Newer
Older
Presentations / Seminars / ImperialCollege / mchrzasz.tex
@mchrzasz mchrzasz on 16 Oct 2015 38 KB more changes
  1. \documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}
  2.  
  3. \usepackage[english]{babel}
  4. \usepackage{polski}
  5.  
  6.  
  7. \usetheme[
  8. bullet=circle, % Other option: square
  9. bigpagenumber, % circled page number on lower right
  10. topline=true, % colored bar at the top of the frame
  11. shadow=false, % Shading for beamer blocks
  12. watermark=BG_lower, % png file for the watermark
  13. ]{Flip}
  14.  
  15. %\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}
  16.  
  17.  
  18. \usepackage[lf]{berenis}
  19. \usepackage[LY1]{fontenc}
  20. \usepackage[utf8]{inputenc}
  21.  
  22. \usepackage{emerald}
  23. \usefonttheme{professionalfonts}
  24. \usepackage[no-math]{fontspec}
  25. \defaultfontfeatures{Mapping=tex-text} % This seems to be important for mapping glyphs properly
  26.  
  27. \setmainfont{Gillius ADF} % Beamer ignores "main font" in favor of sans font
  28. \setsansfont{Gillius ADF} % This is the font that beamer will use by default
  29. % \setmainfont{Gill Sans Light} % Prettier, but harder to read
  30.  
  31. \setbeamerfont{title}{family=\fontspec{Gillius ADF}}
  32.  
  33. \input t1augie.fd
  34.  
  35. %\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
  36. %\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
  37. % \newcommand{\handwriting}{} % If you prefer no special handwriting font or don't have augie
  38.  
  39. %% Gill Sans doesn't look very nice when boldfaced
  40. %% This is a hack to use Helvetica instead
  41. %% Usage: \textbf{\forbold some stuff}
  42. %\newcommand{\forbold}{\fontspec{Arial}}
  43.  
  44. \usepackage{graphicx}
  45. \usepackage[export]{adjustbox}
  46.  
  47. \usepackage{amsmath}
  48. \usepackage{amsfonts}
  49. \usepackage{amssymb}
  50. \usepackage{bm}
  51. \usepackage{colortbl}
  52. \usepackage{mathrsfs} % For Weinberg-esque letters
  53. \usepackage{cancel} % For "SUSY-breaking" symbol
  54. \usepackage{slashed} % for slashed characters in math mode
  55. \usepackage{bbm} % for \mathbbm{1} (unit matrix)
  56. \usepackage{amsthm} % For theorem environment
  57. \usepackage{multirow} % For multi row cells in table
  58. \usepackage{arydshln} % For dashed lines in arrays and tables
  59. \usepackage{siunitx}
  60. \usepackage{xhfill}
  61. \usepackage{grffile}
  62. \usepackage{textpos}
  63. \usepackage{subfigure}
  64. \usepackage{tikz}
  65.  
  66. %\usepackage{hepparticles}
  67. \usepackage[italic]{hepparticles}
  68.  
  69. \usepackage{hepnicenames}
  70.  
  71. % Drawing a line
  72. \tikzstyle{lw} = [line width=20pt]
  73. \newcommand{\topline}{%
  74. \tikz[remember picture,overlay] {%
  75. \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
  76. -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}
  77.  
  78.  
  79.  
  80. % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
  81. \usepackage{tikzfeynman} % For Feynman diagrams
  82. \usetikzlibrary{arrows,shapes}
  83. \usetikzlibrary{trees}
  84. \usetikzlibrary{matrix,arrows} % For commutative diagram
  85. % http://www.felixl.de/commu.pdf
  86. \usetikzlibrary{positioning} % For "above of=" commands
  87. \usetikzlibrary{calc,through} % For coordinates
  88. \usetikzlibrary{decorations.pathreplacing} % For curly braces
  89. % http://www.math.ucla.edu/~getreuer/tikz.html
  90. \usepackage{pgffor} % For repeating patterns
  91.  
  92. \usetikzlibrary{decorations.pathmorphing} % For Feynman Diagrams
  93. \usetikzlibrary{decorations.markings}
  94. \tikzset{
  95. % >=stealth', %% Uncomment for more conventional arrows
  96. vector/.style={decorate, decoration={snake}, draw},
  97. provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
  98. antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
  99. fermion/.style={draw=gray, postaction={decorate},
  100. decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
  101. fermionbar/.style={draw=gray, postaction={decorate},
  102. decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
  103. fermionnoarrow/.style={draw=gray},
  104. gluon/.style={decorate, draw=black,
  105. decoration={coil,amplitude=4pt, segment length=5pt}},
  106. scalar/.style={dashed,draw=black, postaction={decorate},
  107. decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
  108. scalarbar/.style={dashed,draw=black, postaction={decorate},
  109. decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
  110. scalarnoarrow/.style={dashed,draw=black},
  111. electron/.style={draw=black, postaction={decorate},
  112. decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
  113. bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
  114. }
  115.  
  116. % TIKZ - for block diagrams,
  117. % from http://www.texample.net/tikz/examples/control-system-principles/
  118. % \usetikzlibrary{shapes,arrows}
  119. \tikzstyle{block} = [draw, rectangle,
  120. minimum height=3em, minimum width=6em]
  121.  
  122.  
  123.  
  124.  
  125. \usetikzlibrary{backgrounds}
  126. \usetikzlibrary{mindmap,trees} % For mind map
  127. \newcommand{\degree}{\ensuremath{^\circ}}
  128. \newcommand{\E}{\mathrm{E}}
  129. \newcommand{\Var}{\mathrm{Var}}
  130. \newcommand{\Cov}{\mathrm{Cov}}
  131. \newcommand\Ts{\rule{0pt}{2.6ex}} % Top strut
  132. \newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut
  133.  
  134. \graphicspath{{images/}} % Put all images in this directory. Avoids clutter.
  135.  
  136. % SOME COMMANDS THAT I FIND HANDY
  137. % \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
  138. \newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
  139. \newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
  140. \newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
  141. \newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
  142. \newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
  143. %% "\alert" is already a beamer pre-defined
  144. \newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%
  145.  
  146. \def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}
  147.  
  148. \usepackage{gmp}
  149. \usepackage[final]{feynmp-auto}
  150.  
  151. \usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
  152. \bibliography{bib}
  153. \setbeamertemplate{bibliography item}[text]
  154.  
  155. \makeatletter\let\frametextheight\beamer@frametextheight\makeatother
  156.  
  157. % suppress frame numbering for backup slides
  158. % you always need the appendix for this!
  159. \newcommand{\backupbegin}{
  160. \newcounter{framenumberappendix}
  161. \setcounter{framenumberappendix}{\value{framenumber}}
  162. }
  163. \newcommand{\backupend}{
  164. \addtocounter{framenumberappendix}{-\value{framenumber}}
  165. \addtocounter{framenumber}{\value{framenumberappendix}}
  166. }
  167.  
  168.  
  169. \definecolor{links}{HTML}{2A1B81}
  170. %\hypersetup{colorlinks,linkcolor=,urlcolor=links}
  171.  
  172. % For shapo's formulas:
  173. \def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
  174. \def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
  175. \newcommand{\lsim}{\mathop{\lsi}}
  176. \newcommand{\gsim}{\mathop{\gsi}}
  177. \newcommand{\wt}{\widetilde}
  178. %\newcommand{\ol}{\overline}
  179. \newcommand{\Tr}{\rm{Tr}}
  180. \newcommand{\tr}{\rm{tr}}
  181. \newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
  182. \newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
  183. \newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
  184. \newcommand{\eV}{\rm{eV}}
  185. \newcommand{\keV}{\rm{keV}}
  186. \newcommand{\GeV}{\rm{GeV}}
  187. \newcommand{\MeV}{\rm{MeV}}
  188. \newcommand{\im}{\rm{Im}}
  189. \newcommand{\re}{{\rm Re}}
  190. \newcommand{\invfb}{\rm{fb^{-1}}}
  191. \newcommand{\fixme}{\rm{{\color{red}{FIXME!}}}}
  192. \newcommand{\thetal}{\theta_l}
  193. \newcommand{\thetak}{\theta_k}
  194. \newcommand{\nn}{\nonumber}
  195. \newcommand{\eq}[1]{\begin{equation} #1 \end{equation}}
  196. %\newcommand{\eqn}[1]{\begin{displaymath} #1 \end{displaymath}}
  197. \newcommand{\eqa}[1]{\begin{eqnarray} #1 \end{eqnarray}}
  198. \newcommand{\apeL}{{A_\perp^L}}
  199. \newcommand{\apeR}{{A_\perp^R}}
  200. \newcommand{\apeLR}{{A_\perp^{L,R}}}
  201. \newcommand{\apaL}{{A_\|^L}}
  202. \newcommand{\apaR}{{A_\|^R}}
  203. \newcommand{\apaLR}{{A_\|^{L,R}}}
  204. \newcommand{\azeL}{{A_0^L}}
  205. \newcommand{\azeR}{{A_0^R}}
  206. \newcommand{\azeLR}{{A_0^{L,R}}}
  207. \newcommand{\Real}{\ensuremath{\mathcal{R}e}\xspace}
  208. \newcommand{\Imag}{\ensuremath{\mathcal{I}m}\xspace}
  209.  
  210. \renewcommand{\C}[1]{{\cal C}_{#1}}
  211. \newcommand{\Ceff}[1]{{\cal C}^{\rm eff}_{#1}}
  212. \newcommand{\Cpeff}[1]{{\cal C}^{\rm eff\prime}_{#1}}
  213. \newcommand{\Cp}[1]{{\cal C}^{\prime}_{#1}}
  214. \def\FL {\ensuremath{F_{\mathrm{L}}}\xspace}
  215. \def\ATDPH {\ensuremath{A_{\mathrm{T,PR}}^{(2)}}\xspace}
  216. \def\ATImPH {\ensuremath{A_{\mathrm{T,PR}}^{\mathrm{Im}}}\xspace}
  217. \def\ATRePH {\ensuremath{A_{\mathrm{T,PR}}^{\mathrm{Re}}}\xspace}
  218. \def\FLPH {\ensuremath{F_{\mathrm{L,PR}}}\xspace}
  219. \def\ATDKG {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{(2)}}\xspace}
  220. \def\ATImKG {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{\mathrm{Im}}}\xspace}
  221. \def\ATReKG {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{\mathrm{Re}}}\xspace}
  222. \def\FLKG {\ensuremath{F_{\mathrm{L,\Kstarz \gamma}}}\xspace}
  223. \def\ATD {\ensuremath{A_{\mathrm{T}}^{(2)}}\xspace}
  224. \def\ATIm {\ensuremath{A_{\mathrm{T}}^{\mathrm{Im}}}\xspace}
  225. \def\ATRe {\ensuremath{A_{\mathrm{T}}^{\mathrm{Re}}}\xspace}
  226.  
  227.  
  228.  
  229. \newcommand{\disp}{\displaystyle}
  230. \def\be{\begin{equation}}
  231. \def\ee{\end{equation}}
  232. \def\ba{\begin{eqnarray}}
  233. \def\ea{\end{eqnarray}}
  234. \def\d{\partial}
  235. \def\l{\left(}
  236. \def\r{\right)}
  237. \def\la{\langle}
  238. \def\ra{\rangle}
  239. \def\e{{\rm e}}
  240. \def\Br{{\rm Br}}
  241.  
  242.  
  243.  
  244. \author{ {\fontspec{Trebuchet MS}Marcin Chrz\k{a}szcz} (Universit\"{a}t Z\"{u}rich)}
  245. \institute{UZH}
  246. \title[Particle Phenomenology, Particle Astrophysics and Cosmology Seminar]{Particle Phenomenology, Particle Astrophysics and Cosmology Seminar}
  247. \date{25 September 2014}
  248.  
  249.  
  250. \begin{document}
  251. \tikzstyle{every picture}+=[remember picture]
  252.  
  253. {
  254. \setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
  255. \begin{frame}[c]%{\phantom{title page}}
  256. \begin{center}
  257. \begin{center}
  258. \begin{columns}
  259. \begin{column}{0.9\textwidth}
  260. \flushright\fontspec{Trebuchet MS}\bfseries \Huge {Anomalies in Flavour Physics}
  261. \end{column}
  262. \begin{column}{0.2\textwidth}
  263. %\includegraphics[width=\textwidth]{SHiP-2}
  264. \end{column}
  265. \end{columns}
  266. \end{center}
  267. \quad
  268. \vspace{3em}
  269. \begin{columns}
  270. \begin{column}{0.44\textwidth}
  271. \flushright \vspace{-1.8em} {\fontspec{Trebuchet MS} \Large Marcin Chrząszcz\\\vspace{-0.1em}\small \href{mailto:mchrzasz@cern.ch}{mchrzasz@cern.ch}}
  272.  
  273. \end{column}
  274. \begin{column}{0.53\textwidth}
  275. \includegraphics[height=1.3cm]{uzh-transp}
  276. \end{column}
  277. \end{columns}
  278.  
  279. \vspace{1em}
  280. % \footnotesize\textcolor{gray}{With N. Serra, B. Storaci\\Thanks to the theory support from M. Shaposhnikov, D. Gorbunov}\normalsize\\
  281. \vspace{0.5em}
  282. \textcolor{normal text.fg!50!Comment}{Imperial College \\October 16, 2015}
  283. \end{center}
  284. \end{frame}
  285. }
  286.  
  287.  
  288. \begin{frame}{Outline}
  289.  
  290. \begin{minipage}{\textwidth}
  291.  
  292. \begin{enumerate}
  293. \item Why flavour is important.
  294. \item $\Pbeauty \to \Pstrange \ell \ell$ theory in a nutshell.
  295. \item LHCb measurements of $\Pbeauty \to \Pstrange \ell \ell$.
  296. \item Global fit to $\Pbeauty \to \Pstrange \ell \ell$ measurements.
  297. \item Conclusions.
  298. \end{enumerate}
  299.  
  300.  
  301. \end{minipage}
  302. \vspace*{2.cm}
  303. \end{frame}
  304.  
  305.  
  306. \begin{frame}{A lesson from history - GIM mechanism}
  307. \begin{minipage}{\textwidth}
  308.  
  309. \begin{center}
  310. \includegraphics[width=0.62\textwidth]{images/GIM2.png}
  311. \end{center}
  312. \begin{columns}
  313. \column{0.7\textwidth}
  314. \begin{itemize}
  315. \begin{footnotesize}
  316.  
  317.  
  318. \item Cabibbo angle was successful in explaining dozens of decay rates in the 1960s.
  319. \item There was, however, one that was not observed by experiments: $\PKzero \to \Pmuon \APmuon$.
  320. \item Glashow, Iliopoulos, Maiani (GIM) mechanism was proposed in the 1970 to fix this problem. The mechanism required the existence of the $4^{th}$ quark.
  321. \item At that point most of the people were skeptical about that. Fortunately in 1974 the discovery of the $\PJpsi$ meson silenced the skeptics.
  322. \end{footnotesize}
  323. \end{itemize}
  324. \column{0.3\textwidth}
  325. \begin{center}
  326. \includegraphics[width=0.95\textwidth]{images/GIM3.png}\\
  327. \includegraphics[width=0.7\textwidth]{images/604.jpg}\\{~}\\{~}
  328. \end{center}
  329. \end{columns}
  330.  
  331.  
  332.  
  333. \end{minipage}
  334.  
  335. \vspace*{2.1cm}
  336. \end{frame}
  337.  
  338. \begin{frame}{A lesson from history - CKM matrix}
  339. \begin{minipage}{\textwidth}
  340.  
  341. \begin{center}
  342. {~}\\{~}\\
  343. \includegraphics[width=0.5\textwidth]{images/CKMmatrix.png}
  344.  
  345. \end{center}
  346. \begin{columns}
  347. \column{0.6\textwidth}
  348. \begin{itemize}
  349. \begin{small}
  350.  
  351.  
  352.  
  353.  
  354. \item Similarly CP violation was discovered in 1960s in the neutral kaons decays.
  355. \item $2 \times 2$ Cabbibo matrix could not allow for any CP violation.
  356. \item For the CP violation to be possible one needs at least a $3 \times 3$ unitary matrix \\ $\looparrowright$ Cabibbo-Kobayashi-Maskawa matrix (1973).
  357. \item It predicts existence of $\Pbottom$ (1977) and $\Ptop$ (1995) quarks.
  358. \end{small}
  359.  
  360. \end{itemize}
  361. \column{0.4\textwidth}
  362. \begin{center}
  363. {~}
  364. %\includegraphics[height=2cm]{images/CP.png}\\
  365. \includegraphics[width=0.96\textwidth]{bottom.jpg}
  366.  
  367. \end{center}
  368. \end{columns}
  369.  
  370.  
  371.  
  372. \end{minipage}
  373.  
  374. \vspace*{2.1cm}
  375. \end{frame}
  376.  
  377.  
  378. \begin{frame}{A lesson from history - Weak neutral current}
  379. \begin{minipage}{\textwidth}
  380.  
  381. \begin{center}
  382. \includegraphics[height=3cm]{images/weakcurr.png}{~}
  383. \includegraphics[height=3cm]{images/weakcurr2.png}
  384. \end{center}
  385.  
  386. \begin{columns}
  387. \column{0.6\textwidth}
  388. \begin{itemize}
  389. \begin{small}
  390.  
  391.  
  392. \item Weak neutral currents were first, introduced in 1958 by Buldman.
  393. \item Later on they were naturally incorporated into unification of weak and electromagnetic interactions.
  394. \item 't Hooft proved that the GWS models was renormalizable.
  395. \item Everything was there on theory side, only missing piece was the experiment, till 1973.
  396. \end{small}
  397.  
  398. \end{itemize}
  399. \column{0.4\textwidth}
  400. \begin{center}
  401. {~}
  402. %\includegraphics[height=2cm]{images/CP.png}\\
  403. \includegraphics[width=0.85\textwidth]{images/bubblecern.png}
  404. \end{center}
  405. \end{columns}
  406.  
  407.  
  408.  
  409. \end{minipage}
  410.  
  411. \vspace*{2.1cm}
  412. \end{frame}
  413.  
  414. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  415. \begin{frame}{Modern challenges: loops come in to the game}
  416. \begin{minipage}{\textwidth}
  417. \begin{columns}
  418.  
  419. \column{0.5\textwidth}
  420. \begin{itemize}
  421. \item Standard Model contributions suppressed or absent:
  422. \begin{itemize}
  423. \item Flavour Changing Neutral Currents.
  424. \item CP violation
  425. \item Lepton Flavour/Number or Lepton Universality violation.
  426. \end{itemize}
  427. \item In general can probe physics beyond General Purpose Detectors reach.
  428. \end{itemize}
  429. \column{0.5\textwidth}
  430. \includegraphics[width=0.99\textwidth]{{images/TauLFV_UL_2014001_averaged}.png}
  431.  
  432.  
  433. \end{columns}
  434. \begin{center}
  435. \includegraphics[width=0.75\textwidth]{images/Bsmumu.png}
  436. \includegraphics[width=0.20\textwidth]{{images/bsmumu_SM}.png}
  437. \end{center}
  438. \end{minipage}
  439.  
  440. \vspace*{2.1cm}
  441. \end{frame}
  442.  
  443. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  444. \begin{frame}{Recent measurements}
  445. {~}
  446. \only<1>{
  447.  
  448. \begin{minipage}{\textwidth}
  449.  
  450.  
  451. \begin{columns}
  452.  
  453. \column{0.5\textwidth}
  454. $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{Branching fractions:}}
  455. \begin{description}
  456. \item [$\PB^{0,\pm} \to \PK^{0,\pm} \Pmuon \APmuon$] {~}{~}LHCb, Mar 14
  457. \item [$\PB^{0} \to \PKstar \Pmuon \APmuon$] {~}{~}CMS, Jul 15
  458. \item [$\PBs \to \Pphi \Pmuon \APmuon$] {~}{~}{~}LHCb, Jun 15
  459. \item [$\PB^{\pm} \to \Ppi^{\pm} \Pmuon \APmuon$] {~}LHCb, Sep 15
  460. \item [$\PLambdab \to \PLambda \Pmuon \APmuon$] {~}{~}{~}{~}LHCb, Mar 15
  461. \item [$\PB \to\Pmuon \APmuon$] {~}{~}{~}{~}{~}CMS+LHCb, Jun 15
  462. \end{description}
  463.  
  464. $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{CP asymmetry:}}
  465. \begin{description}
  466. \item [$\PB^{\pm} \to \Ppi^{\pm} \Pmuon \APmuon$] {~}{~}LHCb, Sep 15
  467. \end{description}
  468.  
  469. $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{Isospin asymmetry:}}
  470. \begin{description}
  471. \item [$\PB \to \PK \Pmuon \APmuon$] {~}{~}{~}{~}{~}LHCb, Mar 14
  472. \end{description}
  473.  
  474.  
  475. \column{0.5\textwidth}
  476. $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{Lepton Universality:}}
  477. \begin{description}
  478. \item [$\PB^{\pm} \to \PK^{\pm} \Plepton \APlepton$] {~}{~}LHCb, Jun 14
  479. \end{description}
  480.  
  481.  
  482. $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{Angular:}}
  483. \begin{description}
  484. \item [$\PB^{0} \to \PK^{\ast} \Plepton \APlepton$] {~}{~}{~}LHCb, Jan 15
  485. \item [$\PB^{\pm} \to \PK^{\ast,\pm} \Plepton \APlepton$] BaBar, Aug 15
  486. \item [$\PBs \to \Pphi \Plepton \APlepton$] {~}{~}{~}LHCb, Jun 15
  487. \item [$\PLambdab \to \PLambda \Pmuon \APmuon$] {~}{~}LHCb, Mar 15
  488. \end{description}
  489.  
  490.  
  491.  
  492.  
  493.  
  494. \end{columns}
  495.  
  496. \end{minipage}
  497. }
  498. \only<2>{
  499.  
  500. \begin{minipage}{\textwidth}
  501.  
  502.  
  503. \begin{columns}
  504.  
  505. \column{0.5\textwidth}
  506. $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{Branching fractions:}}
  507. \begin{description}
  508. \item [{\color{red}{$\PB^{0,\pm} \to \PK^{0,\pm} \Pmuon \APmuon$}}] {~}{~}{\color{red}{LHCb, Mar 14}}
  509. \item [$\PB^{0} \to \PKstar \Pmuon \APmuon$] {~}{~}CMS, Jul 15
  510. \item [{\color{red}{$\PBs \to \Pphi \Pmuon \APmuon$}}] {~}{~}{~}{\color{red}{LHCb, Jun 15}}
  511. \item [$\PB^{\pm} \to \Ppi^{\pm} \Pmuon \APmuon$] {~}LHCb, Sep 15
  512. \item [$\PLambdab \to \PLambda \Pmuon \APmuon$] {~}{~}{~}{~}LHCb, Mar 15
  513. \item [{\color{red}{$\PB \to\Pmuon \APmuon$}}] {~}{~}{~}{~}{~}{\color{red}{CMS+LHCb, Jun 15}}
  514. \end{description}
  515.  
  516. $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{CP asymmetry:}}
  517. \begin{description}
  518. \item [$\PB^{\pm} \to \Ppi^{\pm} \Pmuon \APmuon$] {~}{~}LHCb, Sep 15
  519. \end{description}
  520.  
  521. $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{Isospin asymmetry:}}
  522. \begin{description}
  523. \item [$\PB \to \PK \Pmuon \APmuon$] {~}{~}{~}{~}{~}LHCb, Mar 14
  524. \end{description}
  525.  
  526.  
  527. \column{0.5\textwidth}
  528. $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{Lepton Universality:}}
  529. \begin{description}
  530. \item [{\color{red}{$\PB^{\pm} \to \PK^{\pm} \Plepton \APlepton$}}] {~}{~}{\color{red}{LHCb, Jun 14}}
  531. \end{description}
  532.  
  533.  
  534. $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{Angular:}}
  535. \begin{description}
  536. \item [{\color{red}{$\PB^{0} \to \PK^{\ast} \Plepton \APlepton$}}] {~}{~}{~}LHCb, Jan 15
  537. \item [{\color{red}{$\PB^{\pm} \to \PK^{\ast,\pm} \Plepton \APlepton$}}] {\color{red}{BaBar, Aug 15}}
  538. \item [$\PBs \to \Pphi \Plepton \APlepton$] {~}{~}{~}LHCb, Jun 15
  539. \item [{\color{red}{$\PLambdab \to \PLambda \Pmuon \APmuon$}}] {~}{~}{\color{red}{LHCb, Mar 15}}
  540. \end{description}
  541.  
  542. \begin{alertblock}{}
  543. $>2~\sigma$ deviations from SM
  544.  
  545. \end{alertblock}
  546.  
  547. \end{columns}
  548.  
  549. \end{minipage}
  550. }
  551.  
  552. \vspace*{2.1cm}
  553. \end{frame}
  554.  
  555. %%%%%%%%%%%%%%%%%%%%5
  556. \begin{frame}{$\PBzero \to \PKstar \Pmuon \APmuon$, where it all begun}
  557. {~}
  558. \begin{minipage}{\textwidth}
  559. \only<1>{
  560. \begin{columns}
  561. \column{0.6\textwidth}
  562. August 2013:\\
  563.  
  564. \includegraphics[width=0.95\textwidth]{images/P5prime.png}
  565. \column{0.4\textwidth}
  566. \begin{itemize}
  567. \item LHCb observed a deviation in $4.3-8.68~\GeV^2$ using $1~\invfb$ of data.
  568. \item It turned out that the discrepancy occurred in an observable that was not constrained.
  569. \item $q^2$ is the dimuon invariant mass.
  570.  
  571. \end{itemize}
  572. \end{columns}
  573.  
  574.  
  575. }
  576.  
  577.  
  578.  
  579.  
  580. \only<2>{
  581.  
  582.  
  583. \begin{columns}
  584. \column{0.6\textwidth}
  585. August 2013:\\
  586.  
  587. \includegraphics[width=0.95\textwidth]{images/P5prime.png}
  588. \column{0.4\textwidth}
  589. \begin{itemize}
  590. \item LHCb observed a deviation in $4.3-8.68~\GeV^2$ using $1~\invfb$ of data.
  591. \item It turned out that the discrepancy occurred in an observable that was not constrained.
  592.  
  593. \end{itemize}
  594. \end{columns}
  595.  
  596.  
  597. \begin{exampleblock}{}
  598. Now let's move back and see the theory behind the $\PBzero \to \PKstar \Pmuon \APmuon$ and $P_5^{\prime}$.
  599. \end{exampleblock}
  600. }
  601.  
  602. \end{minipage}
  603. \vspace*{2.1cm}
  604. \end{frame}
  605.  
  606. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  607.  
  608.  
  609.  
  610. \begin{frame}{Tools in rare $\PBzero$ decays}
  611. {~}
  612. \begin{minipage}{\textwidth}
  613.  
  614. \begin{itemize}
  615. \item \textbf{Operator Product Expansion and Effective Field Theory}
  616. \end{itemize}
  617. \begin{columns}
  618. \column{0.1in}{~}
  619. \column{3.2in}
  620. \begin{footnotesize}
  621.  
  622.  
  623. \begin{align*}
  624. H_{eff} = - \dfrac{4G_f}{\sqrt{2}} V V^{\prime \ast}\ \sum_i \left[\underbrace{C_i(\mu)O_i(\mu)}_\text{left-handed} +\
  625. \underbrace{C'_i(\mu)O'_i(\mu)}_\text{right-handed}\right],
  626. \end{align*}
  627. \end{footnotesize}
  628. \column{2in}
  629. \begin{tiny}
  630. \begin{description}
  631. \item[i=1,2] Tree
  632. \item[i=3-6,8] Gluon penguin
  633. \item[i=7] Photon penguin
  634. \item[i=9.10] EW penguin
  635. \item[i=S] Scalar penguin
  636. \item[i=P] Pseudoscalar penguin
  637. \end{description}
  638.  
  639. \end{tiny}
  640. \end{columns}
  641. where $C_i$ are the Wilson coefficients and $O_i$ are the corresponding effective operators.
  642. \begin{center}
  643. \includegraphics[width=0.85\textwidth,height=3cm]{images/all.png}
  644.  
  645. \end{center}
  646.  
  647.  
  648.  
  649.  
  650.  
  651. \end{minipage}
  652. \vspace*{2.1cm}
  653. \end{frame}
  654.  
  655.  
  656. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  657. \begin{frame}{$\PBzero \to \PKstar \Pmuon \APmuon$ kinematics}
  658. {~}
  659. \begin{minipage}{\textwidth}
  660.  
  661. $\color{JungleGreen}{\Rrightarrow}$ The kinematics of $\PBzero \to \PKstar \Pmuon \APmuon$ decay is described by three angles $\thetal$, $\thetak$, $\phi$ and invariant mass of the dimuon system ($q^2)$.
  662.  
  663. \only<1>{
  664. \begin{columns}
  665. \column{0.5\textwidth}
  666.  
  667. $\color{JungleGreen}{\Rrightarrow}$ $\cos \thetak$: the angle between the direction of the kaon in the $\PKstar$ ($\overline{\PKstar}$) rest frame and the direction of the $\PKstar$ ($\overline{\PKstar}$) in the $\PBzero$ ($\APBzero$) rest frame.\\
  668. $\color{JungleGreen}{\Rrightarrow}$ $\cos \thetal$: the angle between the direction of the $\Pmuon$ ($\APmuon$) in the dimuon rest frame and the direction of the dimuon in the $\PBzero$ ($\APBzero$) rest frame.\\
  669. $\color{JungleGreen}{\Rrightarrow}$ $\phi$: the angle between the plane containing the $\Pmuon$ and $\APmuon$ and the plane containing the kaon and pion from the $\PKstar$.
  670.  
  671.  
  672.  
  673. \column{0.5\textwidth}
  674. \includegraphics[width=0.95\textwidth]{images/angles.png}
  675.  
  676. \end{columns}
  677. }
  678. \only<2>{
  679. {\tiny{
  680. \eqa{\label{dist}
  681. \frac{d^4\Gamma}{dq^2\,d\!\cos\theta_K\,d\!\cos\theta_l\,d\phi}&=&\frac9{32\pi} \bigg[
  682. J_{1s} \sin^2\theta_K + J_{1c} \cos^2\theta_K + (J_{2s} \sin^2\theta_K + J_{2c} \cos^2\theta_K) \cos 2\theta_l\nn\\[1.5mm]
  683. &&\hspace{-2.7cm}+ J_3 \sin^2\theta_K \sin^2\theta_l \cos 2\phi + J_4 \sin 2\theta_K \sin 2\theta_l \cos\phi + J_5 \sin 2\theta_K \sin\theta_l \cos\phi \nn\\[1.5mm]
  684. &&\hspace{-2.7cm}+ (J_{6s} \sin^2\theta_K + {J_{6c} \cos^2\theta_K}) \cos\theta_l
  685. + J_7 \sin 2\theta_K \sin\theta_l \sin\phi + J_8 \sin 2\theta_K \sin 2\theta_l \sin\phi \nn\\[1.5mm]
  686. &&\hspace{-2.7cm}+ J_9 \sin^2\theta_K \sin^2\theta_l \sin 2\phi \bigg]\,,
  687. }
  688. }}
  689. $\color{JungleGreen}{\Rrightarrow}$ This is the most general expression of this kind of decay.
  690.  
  691. }
  692.  
  693. \end{minipage}
  694. \vspace*{2.1cm}
  695. \end{frame}
  696. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  697. \begin{frame}{Transversity amplitudes }
  698. {~}
  699. \begin{minipage}{\textwidth}
  700.  
  701. $\color{JungleGreen}{\Rrightarrow}$ One can link the angular observables to transversity amplitudes
  702. {\tiny{
  703. \eqa{
  704. J_{1s} & = & \frac{(2+\beta_\ell^2)}{4} \left[|\apeL|^2 + |\apaL|^2 +|\apeR|^2 + |\apaR|^2 \right]
  705. + \frac{4 m_\ell^2}{q^2} \re\left(\apeL\apeR^* + \apaL\apaR^*\right)\,,\nn\\[1mm]
  706. %
  707. J_{1c} & = & |\azeL|^2 +|\azeR|^2 + \frac{4m_\ell^2}{q^2} \left[|A_t|^2 + 2\re(\azeL^{}\azeR^*) \right] + \beta_\ell^2\, |A_S|^2 \,,\nn\\[1mm]
  708. %
  709. J_{2s} & = & \frac{ \beta_\ell^2}{4}\left[ |\apeL|^2+ |\apaL|^2 + |\apeR|^2+ |\apaR|^2\right],
  710. \hspace{0.92cm} J_{2c} = - \beta_\ell^2\left[|\azeL|^2 + |\azeR|^2 \right]\,,\nn\\[1mm]
  711. %
  712. J_3 & = & \frac{1}{2}\beta_\ell^2\left[ |\apeL|^2 - |\apaL|^2 + |\apeR|^2 - |\apaR|^2\right],
  713. \qquad J_4 = \frac{1}{\sqrt{2}}\beta_\ell^2\left[\re (\azeL\apaL^* + \azeR\apaR^* )\right],\nn \\[1mm]
  714. %
  715. J_5 & = & \sqrt{2}\beta_\ell\,\Big[\re(\azeL\apeL^* - \azeR\apeR^* ) - \frac{m_\ell}{\sqrt{q^2}}\,
  716. \re(\apaL A_S^*+ \apaR^* A_S) \Big]\,,\nn\\[1mm]
  717. %
  718. J_{6s} & = & 2\beta_\ell\left[\re (\apaL\apeL^* - \apaR\apeR^*) \right]\,,
  719. \hspace{2.25cm} J_{6c} = 4\beta_\ell\, \frac{m_\ell}{\sqrt{q^2}}\, \re (\azeL A_S^*+ \azeR^* A_S)\,,\nn\\[1mm]
  720. %
  721. J_7 & = & \sqrt{2} \beta_\ell\, \Big[\im (\azeL\apaL^* - \azeR\apaR^* ) +
  722. \frac{m_\ell}{\sqrt{q^2}}\, \im (\apeL A_S^* - \apeR^* A_S)) \Big]\,,\nn\\[1mm]
  723. %
  724. J_8 & = & \frac{1}{\sqrt{2}}\beta_\ell^2\left[\im(\azeL\apeL^* + \azeR\apeR^*)\right]\,,
  725. %
  726. \hspace{1.9cm} J_9 = \beta_\ell^2\left[\im (\apaL^{*}\apeL + \apaR^{*}\apeR)\right] \,,
  727. \label{Js}}
  728. }}
  729.  
  730. \end{minipage}
  731. \vspace*{2.1cm}
  732. \end{frame}
  733.  
  734.  
  735.  
  736. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  737. \begin{frame}{Link to effective operators}
  738. {~}
  739. \begin{minipage}{\textwidth}
  740. $\color{JungleGreen}{\Rrightarrow}$ So here is where the magic happens. At leading order the amplitudes can be written as:
  741. {\tiny{
  742. \eqa{
  743. \apeLR &=&\sqrt{2} N m_B(1- \hat s)\bigg[ (\Ceff9 + \Cpeff9) \mp (\C{10} + \Cp{10})
  744. +\frac{2\hat{m}_b}{\hat s} (\Ceff7 + \Cpeff7) \bigg]\xi_{\bot}(E_{K^*}) \nn \\[2mm]
  745. \apaLR &=& -\sqrt{2} N m_B (1-\hat s)\bigg[(\Ceff9 - \Cpeff9) \mp (\C{10} - \Cp{10})
  746. +\frac{2\hat{m}_b}{\hat s}(\Ceff7 - \Cpeff7) \bigg] \xi_{\bot}(E_{K^*}) \nn \\[2mm]
  747. \azeLR &=& -\frac{N m_B (1-\hat s)^2}{2 \hat{m}_{K^*} \sqrt{\hat s}} \bigg[ (\Ceff9 - \Cpeff9) \mp (\C{10} - \Cp{10}) + 2\hat{m}_b (\Ceff7 - \Cpeff7) \bigg]\xi_{\|}(E_{K^*}),
  748. \label{LargeRecoilAs}}
  749. }}
  750. where $\hat s = q^2 /m_B^2$, $\hat{m}_i = m_i/m_B$. The $\xi_{\|,\bot }$ are the form factors. \\
  751. \pause
  752. $\color{JungleGreen}{\Rrightarrow}$ Now we can construct observables that cancel the $\xi$ form factors at leading order:
  753. \eq{P_5^{\prime} = \dfrac{J_5+\bar{J}_5}{2\sqrt{-(J_2^c+\bar{J}_2^c)(J_2^s+\bar{J}_2^s)} }
  754. }
  755.  
  756.  
  757. \end{minipage}
  758. \vspace*{2.1cm}
  759. \end{frame}
  760. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  761.  
  762. \begin{frame}
  763. \only<1>{\frametitle{LHCb detector - tracking}
  764. \begin{columns}
  765. \column{3in}
  766. \includegraphics[width=0.9\textwidth]{images/1050px-Lhcbview.jpg}
  767.  
  768. \column{2in}
  769. \includegraphics[width=0.95\textwidth]{images/sketch.png}
  770. \end{columns}
  771. \begin{itemize}
  772. \item Excellent Impact Parameter (IP) resolution ($20~\rm \mu m$).\\
  773. $\Rightarrow$ Identify secondary vertices from heavy flavour decays
  774. \item Proper time resolution $\sim~40~\rm fs$.\\
  775. $\Rightarrow$ Good separation of primary and secondary vertices.
  776. \item Excellent momentum ($\delta p/p \sim 0.4 - 0.6\%$) and inv. mass resolution.\\
  777. $\Rightarrow$ Low combinatorial background.
  778.  
  779. \end{itemize}
  780.  
  781.  
  782. }
  783.  
  784. \only<2>{\frametitle{LHCb detector - particle identification}
  785. \begin{columns}
  786. \column{3in}
  787. \includegraphics[width=0.9\textwidth]{images/1050px-Lhcbview.jpg}
  788.  
  789. \column{2in}
  790. \includegraphics[width=0.95\textwidth]{images/cher.png}
  791. \end{columns}
  792. \begin{itemize}
  793. \item Excellent Muon identification $\epsilon_{\mu \to \mu} \sim 97\%$, $\epsilon_{\pi \to \mu} \sim 1-3\%$
  794. \item Good $\PK-\Ppi$ separation via RICH detectors, $\epsilon_{\PK \to \PK} \sim 95\%$, $\epsilon_{\Ppi \to \PK} \sim 5\%$.\\
  795. $\Rightarrow$ Reject peaking backgrounds.
  796. \item High trigger efficiencies, low momentum thresholds.
  797. Muons: $p_T > 1.76 \GeV$ at L0, $p_T > 1.0 \GeV$ at HLT1,\\
  798. $B \to \PJpsi X $: Trigger $\sim 90\%$.
  799.  
  800. \end{itemize}
  801.  
  802.  
  803. }
  804.  
  805.  
  806. \end{frame}
  807.  
  808.  
  809.  
  810. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  811. \begin{frame}{LHCb update of the $\PBzero \to \PKstar \Pmuon \APmuon$, Selection}
  812. {~}
  813. \begin{minipage}{\textwidth}
  814. \begin{columns}
  815.  
  816. \column{0.5\textwidth}
  817. \begin{itemize}
  818. \item PID, kinematics and isolation variables used in a Boosted Decision Tree (BDT) to discriminate signal and background.
  819. \item Reject the regions of $\PJpsi$ and $\Ppsi(2S)$.
  820. \item Specific vetos for backgrounds: $\PLambdab \to \Pproton \PK \Pmu \Pmu$, $\PBs \to \Pphi \Pmu \Pmu$, etc.
  821. \item Using k-Fold technique and signal proxy $\PB \to \PJpsi \PKstar$ for training the BDT.
  822. \item Improved selection allowed for finer binning than the $1\invfb$ analysis.
  823. \end{itemize}
  824.  
  825.  
  826. \column{0.5\textwidth}
  827.  
  828. \includegraphics[width=0.88\textwidth]{images/Fig1.pdf} \\
  829. \includegraphics[width=0.88\textwidth]{images/fold.png}
  830.  
  831. \end{columns}
  832.  
  833.  
  834.  
  835. \end{minipage}
  836. \vspace*{2.1cm}
  837. \end{frame}
  838.  
  839.  
  840. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  841. \begin{frame}{LHCb update of the $\PBzero \to \PKstar \Pmuon \APmuon$, Selection}
  842. {~}
  843. \begin{minipage}{\textwidth}
  844.  
  845. \begin{itemize}
  846. \item Signal modelled by a sum of two Crystal-Ball functions.
  847. \item Shape is defined using $\PB \to \PJpsi \PKstar$ and corrected for $q^2$ dependency.
  848. \item Combinatorial background modelled by exponent.
  849. \end{itemize}
  850.  
  851. \begin{columns}
  852. \column{0.5\textwidth}
  853. \begin{itemize}
  854. \item $\PK \Ppi$ system:
  855. \begin{itemize}
  856. \item Rel. Breit Wigner for P-wave
  857. \item Lass model for the S-wave.
  858. \item Linear model for background.
  859. \end{itemize}
  860. \end{itemize}
  861.  
  862. \column{0.5\textwidth}
  863.  
  864. \includegraphics[width=0.88\textwidth]{images/pbkg}
  865.  
  866. \end{columns}
  867.  
  868. \begin{large}
  869. \begin{itemize}
  870. \item In total we found $2398\pm57$ candidates in the $(0.1,19)~\GeV^2$ $q^2$ region.
  871. \item $624 \pm 30$ candidates in the theoretically the most interesting $(1.1-6.0)~\GeV^2$ region.
  872. \end{itemize}
  873. \end{large}
  874.  
  875.  
  876.  
  877.  
  878. \end{minipage}
  879. \vspace*{2.1cm}
  880. \end{frame}
  881.  
  882.  
  883.  
  884. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  885. \begin{frame}{Detector acceptance}
  886. {~}
  887. \begin{minipage}{\textwidth}
  888. \begin{columns}
  889.  
  890. \column{0.6\textwidth}
  891. \begin{itemize}
  892. \item Detector distorts our angular distribution.
  893. \item We need to model this effect.
  894. \item 4D function is used:
  895. \begin{align*}
  896. \epsilon (\cos \thetal, \cos \thetak, \phi, q^2) = \\\sum_{ijkl} P_i(\cos \thetal) P_j(\cos \thetak ) P_k(\phi) P_l(q^2),
  897. \end{align*}
  898. where $P_i$ is the Legendre polynomial of order $i$.
  899. \item We use up to $4^{th}, 5^{th}, 6^{th}, 5^{th}$ order for the $\cos \thetal, \cos \thetak, \phi, q^2$.
  900. \end{itemize}
  901.  
  902.  
  903.  
  904.  
  905. \column{0.4\textwidth}
  906. \includegraphics[width=0.99\textwidth]{images/det.png}
  907. \end{columns}
  908.  
  909.  
  910. \end{minipage}
  911. \vspace*{2.1cm}
  912. \end{frame}
  913.  
  914. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  915.  
  916.  
  917. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  918. \begin{frame}{Control channel}
  919. {~}
  920. \begin{minipage}{\textwidth}
  921.  
  922.  
  923. \begin{itemize}
  924. \item We tested our unfolding procedure on $\PB \to \PJpsi \PKstar$.
  925. \item The result is in perfect agreement with other experiments and our different analysis of this decay.
  926. \end{itemize}
  927.  
  928. \begin{columns}
  929.  
  930. \column{0.5\textwidth}
  931.  
  932. \includegraphics[width=0.95\textwidth]{images/mlogjpsi.png}
  933. \column{0.5\textwidth}
  934. \includegraphics[width=0.95\textwidth]{images/mkpijpsi.png}
  935.  
  936. \end{columns}
  937.  
  938.  
  939. \includegraphics[width=0.99\textwidth]{images/angles2.png}
  940.  
  941.  
  942.  
  943. \end{minipage}
  944. \vspace*{2.1cm}
  945. \end{frame}
  946.  
  947.  
  948. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  949. \begin{frame}{Results in $\PB \to \PKstar \Pmu \Pmu$}
  950. \begin{minipage}{\textwidth}
  951. \begin{center}
  952. \includegraphics[angle=-90,width=0.65\textwidth]{images/Fig17.pdf}\\
  953. \end{center}
  954.  
  955. \begin{itemize}
  956. \item Tension with $3~\invfb$ gets confirmed!
  957. \item The two bins deviate both in $2.8~\sigma$ from SM prediction.
  958. \item Result compatible with previous result.
  959. \end{itemize}
  960.  
  961.  
  962. \end{minipage}
  963. \vspace*{2.1cm}
  964. \end{frame}
  965.  
  966. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  967. \begin{frame}{Branching fraction measurements of $\PB \to \PKstar^{\pm} \Pmu \Pmu$}
  968. {~}
  969. \includegraphics[width=0.5\textwidth]{images/ksmumu_BF.png}
  970. \includegraphics[width=0.5\textwidth]{images/kmumu_BF.png}
  971.  
  972. \begin{center}
  973. \begin{columns}
  974.  
  975. \column{0.4\textwidth}
  976. \begin{itemize}
  977. \item Despite large theoretical errors the results are consistently smaller then SM prediction.
  978. \end{itemize}
  979. \column{0.6\textwidth}
  980. \includegraphics[width=0.87\textwidth]{images/bukst_BF.png}
  981.  
  982.  
  983. \end{columns}
  984.  
  985.  
  986.  
  987.  
  988.  
  989.  
  990.  
  991. \end{center}
  992. \vspace*{2.1cm}
  993. \end{frame}
  994.  
  995. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  996. \begin{frame}{Branching fraction measurements of $\PBs \to \Pphi \Pmu \Pmu$}
  997. {~}
  998. \begin{minipage}{\textwidth}
  999. \begin{center}
  1000. \includegraphics[width=0.65\textwidth]{images/bs2phipi.png}\\
  1001. \end{center}
  1002.  
  1003. \begin{itemize}
  1004. \item Recent LHCb measurement [JHEPP09 (2015) 179].
  1005. \item Suppressed by $\frac{f_s}{f_d}$.
  1006. \item Cleaner because of narrow $\Pphi$ resonance.
  1007. \item $3.3~\sigma$ deviation in SM in the $1-6\GeV^2$ bin.
  1008. \end{itemize}
  1009.  
  1010.  
  1011. \end{minipage}
  1012. \vspace*{2.1cm}
  1013. \end{frame}
  1014.  
  1015.  
  1016. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1017. \begin{frame}{Branching fraction measurements of $\PLambdab \to \PLambda \Pmu \Pmu$}
  1018. {~}
  1019. \begin{minipage}{\textwidth}
  1020.  
  1021. \begin{center}
  1022. \only<1>{
  1023. \includegraphics[width=0.65\textwidth]{images/Lb_BR.png}
  1024. }
  1025. \only<2>{
  1026. \includegraphics[width=0.45\textwidth]{images/Lblow.png}
  1027. \includegraphics[width=0.45\textwidth]{images/Lbhigh.png}
  1028.  
  1029. }
  1030.  
  1031.  
  1032. \end{center}
  1033.  
  1034.  
  1035. \begin{itemize}
  1036. \item This years LHCb measurement [JHEP 06 (2015) 115]].
  1037. \item In total $\sim 300$ candidates in data set.
  1038. \item Decay not present in the low $q^2$.
  1039.  
  1040. \end{itemize}
  1041.  
  1042.  
  1043.  
  1044. \end{minipage}
  1045. \vspace*{2.1cm}
  1046. \end{frame}
  1047.  
  1048.  
  1049. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1050.  
  1051. \begin{frame}{Angular analysis of $\PLambdab \to \PLambda \Pmu \Pmu$}
  1052. {~}
  1053. \begin{minipage}{\textwidth}
  1054.  
  1055. \begin{itemize}
  1056. \item For the bins in which we have $>3~\sigma$ significance the forward backward asymmetry for the hadronic and leptonic system.
  1057. \end{itemize}
  1058. \begin{center}
  1059. \includegraphics[width=0.9\textwidth]{{images/AFB_Lb}.png}
  1060. \end{center}
  1061. \begin{itemize}
  1062. \item $A_{FB}^H$ is in good agreement with SM.
  1063. \item $A_{FB}^{\ell}$ always in above SM prediction.
  1064. \end{itemize}
  1065.  
  1066.  
  1067. \end{minipage}
  1068. \vspace*{2.1cm}
  1069. \end{frame}
  1070.  
  1071.  
  1072.  
  1073.  
  1074. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1075. \begin{frame}{Lepton universality test}
  1076. {~}
  1077. \begin{minipage}{\textwidth}
  1078. \begin{columns}
  1079. \column{3.0in}
  1080. \begin{itemize}
  1081. \item If $\PZprime$ is responsible for the $P'_5$ anomaly, does it couple equally to all flavours?
  1082. \includegraphics[width=0.9\textwidth]{images/uni2.png}
  1083. \item Challenging analysis due to bremsstrahlung.
  1084. \item Migration of events modeled by MC.
  1085. \item Correct for bremsstrahlung.
  1086. \item Take double ratio with $\PBplus \to \PJpsi \PKplus$ to cancel systematics.
  1087. \item In $3\invfb$, LHCb measures $R_K=0.745^{+0.090}_{-0.074}(stat.)^{+0.036}_{-0.036}(syst.)$
  1088. \item Consistent with SM at $2.6\sigma$.
  1089.  
  1090. \end{itemize}
  1091. \column{2.0in}
  1092. \includegraphics[width=0.99\textwidth]{images/RK.png}\\
  1093. \begin{itemize}
  1094. \item \href{http://arxiv.org/abs/1406.6482}{Phys. Rev. Lett. 113, 151601 (2014)}
  1095. \end{itemize}
  1096. \end{columns}
  1097.  
  1098.  
  1099.  
  1100. \end{minipage}
  1101. \vspace*{2.1cm}
  1102. \end{frame}
  1103.  
  1104.  
  1105.  
  1106.  
  1107. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1108. \begin{frame}{Angular analysis of $\PBzero \to \PKstar \Pe \Pe$}
  1109. {~}
  1110. \only<1>{
  1111. \begin{minipage}{\textwidth}
  1112. \begin{itemize}
  1113. \item With the full data set ($3\invfb$) we performed angular analysis in $0.0004 < q^2 <1~\GeV^2$.
  1114. \item Electrons channels are extremely challenging experimentally:
  1115. \begin{itemize}
  1116. \item Bremsstrahlung.
  1117. \item Trigger efficiencies.
  1118. \end{itemize}
  1119. \item Determine the angular observables: $\FL$, $\ATD$, $\ATRe$, $\ATIm$:
  1120. \end{itemize}
  1121. \begin{equation}
  1122. \label{eq:physPars}
  1123. \begin{split}
  1124. \FL &=\frac{|A_0|^2}{|A_0|^2+|A_{||}|^2 + |A_\perp|^2}\\
  1125. \ATD &= \frac{|A_\perp|^2-|A_{||}|^2}{|A_\perp|^2+|A_{||}|^2}\\
  1126. \ATRe &= \frac{2\Real(A_{||L}A^*_{\perp L} + A_{||R}A^*_{\perp R})}{|A_{||}|^2 + |A_\perp|^2}\\
  1127. \ATIm &= \frac{2\Imag(A_{||L}A^*_{\perp L} + A_{||R}A^*_{\perp R})}{|A_{||}|^2 + |A_\perp|^2},
  1128. \end{split}
  1129. \end{equation}
  1130.  
  1131. \end{minipage}
  1132. }
  1133. \only<2>{
  1134. \begin{center}
  1135. \includegraphics[width=0.5\textwidth]{images/Kstee.png}\\
  1136. \end{center}
  1137. \begin{itemize}
  1138. \item Results in full agreement with the SM.
  1139. \item Similar strength on $C_7$ Wilson coefficient as from $\Pbeauty \to \Pstrange \Pphoton$ decays.
  1140. \end{itemize}
  1141.  
  1142. \begin{center}
  1143. \includegraphics[width=0.9\textwidth]{images/Kstee2.png}
  1144. \end{center}
  1145.  
  1146. }
  1147. \vspace*{2.1cm}
  1148. \end{frame}
  1149.  
  1150.  
  1151.  
  1152. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1153. \begin{frame}{Theory implications}
  1154. {~}
  1155. \begin{minipage}{\textwidth}
  1156. \pause
  1157. \begin{itemize}
  1158. \item A preliminary fit prepared by \texttt{S. Descotes-Genon, L. Hofer, J. Matias, J. Virto}, presented at \href{http://arxiv.org/abs/1510.04239}{\color{blue}{1510.04239}}
  1159. \item Took into the fit:
  1160. \begin{itemize}
  1161. \item $\mathcal{B} ( \PB \to X_s \Pphoton) = (3.36 \pm 0.23) \times 10^{-4} $, Misiak et. al. 2015.
  1162. \item $\mathcal{B} ( \PB \to\Pmu \Pmu)$, theory: Bobeth et al 2013, experiment: LHCb+CMS average (2015)
  1163. \item $\mathcal{B} ( \PB \to X_s \Pmu \Pmu$), Huber et al 2015
  1164. \item $\mathcal{B} ( \PB \to \PK \Pmu \Pmu$),Bouchard et al 2013, 2015
  1165. \item $PB_{(s)} \to \PKstar(\Pphi) \Pmu \Pmu$, Horgan et al 2013
  1166. \item $\PB \to \PK \Pe \Pe$, $\PB \to \PKstar \Pe \Pe$ and $R_k$.
  1167. \end{itemize}
  1168. \item Overall there is around $4.5~\sigma$ discrepancy wrt. SM.
  1169. \end{itemize}
  1170.  
  1171.  
  1172.  
  1173.  
  1174.  
  1175. \end{minipage}
  1176. \vspace*{2.1cm}
  1177. \end{frame}
  1178.  
  1179. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1180. \begin{frame}{Theory implications}
  1181. {~}
  1182. \begin{minipage}{\textwidth}
  1183.  
  1184. \begin{itemize}
  1185. \item A preliminary fit prepared by \texttt{S. Descotes-Genon, L. Hofer, J. Matias, J. Virto}, presented at \href{http://arxiv.org/abs/1510.04239}{\color{blue}{1510.04239}}
  1186. \item The data can be explained by modifying the $C_9$ Wilson coefficient.
  1187. \item Overall there is around $4.5~\sigma$ discrepancy wrt. SM.
  1188. \end{itemize}
  1189. \includegraphics[width=0.9\textwidth]{images/C9.png}
  1190.  
  1191.  
  1192.  
  1193.  
  1194. \end{minipage}
  1195. \vspace*{2.1cm}
  1196. \end{frame}
  1197.  
  1198.  
  1199.  
  1200. \begin{frame}{Theory implications}
  1201. {~}
  1202. \begin{minipage}{\textwidth}
  1203.  
  1204. \includegraphics[height=0.9\textheight]{images/table.png}
  1205.  
  1206.  
  1207. \end{minipage}
  1208. \vspace*{2.1cm}
  1209. \end{frame}
  1210.  
  1211. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1212. \begin{frame}{If not NP?}
  1213. {~}
  1214. \begin{minipage}{\textwidth}
  1215. \begin{itemize}
  1216. \item We are not there yet!
  1217. \item There might be something not taken into account in the theory.
  1218. \item Resonances ($\PJpsi$, $\Ppsi(2S)$) tails can mimic NP effects.
  1219. \item There might be some non factorizable QCD corrections.\\
  1220. '' However, the central value of this effect would have to be significantly larger than expected on the basis of existing estimates'' \texttt{D.Straub, 1503.06199}
  1221. .
  1222. \end{itemize}
  1223. \only<1>{
  1224. \includegraphics[width=0.9\textwidth]{images/charmloop.png}
  1225. }
  1226. \only<2>{
  1227. \begin{center}
  1228. \includegraphics[width=0.6\textwidth]{images/charmloop2.png}
  1229. \end{center}
  1230. }
  1231.  
  1232. \end{minipage}
  1233. \vspace*{2.1cm}
  1234. \end{frame}
  1235.  
  1236. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1237. \begin{frame}{If not NP?}
  1238. {~}
  1239. \begin{minipage}{\textwidth}
  1240. \begin{itemize}
  1241. \item How about our clean $P_i$ observables?
  1242. \item The QCD cancel as mentioned only at leading order.
  1243. \item Comparison to normal observables with the optimised ones.
  1244. \end{itemize}
  1245. \includegraphics[width=0.9\textwidth]{images/C9_S_P.png}
  1246.  
  1247.  
  1248. \end{minipage}
  1249. \vspace*{2.1cm}
  1250. \end{frame}
  1251. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1252. \begin{frame}{There is more!}
  1253. {~}
  1254. \begin{minipage}{\textwidth}
  1255.  
  1256. \begin{itemize}
  1257. \item There is one other LUV decay recently measured by LHCb.
  1258. \item $R(\PDstar)=\dfrac{\mathcal{B}(\PB \to \PDstar \Ptau \Pnu)}{\mathcal{B}(\PB \to \PDstar \Pmu \Pnu)}$
  1259. \item Clean SM prediction: $R(\PDstar)=0.252(3)$, PRD 85 094025 (2012)
  1260. \item LHCb result: $R(\PDstar)= 0.336 \pm 0.027 \pm 0.030$, HFAG average: $R(\PDstar)=0.322 \pm 0.022$
  1261. \item $3.9~\sigma$ discrepancy wrt. SM.
  1262. \end{itemize}
  1263.  
  1264. \begin{center}
  1265.  
  1266. \includegraphics[width=0.52\textwidth]{images/RDstar.png}
  1267.  
  1268. \end{center}
  1269. \end{minipage}
  1270. \vspace*{2.1cm}
  1271. \end{frame}
  1272.  
  1273. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1274. \begin{frame}{Conclusions}
  1275. {~}
  1276. \begin{minipage}{\textwidth}
  1277. \begin{itemize}
  1278. \item Clear tensions wrt. SM predictions!
  1279. \item Measurements cluster in the same direction.
  1280. \item We are not opening the champagne yet!
  1281. \item Still need improvement both on theory and experimental side.
  1282. \item Time will tell if this is QCD+fluctuations or new Physics:
  1283. \end{itemize}
  1284. \pause
  1285. ''... when you have eliminated all the\\
  1286. Standard Model explanations, whatever remains,\\
  1287. however improbable, must be New Physics.''\\
  1288. prof. Joaquim Matias
  1289.  
  1290. \end{minipage}
  1291. \vspace*{2.1cm}
  1292. \end{frame}
  1293.  
  1294.  
  1295. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1296. \begin{frame}
  1297. {~}
  1298. \begin{minipage}{\textwidth}
  1299. \begin{center}
  1300. \begin{LARGE}
  1301. Thank you for the attention!
  1302. \end{LARGE}
  1303. \includegraphics[width=0.8\textwidth]{images/Joke.jpg}
  1304.  
  1305. \end{center}
  1306.  
  1307.  
  1308.  
  1309. \end{minipage}
  1310. \vspace*{2.1cm}
  1311. \end{frame}
  1312.  
  1313.  
  1314.  
  1315. \backupbegin
  1316.  
  1317. \begin{frame}\frametitle{Backup}
  1318. \topline
  1319.  
  1320. \end{frame}
  1321.  
  1322. \backupend
  1323.  
  1324. \end{document}