- \documentclass[]{beamer}
- \setbeamertemplate{navigation symbols}{}
- \usepackage{beamerthemesplit}
- \useoutertheme{infolines}
- \usecolortheme{dolphin}
- %\usetheme{Warsaw}
- \usetheme{progressbar}
- \usecolortheme{progressbar}
- \usefonttheme{progressbar}
- \useoutertheme{progressbar}
- \useinnertheme{progressbar}
- \usepackage{graphicx}
- %\usepackage{amssymb,amsmath}
- \usepackage[latin1]{inputenc}
- \usepackage{amsmath}
- \usepackage[T1]{fontenc}
- \usepackage{hepparticles}
- \usepackage{hepnicenames}
- \usepackage{hepunits}
- \usepackage{iwona}
- \progressbaroptions{imagename=images/lhcb}
- %\usetheme{Boadilla}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
- \definecolor{mygreen}{cmyk}{0.82,0.11,1,0.25}
- \setbeamertemplate{blocks}[rounded][shadow=false]
- \addtobeamertemplate{block begin}{\pgfsetfillopacity{0.8}}{\pgfsetfillopacity{1}}
- \setbeamercolor{structure}{fg=mygreen}
- \setbeamercolor*{block title example}{fg=mygreen!50,
- bg= blue!10}
- \setbeamercolor*{block body example}{fg= blue,
- bg= blue!5}
-
-
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- %\beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2->{15}}
- \title{Update on $\tau \to \mu \mu \mu$ searches}
- \author{J.Albrecht$^1$, M.Calvi$^2$, \underline{M.Chrzaszcz}$^{3,4}$, L. Gavardi$^2$, J.Harrison$^5$,\\ B. Khanji$^2$,G. Lafferty$^5$, E. Rodrigues$^5$, N. Serra$^4$, P. Seyfert$^6$
- }
-
- %\date{\today}
- \begin{document}
-
- {
- \institute{$^1$ Dortmund, $^2$ Milano, $^3$ Zurich, $^4$ Krakow,\\ $^5$ Manchester, $^6$ Heidelberg}
- \setbeamertemplate{footline}{}
- \begin{frame}
- \logo{
- \vspace{2 mm}
- \includegraphics[height=1cm,keepaspectratio]{images/ifj.png}~
- \includegraphics[height=1cm,keepaspectratio]{images/uzh.jpg}}
-
- \titlepage
- \end{frame}
- }
-
- \institute{UZH,IFJ}
-
-
- \section[Outline]{}
- \begin{frame}
- \tableofcontents
- \end{frame}
-
- \begin{frame}\frametitle{Status}
- \begin{columns}
- \column{2in}
- \begin{center}
- $1 $fb$^{-1}$ analysis of \textcolor{violet}{$\tau \to \mu \mu \mu$} and \textcolor{blue}{$\tau \to p \mu \mu$} appeared in PLB.
-
- \end{center}
-
-
- \column{3in}
-
- \includegraphics[scale=0.197]{RD_meeting/PLB.png}
- \end{columns}
-
- \begin{exampleblock}{2011 results:} \begin{enumerate}
- \item Obtained limit for $\tau \to \mu \mu \mu$: $8.0 \times 10^{-8}$.
- \item Belle(BaBar) results: $2.1 (3.2) \times 10^{-8}$ at $90\%$ CL.
- \item For 2012 + 2011 planned to implement several improvements.
-
- \end{enumerate}
- \end{exampleblock}
-
-
- % \textref {M.Chrz\k{a}szcz 2013}
-
- \end{frame}
-
- \section{MC Samples}
-
- \begin{frame}\frametitle{Generated MC samples }
- \only<1>
- {
-
- \begin{enumerate}
- \item In 2011 analysis one of the biggest contributions to the systematic error from MC was the reweighting the MC signal for the correct cross section.
- \item For 2012 we solved this problem by simulating signal in 5 parts. One for each production channel:
- \end{enumerate}
-
- }
-
- \begin{center}
-
- \fcolorbox{blue}{yellow}{
- %\begin{equation}NUmber of ne
-
- $\tau \to \mu \mu \mu = \begin{cases}
- \PB \to \Ptau \to \mu \mu \mu & 11.6\% \\
- \PB \to \PDs \to \tau \to \mu \mu \mu & 8.7\% \\
- \PB \to \PD \to \tau \to \mu \mu \mu & 0.2\% \\
- \PDs \to \tau \to \mu \mu \mu & 75.0\% \\
- \PD \to \tau \to \mu \mu \mu & 4.4\% \\
-
- \end{cases}$
- %\end{equation}
-
- }
- % $\HepParticle{B}{}{\pm} \to \HepParticle{D}{}{(\ast)} \tau^{\pm} \nu$}
- \end{center}
-
- %\textref {M.Chrz\k{a}szcz 2013}
-
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55
- \begin{frame}\frametitle{MC Generator Cuts}
- \only<1>
- {
- In order to use computing resources in more efficient way we introduced generator level cuts.
- \begin{center}
- \begin{tabular}{ | c | c || l | c |}
- \hline
- \multicolumn{2}{|c|| }{Signal sample\footnote{$X \to \tau\to 3\mu$, $\PDs \to \eta(\mu\mu \gamma) \mu \nu$, $\PDs \to \phi(\mu\mu) \pi$ }} & \multicolumn{2}{|c| }{Background sample(Dimuon)\footnote{$c\bar{c}$, $b\bar{b}$ }} \\ \hline \hline
- $p_{t\mu}$ & $>250MeV$ & $p_{t\mu}$ & $>280MeV$ \\ \hline
- $p_{\mu}$ & $>2.5GeV$ & $p_{\mu}$ & $>2.9GeV$ \\ \cline{3-4}
- & & $m(\mu\mu)$ & $<4.5GeV$\\ \cline{3-4}
- & & DOCA$(\mu\mu)$ & $<0.35mm$\\ \hline
- \end{tabular}
- \end{center}
- }
- Gain a factor of $\sim 2-3$ in signal statistics compared to 2011.
-
- %\textref {M.Chrz\k{a}szcz 2013}
-
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{Trigger lines}
- \only<1>
- {
- In 2011 we took all trigger lines into account. Studies shown we can gain on limiting our self to specific lines (2011 data sample).
-
-
- \begin{center}
- \begin{tabular}{| c | c | c | c | c | }
- \hline
- Line Name & $\epsilon [\%]$ & $\epsilon' [\%]$ & $\beta [\%]$ & $\beta' [\%]$ \\ \hline \hline
- Hlt2CharmSemilepD2HMuMu & $81.7$ & $81.7$ & $56.8$ & $56.8$ \\ \hline
- Hlt2DiMuonDetached & $75.0$ & $12.5$ & $54.1$ & $17.6$ \\ \hline
- Hlt2TriMuonTau & $66.3$ & $2.9$ & $60.0$ & $12.2$ \\ \hline
- Others & - & $2.2$ & - & $11.6$ \\ \hline
- \end{tabular}
-
- \end{center}
- , where $\epsilon$ is the signal efficiency, $\epsilon'$ is the gain of the efficiency, $\beta$ is the efficiency of background and $\beta'$ is the gain of the bck efficiency\\
-
- Rule of thumb (using Punzi FOM) tells us that we can gain $\mathcal{O}(5\%)$.
-
- }
-
-
- %\textref {M.Chrz\k{a}szcz 2013}
-
- \end{frame}
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55
- \section{Normalization}
- \begin{frame}\frametitle{Normalization channel}
- \only<1>
- {
- As last year we will use \textcolor{blue}{$\PDs \to \phi(\mu\mu) \pi$}.Similar as signal channels we produced them with correct proportion:
- \begin{exampleblock}{~}
- \begin{enumerate}
- \item $cc \to \PDs \to \phi (\mu\mu) \pi$ $89.7\%$
- \item $bb \to \PDs \to \phi (\mu\mu) \pi$ $10.3\%$
- \end{enumerate}
- \end{exampleblock}
- We avoid reweighing of the samples as in 2011.
-
- }
-
- %\textref {M.Chrz\k{a}szcz 2013}
-
- \end{frame}
- \begin{frame}\frametitle{Mass correction}
- \only<1>
- {
- \begin{center}
- \begin{tiny}
- \begin{columns}
- \column{2.5in}
- \begin{center}
- $D_s \to \phi(\mu\mu)\pi$ in data.\\
- \includegraphics[scale=0.13]{Ds_Mass/Ds_mass_data.png} \\
- \begin{itemize}
- \item mean = $1970.3 \pm 0.9 MeV$
- \end{itemize}
- \end{center}
-
- \column{2.5in}
- \begin{center}
- $D_s \to \phi(\mu\mu)\pi$ in MC.\\
- \includegraphics[scale=0.13]{Ds_Mass/D_mass_base.png}\\
- \begin{itemize}
- \item mean = $1969.1 \pm 0.60 MeV$
- \end{itemize}
- \end{center}
- \end{columns}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
- \begin{columns}
- \column{2.5in}
- \begin{center}
- \begin{small}
- \begin{itemize}
- \item $m_{\tau \to 3\mu} = \dfrac{1970.3}{1969.1} \times 1777.7 =$\textcolor{blue}{$ 1778.8 \pm 1.1 MeV$}
- \end{itemize}
- {~} \\ In agreement with 2011.
- \end{small}
- \end{center}
-
-
- \column{2.5in}
- \begin{center}
- Fit $\tau \to \mu\mu\mu$ in MC. \\
- \includegraphics[scale=0.11]{Ds_Mass/tau_mass_base.png}\\
- % \begin{itemize}
- % \item mean = $1777.7 \pm 0.4 MeV$ \\
- % \end{itemize}
-
- \end{center}
- \end{columns}
-
- \end{tiny}
- \end{center}
-
- }
-
-
-
-
- % \textref {M.Chrz\k{a}szcz 2013}
-
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{Cross section update}
- \only<1>
- {
- Analysis uses the knowledge of $c\overline{c}$ and $b\overline{b}$ cross sections. In 2011 both were measured by LHCb. For 2012 for the moment we assume:
- \begin{itemize}
- \item $\sigma_{b\overline{b}}^{8TeV}=298\pm36 \mu b$ form LHCB-PAPER-2013-016
- \item $\sigma_{c\overline{c}}^{8TeV}=\sigma_{c\overline{c}}^{7TeV}\times \dfrac{8}{7} = 6950 \pm 1100 \mu b$
-
- \end{itemize}
-
- \begin{exampleblock}{Cross checks on $c\overline{c}$}
-
- \begin{enumerate}
- \item Comparing $D_s$ yields in data.
- \item Pythia cross section calculation.
- \end{enumerate}
- \end{exampleblock}
-
-
- }
-
- %\textref {M.Chrz\k{a}szcz 2013}
-
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
-
- \begin{frame}\frametitle{Background samples normalization}
- \only<1>
- {
- For the normalization of background samples($c\bar{c}$ and $b\bar{b}$) we used generator cuts efficiencies and corrected the nominal cross section accordingly:\\
- \begin{center}
- $\mathcal{L} = \dfrac{N_{MC}}{\varepsilon_{acc} \times \varepsilon_{gen} \times \sigma_{LHCb}}$
- \end{center}
- The obtained luminosities(per 1M events):
- \begin{exampleblock}{~}
- \begin{enumerate}
- \item $\mathcal{L}_{cc} = 0.25 \pm 0.04 pb^{-1}$
- \item $\mathcal{L}_{bb} = 1.20 \pm 0.15 pb^{-1}$
- \end{enumerate}
- \end{exampleblock}
-
- }
- Dominant uncertainty from the cross section.
-
-
- % \textref {M.Chrz\k{a}szcz 2013}
-
- \end{frame}
-
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- \section{Peaking backgrounds}
- \begin{frame}\frametitle{$\PDs \to \eta(\mu \mu \gamma) \mu \nu$}
- \only<1>
- {
- \begin{exampleblock}{~}
- \begin{enumerate}
- \item The dominant background source of peaking background in this analysis is \textcolor{blue}{$\PDs \to \eta(\mu\mu\gamma) \mu \nu$}\\
- \item In 2011 we suffered from lack of MC statistics.
- \item Thanks to generator cuts our pdfs became more stable.
- \end{enumerate}
- \end{exampleblock}
-
- \begin{columns}
- \column{2.5in}
- \begin{center}
-
- \includegraphics[scale=0.11]{RD_meeting/pid_0_65_0_725geo-0_48_0_05.png} \\
- \begin{tiny} PID:$0.65;0.725$,GEO:$-0.48;0.05$ \end{tiny}
- \end{center}
-
- \column{2.5in}
- \begin{center}
- \includegraphics[scale=0.11]{RD_meeting/pid_0_725_0_86geo0_35_0_65.png}\\
- \begin{tiny} PID:$0.725;0.0.86$,GEO:$0.35;0.65$ \end{tiny}
-
- \end{center}
- \end{columns}
- }
-
- % \textref {M.Chrz\k{a}szcz 2013}
-
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{$D \to \Ph \Ph \Ph $}
- \only<1>
- {
- In 2011 we saw a triple miss-ID background: $\PDp \to \PK \Ppi \Ppi$. Luckily this background was in trash-bins that were not used in the analysis.
-
- \begin{columns}
- \column{1.6in}
- \begin{center}
- \includegraphics[scale=0.17]{images/pipipi_peak_2011.pdf}\\
- \begin{itemize}
- \item 2011 data
- \end{itemize}
- \end{center}
- \column{1.6in}
- \begin{center}
- \includegraphics[scale=0.17]{images/pipipi_peak_2012.pdf}\\
- \begin{itemize}
- \item 2012 data
- \end{itemize}
- \end{center}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55
- \column{1.6in}
- \begin{center}
- \includegraphics[scale=0.19]{images/FittoDkpipi_2012.pdf}\\{~}\\
- \begin{itemize}
- \item 2012 data
- \end{itemize}
- \end{center}
-
-
- \end{columns}
- {~}\\
- In 2012 there is still no significant amount of triple mis-ID background in the bins important to the analysis.
-
-
-
-
- }
-
- % \textref {M.Chrz\k{a}szcz 2013}
-
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
-
-
-
-
- \section{MVA development}
- \begin{frame}\frametitle{Isolating parameters}
- {~}
-
-
- \only<1>
- {
-
- \begin{enumerate}
-
- \item In 2011 we used the isolation parameter developed for $\PBs \to \mu\mu$. For 2012 data we optimised the isolation parameter for our channel based on MVA(BDT).
- \item We follow two approaches: train a MVA on signal vs. bkg tracks, and the isolating vs. non-isolating tracks.
- \item We see big improvement compared to old isolation.
- \end{enumerate}
- }
- \begin{columns}
- \column{1.6in}
- \begin{center}
-
- \includegraphics[scale=0.15]{RD_meeting/mva_BDT.png} \\
-
- \end{center}
-
- \column{1.6in}
- \begin{center}
- \includegraphics[scale=0.15]{RD_meeting/rejBvsS.png}\\
-
- \end{center}
-
- \column{1.6in}
- \begin{center}
- \includegraphics[scale=0.15]{images/Laura/rejBvsS.png}\\
-
- \end{center}
-
- \end{columns}
-
-
- % \textref {M.Chrz\k{a}szcz 2013}
-
- \end{frame}
-
-
- \begin{frame}\frametitle{Ensemble Selection}
- {~}
- \only<1>
- {
- \begin{exampleblock}{~}
- \begin{enumerate}
- \item In the last few years people winning leading machine learning contests started to combine their classifiers to squeeze the best out of them.
- \item This technique/method is know as Ensemble Selection or Blending.
- \item The plan for $\tau \to \mu \mu \mu$ is to take it to the next level.
- \item Combine not only different signal sources, but also different $\tau$ sources(slide 4).
- \item Allows for usage different isolating parameters for each channel.
- \end{enumerate}
- \end{exampleblock}
-
- }
- \only<2>
- {
-
- \begin{columns}
- \column{1.6in}
- \begin{center}
- \includegraphics[scale=0.15]{RD_meeting/rejBvsS_21513000.png}\\
- \begin{itemize}
- \item $\PB \to \PD \to \tau$
- \end{itemize}
- \end{center}
-
- \column{1.6in}
- \begin{center}
- \includegraphics[scale=0.15]{RD_meeting/rejBvsS_21513001.png}\\
- \begin{itemize}
- \item $\PD \to \tau$
- \end{itemize}
- \end{center}
-
- \column{1.6in}
- \begin{center}
- \includegraphics[scale=0.15]{RD_meeting/rejBvsS_23513000.png}\\
- \begin{itemize}
- \item $\PB \to \PDs \to \tau$
- \end{itemize}
- \end{center}
-
-
- %\column{2.5in}
- %\begin{center}
- % \includegraphics[scale=0.15]{RD_meeting/rejBvsS_23513001.png}\\
- % \begin{itemize}
- % \item $\PDs \to \tau$
- % \end{itemize}
- %\end{center}
- \end{columns}
-
-
- }
- \only<3>{
-
- % \begin{columns}
- %\column{2.5in}
- % \includegraphics[scale=0.2]{RD_meeting/rejBvsS_oryginal.png}
- % \column{2.5in}
- % \includegraphics[scale=0.2]{RD_meeting/rejBvsS_blend.png}
- % \end{columns}
-
-
-
- \begin{center}
- \includegraphics[scale=0.3]{images/BDT_comparison.png}
- \end{center}
- }
-
-
- % \textref {M.Chrz\k{a}szcz, N.Serra 2013}
-
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5555
- \section{Binning optimisation}
-
- \begin{frame}\frametitle{Binning optimisation}
- {~}
- \only<1>
- {
- For the 2011 analysis we had two classifiers: $PIDNN$ and $M_{GEO}$. Each of them we optimised separately. For the 2012 analysis we are performing a simultaneous 2D optimisation.
-
- \begin{columns}
- \column{2.5in}
-
-
- \includegraphics[scale=0.13]{inflaton/punzi1.png}
- \begin{itemize}
- \item FOM as a function of N. of bins.
- \end{itemize}
- \column{2.5in}
- \includegraphics[scale=0.27]{RD_meeting/2d-data.pdf}
- \begin{itemize}
- \item Signal efficiency in 2011 binning.
- \end{itemize}
- \end{columns}
-
- }
-
- \end{frame}
-
- \section{Model dependence}
- \begin{frame}\frametitle{Model dependence}
- \begin{exampleblock}{Minimal Lepton Flavour Violation Model\footnote{arXiv:0707.0988}}
- \begin{itemize}
- \item In effective-field-theory we introduce new operators that at electro-weak scale are compatible with $SU(2)_L \times U(1)$.
- \item Left handed lepton doublets add right handed lepton singlets follow the group symmetry: $G_{LF} = SU(3)_L \times SU(3)_E$.
- \item LFV arises from breaking this group.
- \item We focus on three operators that have dominant contribution to NP:
- \begin{enumerate}
- \item Purely left handed iterations: $(\overline{L} \gamma_{\mu} L)(\overline{L} \gamma^{\mu} L)$
- \item Mix term: $(\overline{R}\gamma_{\mu} R)(\overline{L} \gamma^{\mu} L)$
- \item Radiative operator: $g'(\overline{L}H\sigma_{\mu\nu}R)B^{\mu\nu}$
- \end{enumerate}
- \end{itemize}
- \end{exampleblock}
-
- \end{frame}
-
-
- \begin{frame}\frametitle{Reweighting MC samples}
- \only<1>{
- \begin{center}
- \begin{columns}
- \column{2.5in}
- {~}Reconstruction:\\
- {~}\includegraphics[scale=0.22]{images/acceptance.png}
-
- \column{2.5in}
- Offline:\\
- \includegraphics[scale=0.22]{images/offline.png}
-
-
- \end{columns}
- \end{center}
- }
-
- \only<2>{
- \begin{center}
- \begin{columns}
- \column{1.6in}
- {~}$(\overline{L} \gamma_{\mu} L)(\overline{L} \gamma^{\mu} L)$\\
- {~}\includegraphics[scale=0.22]{images/gammallll.png}
-
- \column{1.6in}
- $(\overline{R}\gamma_{\mu} R)(\overline{L} \gamma^{\mu} L)$\\
- \includegraphics[scale=0.22]{images/gammallrr.png}
- \column{1.6in}
- $g'(\overline{L}H\sigma_{\mu\nu}R)B^{\mu\nu}$\\
- \includegraphics[scale=0.22]{images/gammarad.png}
-
- \end{columns}
- \end{center}
- }
-
- \begin{equation}
- \epsilon_{gen\&rec} = C\epsilon^{LHCbMC}_{gen\&rec} \sum \rho^{model}(m_{12},m_{23})
- \end{equation}
-
- \only<1>{
- \begin{itemize}
- \item Simulated signal events with PHSP
- \item Take into account reconstruction and selection.
- \item Reweigh accordingly to a given distribution.
- \end{itemize}
-
-
- }
-
-
- \only<2>{
- \begin{itemize}
- \item Simulated signal events with PHSP
- \item Take into account reconstruction and selection.
- \item Reweigh accordingly to a given distribution.
- \end{itemize}
-
-
- }
-
- \end{frame}
-
-
-
-
-
-
-
-
-
-
-
- \section{Conclusions}
-
- \begin{frame}\frametitle{Conclusions}
- {~}
- \only<1>
- {
- \begin{exampleblock}{~}
- \begin{enumerate}
- \item Analysis is well underway.
- \item More efficient use of computing resources and increased MC
- statistics helps at all ends
- \item Hope to improve the selection.
- %\item $\tau \to p \mu \mu$ mode will be studied in parallel.
- \end{enumerate}
- \end{exampleblock}
- }
- \includegraphics[scale=0.4]{RD_meeting/phd052805.png}\\
-
-
-
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- \begin{frame}
- {~}
- \begin{Huge}
- BACKUP
- \end{Huge}
-
-
- \end{frame}
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55
-
- \begin{frame}\frametitle{$B \to \tau$}
- {~}\\
- We really suck in selecting this channel.
-
- \includegraphics[scale=0.4]{tmva/ROC_31113002.png}
-
-
-
- % \textref {M.Chrz\k{a}szcz 2013}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
- \begin{frame}\frametitle{$B \to D_s \to \tau$}
- {~}\\
- On the biggest contributing channel we are quite optimal.
-
-
- \includegraphics[scale=0.4]{tmva/ROC_23513000.png}
-
-
-
- % \textref {M.Chrz\k{a}szcz 2013}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
- \begin{frame}\frametitle{$D_s \to \tau$}
- {~}\\
- On the biggest contributing channel we are quite optimal.
-
-
- \includegraphics[scale=0.4]{tmva/ROC_23513001.png}
-
-
-
- %\textref {M.Chrz\k{a}szcz 2013}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
- \begin{frame}\frametitle{$B \to D^+ \to \tau$}
- {~}\\
- On the biggest contributing channel we are quite optimal.
-
-
- \includegraphics[scale=0.4]{tmva/21513000_roc2.png}
-
-
-
- % \textref {M.Chrz\k{a}szcz 2013}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
- \begin{frame}\frametitle{$D^+ \to \tau$}
- {~}\\
- On the biggest contributing channel we are quite optimal.
-
-
- \includegraphics[scale=0.4]{tmva/ROC_21513001.png}
-
-
-
- %\textref {M.Chrz\k{a}szcz 2013}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
-
- \begin{frame}\frametitle{Comparison on mix sample}
- {~}\\
- On the biggest contributing channel we are quite optimal.
-
-
- \includegraphics[scale=0.4]{tmva/mix.png}
-
-
-
- %\textref {M.Chrz\k{a}szcz 2013}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
- \begin{frame}\frametitle{Conclusions on TMVA}
- {~}\\
- \begin{itemize}
- \item Each of the signal components is enormously larger than MVA trained on mix.
- \item Method looks very promising if we can find a nice blending method(work for next week).
- \item Mayby discusion on TMVA/MatrixNet/Neurobayes is next to leading order effect compared to this method?
-
-
- \end{itemize}
-
-
- % \textref {M.Chrz\k{a}szcz 2013}
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
- \begin{frame}\frametitle{Comparison on mix sample}
- {~}\\
- \begin{columns}
- \column{2.5in}
-
-
- \includegraphics[scale=0.27]{RD_meeting/rejBvsS_oryginal.png}
-
- \column{2.5in}
- \includegraphics[scale=0.27]{RD_meeting/rejBvsS_blend.png}
-
- \end{columns}
-
-
- %\textref {M.Chrz\k{a}szcz 2013}
- \end{frame}
-
-
-
- \end{document}
-
-