same sign.\\
$\looparrowright$ For cross-check take the minimum bias stripping line.
\end{itemize}


\end{itemize}



\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Signal template}
\begin{columns}
\column{2.7in}
\begin{itemize}
\only<1>{
\item We do not want to use MC for determination of the signal $\mu\mu_{iso}$ template.
\item We adopted a data driven procedure:
\begin{itemize}
\item The template is taken from data and scaled to account for $\mu\mu_{iso}$ mass dependence.
\end{itemize}
\item Possibility 1:
\begin{itemize}
\item Take the \textit{Splot} $\PZ \to \mu \mu$ from data and multiply it by the scale factor determined from minimalising the $\chi^2$ between MC $\PZ$ and DY in particular region.

\end{itemize}
}
\only<2>{
\item Possibility 2:
\begin{itemize}
\item Use a second decay from data: $\PUpsilon \to \mu \mu$. 
\item The template for a given mass range ($M_{\min}, M_{\max}$) is choose as:
\begin{align*}
{\rm{Temp}}(M) = \\ {\rm{Temp}}^{\PUpsilon} \frac{(M_{\PZ} -M_{\PUpsilon} - (M- M_{\PUpsilon} ))}{M_{\PZ} -M_{\PUpsilon}}\\  + {\rm{Temp}}^{\PZ} \frac{M- M_{\PUpsilon} }{M_{\PZ} -M_{\PUpsilon}}
\end{align*}
\item Then the new obtained template is scaled in the same way as the previous one.

\end{itemize}
}
\only<3>{
\item Possibility 3:
\begin{itemize}
\item The one problem with this distributions is that the first bin is insensitive to scaling factors.
\item On top of the previously defined template we define an additional scaling factor that modifies the ratio between the first and the rest of the bins.
\item The second scaling factor is the same as previous.

\end{itemize}
}


\end{itemize}

\column{2.3in}
\only<1>{
\includegraphics[width=0.9\textwidth]{images/result_Z0.png}\\
\includegraphics[width=0.9\textwidth]{{images/3.0_3.25_10500.0_12000.0Nicola}.png}
}
\only<2>{
\includegraphics[width=0.9\textwidth]{images/result_upsilon.png}\\
\includegraphics[width=0.9\textwidth]{{images/3.0_3.25_10500.0_12000.0Me}.png}
}
\only<3>{
\includegraphics[width=0.9\textwidth]{{images/3.0_3.25_10500.0_12000.0me2}.png}\\
\includegraphics[angle=-90,width=0.9\textwidth]{images/Z0_iso.pdf}
}


\end{columns}


\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}\frametitle{Signal template - Summary}
\begin{itemize}
\item We are investigating the impact on the analysis for the different approaches
\item For now it looks like the results are within the statistical error of the fits. 
\item The reason for this that in the high pseudo-rapidity region $4<y<4.5$ there is very small number of $\PZ$ decays, so the additional $\PUpsilon$ decays are helping.
\item We are considering constrainting the background shape in the fits (we know background is exponential in mass).
\end{itemize}
\includegraphics[angle=-90,width=0.3\textwidth]{{images/10500_11000_y_bin_2_4.5}.pdf}
\includegraphics[angle=-90,width=0.3\textwidth]{{images/14000_15000_y_bin_2_4.5}.pdf}
\includegraphics[angle=-90,width=0.3\textwidth]{{images/20000_25000_y_bin_2_4.5}.pdf}
\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}\frametitle{Conclusions}
$\Rrightarrow$ Work that still needs to be done:
\begin{itemize}
\item Checking the efficiencies.
\item Unfolding the mass distribution.
\item FSR corrections.
\item Write up the note for WG review.
\end{itemize}

\end{frame}



\backupbegin   

\begin{frame}\frametitle{Backup}
\topline 

\end{frame}

\backupend			

\end{document}