Newer
Older
Presentations / Tau2012 / SuperB_status_v5 / SuperB_status_v6.tex
@mchrzasz mchrzasz on 9 Jan 2013 21 KB first commit
\documentclass{beamer}
\usepackage{pgf}
\usepackage{times}
\usepackage[T1]{fontenc}
%\usepackage[mathscr]{eucal}
%\usepackage{mathptmx}
%\usepackage{mathrsfs}
\usepackage{hyperref}
% \usepackage{pgfpagfes}
% \setbeameroption{show notes on second screen}
%\pgfpagesuselayout{4 on 1}[a4paper,border shrink=5mm,landscape]
\usepackage{xcolor}
%\usepackage[dvipsnames]{xcolor}
%\usepackage{amsfonts}
%\usepackage{amsmath}
% \usepackage[amssymb]{SIunits}
%\usepackage{natbib}
%\usepackage{amssymb}
\usepackage{hepparticles}
\usepackage{hepnicenames}
\usepackage{hepunits}
\usepackage{tikz}
\usepackage[polish]{babel}
%\usepackage{lmodern}
\usepackage{feynmp}
% suppress navigation bar
\beamertemplatenavigationsymbolsempty
\usepackage[mathscr]{eucal}
\usepackage{mathrsfs}
\mode<presentation>
{
  \usetheme{bunsen}
  \setbeamercovered{transparent}
  \setbeamertemplate{items}[circle]
}

% set fonts
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{verbatim}

\usetikzlibrary{arrows}
\usetikzlibrary{shapes}

%\usepackage{gfsartemisia-euler}
%\usepackage[T1]{fontenc}
\setbeamerfont{frametitle}{size=\LARGE,series=\bfseries}
\tikzstyle{decision} = [diamond, draw, fill=gray!20, 
    text width=4.5em, text badly centered, node distance=3cm, inner sep=0pt]
\tikzstyle{block} = [rectangle, draw, fill=blue!10, 
    text width=5em, text centered, rounded corners, minimum height=2em]
\tikzstyle{line} = [draw, -latex']
\tikzstyle{cloud} = [draw, ellipse,fill=red!10, node distance=3cm,
    minimum height=2em]

\tikzstyle{every picture}+=[remember picture]


\renewcommand{\PKs}{{\HepParticle{K}{S}{}\xspace}}
% color definitions
\usepackage{color}
\definecolor{uipoppy}{RGB}{225, 64, 5}
\definecolor{uipaleblue}{RGB}{96,123,139}
\definecolor{uiblack}{RGB}{0, 0, 0}

% caption styling
%\DeclareCaptionFont{uiblack}{\color{uiblack}}
%\DeclareCaptionFont{uipoppy}{\color{uipoppy}}
%\captionsetup{labelfont={uipoppy},textfont=uiblack}

% see the macros.tex file for definitions
\include{macros}

% title slide definition
\title{The SuperB factory}  
\subtitle{physics prospects and project status}
\author{Marcin Chrz\k{a}szcz}
\institute[Institute of Nuclear Physics]
{
Institute of Nuclear Physics,
\newline Polish Academy of Science,
\newline on behalf of the SuperB collaboration
}


\date{$21^{st}$ September $2012$} 

 

\begin{document}


\setbeamertemplate{background}
{\includegraphics[width=\paperwidth,height=\paperheight]{frontpage_bg_mine}}
\setbeamertemplate{footline}[default]

\begin{frame}
\vspace{1.5cm}
\begin{columns}
\column{2.75in}
  \titlepage
  \vspace{0.8cm}
  \begin{center}
    \includegraphics[height=1.0cm,keepaspectratio ]{pic/ifj.png}
   \hspace{1cm}
  \includegraphics[height=1.0cm]{pic/SuperB_logo.png}
   \end{center}
  \vspace{10cm}
\column{2.0in}
\end{columns}
\end{frame}



%tutaj mamy pierwsza strone


\section[Outline]{}
\begin{frame}
\tableofcontents
\end{frame}
\setbeamertemplate{background}
 {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}}
\setbeamertemplate{footline}[bunsentheme]

%normal slides
\section{Introduction}


\begin{frame}\frametitle{B factories}

%B factories have achieved great successes over the last dozen of years. They will be succeeded by the Super Flavor Factories:
B factories have contributed to many important physics discoveries over the last decade. They will be succeeded by the Super Flavor Factories:
\begin{exampleblock}{Super Flavor Factories} \begin{enumerate}
\item Data $75 ab^{-1}$
\item Luminosity $10^{36} cm^{-2} s^{-1} $
\item Flexibility to run on charm threshold with luminosity $10^{35} cm^{-2} s^{-1} $
\item Longitudinal polarization of electron beam $80 \% $
\item Upgraded BaBar detector
\item Start of data taking: 2018
\item $10ab^{-1}$ per year

\end{enumerate}


\end{exampleblock}

\end{frame}

\section{SuperB Infrastructure}



\begin{frame}\frametitle{Tor Vergata Site}

\vspace{0.8cm}
\includegraphics[scale=0.35]{pic/tor_veggata_site.png}
\newline Important dates:
\begin{enumerate}
\item TDR: Autumn this year.
\item Colliding beams: June 2018.
\end{enumerate}


\end{frame}


%\subsection{Accelerator}
\begin{frame}\frametitle{Tor Vergata Site}

\vspace{0.7cm}
\includegraphics[scale=0.35]{pic/acc.png}



\end{frame}






%%%%%%%%%%% uFFFFFFFFFFFFFFFFFfff detector  finished


\section{B Physics}



\subsection{Precision Measurements}
\begin{frame}\frametitle{CKM Matrix}
\only<1>{
\vspace{0.5cm}
%\hspace{0.7cm}
\begin{columns}[c]

\column{2.5in}

 \includegraphics[scale=0.4]{pic/ckm_m1.png}
 \center $\Delta \overline{\eta}= 0.016$
 \center $\Delta \overline{\rho}= 0.028$

\column{2.5in}
\end{columns}
}
\only<2>{


\vspace{0.5cm}
%\hspace{0.7cm}
\begin{columns}[c]
\column{2.5in}

 \includegraphics[scale=0.4]{pic/ckm_m1.png}

\column{2.5in}
\includegraphics[scale=0.4]{pic/ckm_m2.png}


\end{columns}

\begin{columns}[c]
\column{2.2in}


 \center $\Delta \overline{\eta}= 0.016$
 \center $\Delta \overline{\rho}= 0.028$
\column{2.8in}

 $\Delta \overline{\eta}= 0.0024$   
\newline $\Delta \vert V_{cb} \vert_{incl} = 0.5\% $   $\Delta \vert V_{cb} \vert_{excl} = 1.0 \%$
\newline $\Delta \overline{\rho}= 0.0028$ 
\newline  $\Delta \vert V_{ub} \vert_{incl} = 1.0\% $   $\Delta \vert V_{ub} \vert_{excl} = 3.0 \%$


\end{columns}






}

%%%%%%%%%%%%






\end{frame}








\begin{frame}\frametitle{$B \rightarrow \tau \nu$}
\vspace{0.5cm}
\hspace{0.7cm}
\begin{columns}[c]
\column{3.8in}
\hspace{0.7cm}{
%\hspace{0.3cm}}
Precise SM prediction:
\small \newline $Br(B \rightarrow l \nu) = \dfrac{G^{2}_{F} m_{B}}{8\pi} m_{l}^{2} (1-\dfrac{m_{l}^{2}}{m_{B}^{2}})f_{B}^{2}\vert V_{ub}\vert^{2} \tau_{B}$
\newline In SUSY:
\small \newline $Br(B \rightarrow l \nu) = \dfrac{G^{2}_{F} m_{B}}{8\pi} m_{l}^{2} (1-\dfrac{m_{l}^{2}}{m_{B}^{2}})f_{B}^{2}\vert V_{ub}\vert^{2} \tau_{B}(1-\dfrac{tan^{2}\beta}{1+\overline{\epsilon} tan \beta}\dfrac{m_{B}^{2}}{m_{H}^{2}})$
}
\center \includegraphics[scale=0.16]{pic/excl.png}


\column{1.5in}
\includegraphics[scale=0.2]{pic/b2taunu.png}
\newline \includegraphics[scale=0.2]{pic/higggs.png}
\end{columns}


\end{frame}

\subsection{TDCP}
\begin{frame}\frametitle{Time-Dependent CP (TDCP)}

%Time-dependent CP can be signs of new physics. One has to study a set of modes:
Time-dependent CP analysis can show signs of new physics. One has to study a set of modes:
\newline $b \rightarrow s\overline{s}c$, $b \rightarrow s$

Current experimental results show $\Delta$(SM - Observed): 
\newline $\Delta sin(2\beta)=2.7\sigma$, penguin 
\newline $\Delta sin(2\beta)=2.1\sigma$, tree

Golden modes in SuperB:
$B \rightarrow J/\psi K^{0}$, $B \rightarrow \eta ' K^{0}$, $B \rightarrow f_{0}K_{s}^{0}$
\begin{columns}[c]
\column{3.0in}
\includegraphics[scale=0.17]{pic/table.png}
\column{2.0in}
\includegraphics[scale=0.12]{pic/jpsi.png}
\newline
\newline \includegraphics[scale=0.12]{pic/jpsi2.png}
\end{columns}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{$B \rightarrow X_{s} \gamma$}
\begin{frame}\frametitle{$B \rightarrow X_{s} \gamma$}
\vspace{0.5cm}
Very important probe for new physics! Current experimental average:
$Br(B \rightarrow X_{s} \gamma ) = (3.52\pm0.23\pm0.09) 10^{-4} $

%Theoretical calculation on NNLO:
Theoretical prediction from NNLO:


$Br(B \rightarrow X_{s} \gamma ) = (3.15 \pm 0.23) 10^{-4}$

There are two ways to study this decay:
\begin{enumerate}
\item Exclusive:
\begin{itemize}

 \item The earliest results were obtained using a large number of exclusive decays, which were fully reconstructed
\item Errors arising from unseen modes
\item Obsolete for SuperB

\end{itemize}
\item Inclusive:
\begin{itemize}
\item Use tagging to tag the other B 
\item No requirements on $X_{s}$
\item Disadvantage: Cut on photon energy
\item Effort to keep the cut as small as possible

\end{itemize}
\end{enumerate}
Experimentally challenging to measure inclusive decays. 

\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5





%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{$\HepParticle{B}{s}{}$ Decays}
\begin{frame}\frametitle{$\HepParticle{B}{s}{}$ Decays}
\vspace{0.5cm}


\begin{columns}[c]
\column{0.05in} 
\column{1.7in}
\begin{small} \fcolorbox{red}{white}{\textcolor{blue}{$\HepParticle{B}{s}{}$ is clearly LHCb domain}} \end{small}
\begin{footnotesize}
\textcolor{blue}{Short runs at CLEO and Belle showed that $\Pep$ $\Pem$ can also contribute in $\HepParticle{B}{s}{}$ studies }
\end{footnotesize}
\column{3.3in}
\begin{scriptsize}
 \begin{tabular}{|l|l|l|}
 \hline
  Observable & Error on $1 \reciprocal\femtobarn$ & Error on $30 \reciprocal\femtobarn$ \\
  \hline 
  \hline
  $\Delta \Gamma [ \reciprocal \ps ]$ & $0.16$ & $0.03$ \\
 % $\Gamma [ \reciprocal \ps$ & $0.16$ & $0.03$ \\
  $\beta_{s}$ from $\HepParticle{B}{s}{} \to \HepParticle{J\!/\psi}{}{}  \Pphi [deg]$ & $16$ &  $6$ \\
  $\beta_{s}$ from $\HepParticle{B}{s}{} \to \PK \APK [deg]$ &  $24$ &  $11$ \\
  $\left| \dfrac{V_{td}}{V_{ts}} \right|$ & $0.08$ & $0.017$ \\
  \hline
  % \Vert
\end{tabular}

\end{scriptsize}

\end{columns}
%%%%%%%%%%%%%
\textcolor{green}{Potentials in SuperB:}
\begin{scriptsize}
\begin{enumerate}
 \small \item Decays with neutral particle $\HepParticle{B}{s}{} \to \HepParticle{J\!/\psi}{}{} \eta$ , $\HepParticle{B}{s}{} \to \HepParticle{K}{S}{0} \pi$, $\HepParticle{B}{s}{} \to \HepParticle{D}{}{\ast}\HepParticle{K}{S}{0} $, $\HepParticle{B}{s}{} \to \Phi \eta^{'}$

 \small \item Measurements of $\mathcal{B} (\HepParticle{B}{}{} \to \gamma \gamma)$. SM prediction $\mathcal{B} (\HepParticle{B}{}{} \to \gamma \gamma) = (2-4) \times 10^{-7}$. NP (SUSY) $\mathcal{B} (\HepParticle{B}{}{} \to \gamma \gamma) = 5 \times 10^{-6}$.
 
 \small \item Measurements of semi-leptonic asymmetry. $A_{SL}^{s} = \dfrac{1-\left|\dfrac{q}{p} \right|^{4}}{1+\left|\dfrac{q}{p} \right|^{4}} =\dfrac{N_{1} -N_{2}}{N_{1}+N_{2}}$

$N_{1} = \HepParticle{B}{s}{} \to \HepParticle{\overline{B}}{s}{} \to \HepParticle{D}{s}{\ast -}\Plepton^{+} \Pnu$  $N_{2} = \HepParticle{B}{s}{} \to \HepParticle{\overline{B}}{s}{} \to \HepParticle{\overline{D}}{s}{\ast}\Plepton^{-} \Pnu$
 
\end{enumerate}
\end{scriptsize}

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Charm Physics}
\begin{frame}\frametitle{Charm Physics}
\only<1>{
\vspace{0.5cm}
\begin{enumerate}
\item Plan for running at $\psi(3770)$ threshold
\item Scenario: Collect $500 \reciprocal\femtobarn $
\item D tag possible; other meson can be studied with very small background





\end{enumerate}

Potential improvement from SuperB:
\begin{itemize}

\item Improved measurement of the mixing parameters $x_{D}$ and $y_{D}$
\item CP violation in $\HepParticle{\overline{D}}{}{} - \HepParticle{\overline{D}}{}{}$: $A_{SL}=\dfrac{N_{1} -N_{2}}{N_{1}+N_{2}}$
\newline $N_{1} = \Gamma( \HepParticle{D}{}{0} \to  \Plepton^{-} \Pnu \PKp)$,
\newline $N_{2} = \Gamma( \overline{\HepParticle{D}{}{0}} \to  \Plepton^{+} \Pnu \PKm)$
\item Search for $\HepParticle{D}{}{0} \to \mu \mu$
\item Quantum correlations allow one to measure relatively strong phase
\end{itemize}
}
\only<2>
{

\begin{center}
\includegraphics[scale=0.30]{pic/dmix.png}
\end{center}

}
\only<3>
{

\begin{center}
\includegraphics[scale=0.26]{pic/d_mix2.png}
\end{center}

}




\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{$\tau$ Physics}
\begin{frame}\frametitle{$\tau$ Physics}
\begin{enumerate}
\item Lepton Flavour Violation
\begin{itemize}
%\item Some SUSY models can occur in SuperB sensitive
\item SuperB sensitive to some SUSY models 
\item Complementary to searches in LHC and MEG
\item Golden channels: $\tau \to 3\Plepton$, $\tau \to \Plepton \gamma$, $\tau \to \rho \Plepton$, $\tau \to \Plepton \eta$ 
\end{itemize}
\item $\tau$ $g-2$
\begin{itemize}
\item MSSM can explain $ 3 \times 10^{-9}$ discrepancy
\item Within SuperB sensitivity 

\end{itemize}
\item $\tau$ EDM and CPV
\begin{itemize}
\item Witin SuperB sensitivity!
\item $\tau$ EDM constrained by electron EDM upper limit to a range inaccessible for SuperB

\end{itemize}

\end{enumerate}


\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{LFV}




\begin{frame}\frametitle{CMSSM Model}
\vspace{0.3cm}
\begin{columns}[c]
%\vspace{0.6cm}
\column{2.5in}
\includegraphics[scale=0.28]{pic/mugammavsegamma.png}
\begin{itemize}
\begin{scriptsize}
\item $N_{i}$ - right handed neutrinos
\item $\nu_{i}$ - left handed neutrinos
\item $\phi_{i}$ - complex mixing angle
\item $\phi_{13}$ - PNMS matrix.
\end{scriptsize}
\end{itemize}

\column{2.5in}
\includegraphics[scale=0.28]{pic/egamma.png}
\begin{itemize}
\begin{small}
\item LFV up to present limit
\item $\tau \to \mu \gamma$ complementary to $\mu \to e \gamma$
\end{small}
\end{itemize}
 \fcolorbox{blue}{white}{JHEP11(2006)090 }

\end{columns}
\end{frame}


\begin{frame}\frametitle{NUHM Model}
\vspace{0.3cm}
\begin{columns}[c]
%\vspace{0.6cm}
\column{2.5in}
\includegraphics[scale=0.25]{pic/tau23mu.png}
\begin{itemize}
\begin{scriptsize}
\item $\delta_{1}$,  $\delta_{2}$ parametrizes the non-universal Higgs masses.

\end{scriptsize}
 \fcolorbox{blue}{white}{arXiv:0812.2692v1}
\end{itemize}

\column{2.5in}
\includegraphics[scale=0.22]{pic/tautof0mu.png}
\begin{itemize}
\begin{small}
\item Increase sensitivity for $\tau \to f_{0}(980) \mu$, $\tau \to \eta \mu$, than to $\tau \to \mu \gamma$

\end{small}
\end{itemize}
 \fcolorbox{blue}{white}{JHEP11(2006)090 }

\end{columns}
\end{frame}


\begin{frame}\frametitle{SuperB Sensitivity}
\begin{enumerate}
\item Taking BaBar results and improving:  $\sqrt{\mathcal{L}_{SuperB}/ \mathcal{L}_{BaBar} }\approx 12$
\item Signal rises linearly: $\mathcal{L}_{SuperB}/ \mathcal{L}_{BaBar}$
\item Sensitivity increases with detector resolution
\item Babar papers used to extrapolate:
\begin{itemize}
\item Phys.Rev.Lett.104:021802,2010, arXiv:0908.2381v2
\item PhysRevD.81.111101(2010), arXiv:1002.4550v1
\end{itemize}
\end{enumerate}


\end{frame}









%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}\frametitle{$\tau \rightarrow \Plepton \gamma$ Sensitivity}


\begin{columns}[c]
\column{2.5in}

\begin{itemize}
\item Better tracking resolution, reduced $\Delta m - \Delta E $ box by $65\%$
\item Higher photon efficiency
\item Increase of geometry acceptance
\item Thicker signal peak
\item Approximate frequentist upper limits, only Poissonian BKG uncertainty
\item Smaller boost improves the performance of the fit
\end{itemize}
\column{2.5in}

\includegraphics[scale=0.2]{pic/dm_de.png}

\end{columns}
SuperB limits:
\begin{tabular}{|l|l|l|}
 \hline
  Process & Error on 90\% upper limit & $3 \sigma$ observation \\
  \hline 
  \hline
  $\tau \to \mu \gamma$ & $2.4 \times 10^{-9}$ & $5.4 \times 10^{-9}$ \\
  $\tau \to e \gamma$ & $3.0 \times 10^{-9}$ & $6.8 \times 10^{-9}$ \\
  \hline
  % \Vert
\end{tabular}

\end{frame}





\begin{frame}\frametitle{Polarization}
\vspace{0.5cm} 
\begin{columns}[c]
\column{2.6in}


{~}

\begin{enumerate}
       \item SuperB will have polarized electron beam ($80\%$) \\
       \item One can use this information in NP searches \\
       \item TAUOLA SUSY decay model \\
       \item Discriminating between NP models! \\
	\end{enumerate}    
\column{2.4in}

\includegraphics[scale=0.23]{pic/polar.png}

\end{columns}

\end{frame}



\begin{frame}\frametitle{SuperB sensitivity for $\tau \to 3\Plepton$}
\begin{enumerate}
\item Taking the BaBar analysis results and improving:  $\sqrt{\mathcal{L}_{SuperB}/ \mathcal{L}_{BaBar} }\approx 12$
\item Signal is rising linearly: $\mathcal{L}_{SuperB}/ \mathcal{L}_{BaBar}$
\item No detector resolution assumed.
\item Approximate frequentist upper limits, only Poissonian BKG uncertainty
\item Babar papers used to extrapolate:
\begin{itemize}
\item Phys.Rev.Lett.104:021802,2010, arXiv:0908.2381v2
\item PhysRevD.81.111101(2010), arXiv:1002.4550v1
\end{itemize}
\end{enumerate}


\end{frame}



\begin{frame}\frametitle{$\tau \rightarrow 3\Plepton$}
\vspace{0.23cm} 
\begin{columns}[c]
\column{2.5in}
\begin{center}
\includegraphics[scale=0.3]{pic/eee.png}
\newline $\Ptau \to eee$
\end{center}
\column{2.5in}
\begin{center}
\includegraphics[scale=0.3]{pic/eemu1.png}
\newline $\Ptau \to e^{-} e^{+} \mu$
\end{center}
\end{columns}
\begin{center}

\includegraphics[scale=0.3]{pic/eemu2.png}
\newline $\Ptau \to e^{-} e^{-} \mu$

\end{center}
\end{frame}


\begin{frame}\frametitle{$\tau \rightarrow 3\Plepton$}
\vspace{0.23cm} 
\begin{columns}[c]
\column{2.5in}
\begin{center}
\includegraphics[scale=0.3]{pic/mumumu.png}
\newline $\Ptau \to \mu \mu \mu$
\end{center}
\column{2.5in}
\begin{center}
\includegraphics[scale=0.3]{pic/emumu1.png}
\newline $\Ptau \to \mu^{-} \mu^{+} e$
\end{center}
\end{columns}
\begin{center}

\includegraphics[scale=0.3]{pic/emumu2.png}
\newline $\Ptau \to \mu^{-} \mu^{-} e$

\end{center}
\end{frame}







\begin{frame}\frametitle{LFV Summary}

Current analysis:
\begin{itemize}
\item SuperB will be the cutting edge factory for LFV in $\tau$ decays
\item Beam polarization will improve the the analysis and make distinguishment among NP models possible
\end{itemize}

\begin{tabular}{|l|l|l|}
 \hline
  Process & Error on 90\% upper limit & $3 \sigma$ observation \\
  \hline 
  \hline
  $\tau \to \mu \gamma$ & $2.4 \times 10^{-9}$ & $5.4 \times 10^{-9}$ \\
  $\tau \to e \gamma$ & $3.0 \times 10^{-9}$ & $6.8 \times 10^{-9}$ \\
  \hline
  % \Vert
\end{tabular}
\end{frame}


\subsection{$\tau$ $g-2$}
\begin{frame}\frametitle{$\tau$ $g-2$}
\begin{itemize}
\item MSSM would shift muon $g-2$ by about the presently observed discrepancy $\Delta a_{\mu} \approx 3 \times 10^{-9}$
\item SuperB sensitivity estimates: $\sigma(a_{\tau}) =2.6 \times 10^{-6}$ 
 \fcolorbox{blue}{white}{JHEP098P1108}
\item SuperB measures $a_{\tau}(q^{2})$  from final state distributions of $ e^{+} e^{-} \to \tau^{+} \tau^{-}$
See  \fcolorbox{green}{white}{M.Passera talk}
\item Luckily NP contributions are constant for small $q^{2}$
\end{itemize}

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{EDM at SuperB}
\begin{frame}\frametitle{EDM at SuperB}
\begin{itemize}
\item Experimental status: $\vert d_{e} \vert < 1.6 \times 10 ^-27$
\newline \fcolorbox{green}{white}{PhysRevLett.88.071805}
\item NP expect: $\vert d_{\tau} \vert \propto (m_{\tau}/ m_{e})\vert d_{e} \vert $
\item SuperB upper limit $\vert d_{e} \vert \approx 10^{-22}$  
\newline \fcolorbox{green}{white}{SuperB 2010 Physic Report }

\item Again we measure $\vert d_{e} \vert(q^{2})$
\item Luckily NP contributions are constant for small $q^{2}$
\end{itemize}

\end{frame}


\begin{frame}\frametitle{EDM at SuperB}
Belle result:
\begin{enumerate}
\item $29.5 fb^{-1}$ data sample
\item Resolution: $0.9-1.7 \times 10^{-19} e cm$
\item \fcolorbox{green}{white}{J. Bernabeu hep-ex/0210066}
\item Extrapolation for SuperB ($75 ab^{-1}$): $\sigma(d_{\tau}) = 17-34 \times 10^{-17} ecm$
\item No beam polarization assumed!
\end{enumerate}
Another approach: \fcolorbox{green}{white}{arXiv:0707.1658v1}
\begin{itemize}
\item Assume beam polarity: $(80\ \pm 1) $
\item $80\%$ geometry acceptance
\item Track reconstruction $97.5\%$
\item $\sigma(d_{\tau}) \approx 10 \times 10^{-17} ecm$

\end{itemize}
\end{frame}


\subsection{CP Violation}
\begin{frame}\frametitle{CP Violation}
\begin{itemize}
\item CP violation has never been observed in $\tau$ sector
\item SM prediction is negligibly small $O(10^{-12})l$ in $\tau^{\pm} \rightarrow K^{pm} \pi^{0} \nu$. 
\item Any observation is clear indication of NP
\item Very few NP models can explain this:
\begin{enumerate}
\item RPV SUSY
\item Multi Higgs models
\end{enumerate}
\item SuperB can improve sensitivity 75 times compared to CLEO ($\xi(\tau \to K_{s} \pi \nu) = -2.0 \times 10^{-3}$)
\end{itemize}

\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%    BACKUP   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\begin{center}
\Huge Thank you for your attention.
\end{center}
\end{frame}
\begin{frame}\frametitle{Backup}
\begin{center}
\Huge Backup
\end{center}

\end{frame}


\begin{frame}\frametitle{Quest for Luminosity}

\begin{columns}[c]

	\column{3.0in}
	\includegraphics[scale=0.3]{pic/crab_off.png}
	\newline \includegraphics[scale=0.3]{pic/crab_on.png}
	\column{1.5in}
	
	$L \propto \dfrac{1}{\sqrt{\beta}_{y}}$, $  \Phi \approx \dfrac{\sigma_{z}}{\sigma_{x}} \dfrac{\theta}{2}$ 	
	
	
	\end{columns}
		
	
	

\end{frame}


\begin{frame}\frametitle{$\HepParticle{B}{}{}$ Rare Decays}
\vspace{0.5cm}


\begin{columns}[c]

\column{0.1in}
\column{2.1in}

\begin{center}
 \fcolorbox{blue}{yellow}{$\HepParticle{B}{}{\pm} \to \HepParticle{D}{}{(\ast)} \tau^{\pm} \nu$}
\end{center}

\fcolorbox{green}{white}{Babar ref. arXiv:1205.5442}

 \includegraphics[scale=0.40]{pic/babar_rare.png}
 \newline \fcolorbox{red}{white}{ Hot decay for SuperB! }
 \column{0.1in}
\column{2.8in}
\includegraphics[scale=0.24]{pic/b2ds.png}

\textcolor{blue}{Observables:}
\newline
% \fcolorbox{green}{white}{
\begin{itemize}
\item $R(\HepParticle{D}{}{})=\dfrac{\HepParticle{B}{}{} \to \HepParticle{D}{}{} \tau \nu }{\HepParticle{B}{}{} \to \HepParticle{D}{}{} \Plepton \nu} $
\item $R(\HepParticle{D}{}{\ast})=\dfrac{\HepParticle{B}{}{} \to \HepParticle{D}{}{\ast} \tau \nu }{\HepParticle{B}{}{} \to \HepParticle{D}{}{\ast} \Plepton \nu} $
\end{itemize}

\begin{footnotesize}
\begin{tabular}{|l|l|l|}
\hline
                &  $R(\HepParticle{D}{}{})$  &  $R(\HepParticle{D}{}{\ast})$ \\
\hline
\hline
BaBar  &  $0.440 \pm 0.071$ & $ 0.332 \pm 0.029$ \\
SM    &  $0.297 \pm 0.017$ & $0.252 \pm 0.003$ \\
\hline
\textcolor{green}{Difference} & \textcolor{red}{$2.0 \sigma$} & \textcolor{red}{$2.7 \sigma$} \\
\hline
\end{tabular}
\end{footnotesize}
\end{columns}
\end{frame}






\end{document}