Newer
Older
Presentations / lhcb_week_krakow / tau23mu / tau23mu_v2.tex
@mchrzasz mchrzasz on 10 Oct 2013 24 KB update before changing laptops
  1. \documentclass[]{beamer}
  2. \setbeamertemplate{navigation symbols}{}
  3. \usepackage{beamerthemesplit}
  4. \useoutertheme{infolines}
  5. \usecolortheme{dolphin}
  6. %\usetheme{Warsaw}
  7. \usetheme{progressbar}
  8. \usecolortheme{progressbar}
  9. \usefonttheme{progressbar}
  10. \useoutertheme{progressbar}
  11. \useinnertheme{progressbar}
  12. \usepackage{graphicx}
  13. %\usepackage{amssymb,amsmath}
  14. \usepackage[latin1]{inputenc}
  15. \usepackage{amsmath}
  16. \usepackage[T1]{fontenc}
  17. \usepackage{hepparticles}
  18. \usepackage{hepnicenames}
  19. \usepackage{hepunits}
  20. \usepackage{iwona}
  21. \progressbaroptions{imagename=images/lhcb}
  22. %\usetheme{Boadilla}
  23.  
  24. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
  25. \definecolor{mygreen}{cmyk}{0.82,0.11,1,0.25}
  26. \setbeamertemplate{blocks}[rounded][shadow=false]
  27. \addtobeamertemplate{block begin}{\pgfsetfillopacity{0.8}}{\pgfsetfillopacity{1}}
  28. \setbeamercolor{structure}{fg=mygreen}
  29. \setbeamercolor*{block title example}{fg=mygreen!50,
  30. bg= blue!10}
  31. \setbeamercolor*{block body example}{fg= blue,
  32. bg= blue!5}
  33.  
  34.  
  35.  
  36.  
  37.  
  38. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  39. %\beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2->{15}}
  40. \title{Update on $\tau \to \mu \mu \mu$ searches}
  41. \author{J.Albrecht$^1$, M.Calvi$^2$, \underline{M.Chrzaszcz}$^{3,4}$, L. Gavardi$^2$, J.Harrison$^5$,\\ B. Khanji$^2$,G. Lafferty$^5$, E. Rodrigues$^5$, N. Serra$^3$, P. Seyfert$^6$
  42. }
  43.  
  44. %\date{\today}
  45. \begin{document}
  46.  
  47. {
  48. \institute{$^1$ Dortmund, $^2$ Milano, $^3$ Zurich, $^4$ Krakow,\\ $^5$ Manchester, $^6$ Heidelberg}
  49. \setbeamertemplate{footline}{}
  50. \begin{frame}
  51. \logo{
  52. \vspace{2 mm}
  53. \includegraphics[height=1cm,keepaspectratio]{images/ifj.png}~
  54. \includegraphics[height=1cm,keepaspectratio]{images/uzh.jpg}}
  55.  
  56. \titlepage
  57. \end{frame}
  58. }
  59.  
  60. \institute{UZH,IFJ}
  61.  
  62.  
  63. \section[Outline]{}
  64. \begin{frame}
  65. \tableofcontents
  66. \end{frame}
  67.  
  68. \begin{frame}\frametitle{Status}
  69. \begin{columns}
  70. \column{2in}
  71. \begin{center}
  72. $1 $fb$^{-1}$ analysis of \textcolor{violet}{$\tau \to \mu \mu \mu$} and \textcolor{blue}{$\tau \to p \mu \mu$} appeared in PLB.
  73.  
  74. \end{center}
  75.  
  76.  
  77. \column{3in}
  78.  
  79. \includegraphics[scale=0.197]{RD_meeting/PLB.png}
  80. \end{columns}
  81.  
  82. \begin{exampleblock}{2011 results:} \begin{enumerate}
  83. \item Obtained limit for $\tau \to \mu \mu \mu$: $8.0 \times 10^{-8}$.
  84. \item Belle(BaBar) results: $2.1 (3.2) \times 10^{-8}$ at $90\%$ CL.
  85. \item For 2012 + 2011 planned to implement several improvements.
  86.  
  87. \end{enumerate}
  88. \end{exampleblock}
  89.  
  90.  
  91. % \textref {M.Chrz\k{a}szcz 2013}
  92.  
  93. \end{frame}
  94.  
  95. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
  96. \begin{frame}\frametitle{Status}
  97. For now we use:
  98. \begin{enumerate}
  99. \item Stripping 20.
  100. \item Signal sample: official+Krakow produced sample $(1M+1M)$.
  101. \item $bb$ and $cc$ samples: official+Krakow. In total 30M events.
  102. \item General strategy stays the same as 2011.
  103. \end{enumerate}
  104.  
  105.  
  106. \end{frame}
  107. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  108.  
  109.  
  110.  
  111.  
  112. \section{MC Samples}
  113.  
  114.  
  115.  
  116. \begin{frame}\frametitle{Cross section update}
  117. \only<1>
  118. {
  119. Analysis uses the knowledge of $c\overline{c}$ and $b\overline{b}$ cross sections. In 2011 both were measured by LHCb. For 2012 for the moment we assume:
  120. \begin{itemize}
  121. \item $\sigma_{b\overline{b}}^{8TeV}=298\pm36 \mu b$ from LHCB-PAPER-2013-016
  122. \item $\sigma_{c\overline{c}}^{8TeV}=\sigma_{c\overline{c}}^{7TeV}\times \dfrac{8}{7} = 6950 \pm 1100 \mu b$
  123.  
  124. \end{itemize}
  125.  
  126. \begin{exampleblock}{Cross checks on $c\overline{c}$}
  127.  
  128. \begin{enumerate}
  129. \item Pythia cross section calculation.
  130. \item Comparing $D_s$ yields in data.
  131.  
  132. \end{enumerate}
  133. \end{exampleblock}
  134.  
  135.  
  136. }
  137.  
  138. %\textref {M.Chrz\k{a}szcz 2013}
  139.  
  140. \end{frame}
  141.  
  142.  
  143. \begin{frame}\frametitle{Generated MC samples }
  144. \only<1>
  145. {
  146.  
  147. \begin{enumerate}
  148. \item In the 2011 analysis one of the complications from MC was
  149. the wrong mixture of tau sources.
  150. \item For 2012 we solved this problem by simulating signal in 5 parts. One for each production channel:
  151. \end{enumerate}
  152.  
  153. }
  154.  
  155. \begin{center}
  156.  
  157. \fcolorbox{blue}{yellow}{
  158. %\begin{equation}NUmber of ne
  159.  
  160. $\tau \to \mu \mu \mu = \begin{cases}
  161. \PB \to \Ptau \to \mu \mu \mu & 11.6\% \\
  162. \PB \to \PDs \to \tau \to \mu \mu \mu & 8.7\% \\
  163. \PB \to \PD \to \tau \to \mu \mu \mu & 0.2\% \\
  164. \PDs \to \tau \to \mu \mu \mu & 75.0\% \\
  165. \PD \to \tau \to \mu \mu \mu & 4.4\% \\
  166.  
  167. \end{cases}$
  168. %\end{equation}
  169.  
  170. }
  171. % $\HepParticle{B}{}{\pm} \to \HepParticle{D}{}{(\ast)} \tau^{\pm} \nu$}
  172. \end{center}
  173.  
  174. %\textref {M.Chrz\k{a}szcz 2013}
  175.  
  176. \end{frame}
  177. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55
  178. \begin{frame}\frametitle{MC Generator Cuts}
  179. \only<1>
  180. {
  181. In order to use computing resources in more efficient way we introduced generator level cuts.
  182. \begin{center}
  183. \begin{tabular}{ | c | c || l | c |}
  184. \hline
  185. \multicolumn{2}{|c|| }{Signal sample\footnote{$X \to \tau\to 3\mu$, $\PDs \to \eta(\mu\mu \gamma) \mu \nu$, $\PDs \to \phi(\mu\mu) \pi$ }} & \multicolumn{2}{|c| }{Background sample(Dimuon)\footnote{$c\bar{c}$, $b\bar{b}$ }} \\ \hline \hline
  186. $p_{t\mu}$ & $>250MeV$ & $p_{t\mu}$ & $>280MeV$ \\ \hline
  187. $p_{\mu}$ & $>2.5GeV$ & $p_{\mu}$ & $>2.9GeV$ \\ \cline{3-4}
  188. & & $m(\mu\mu)$ & $<4.5GeV$\\ \cline{3-4}
  189. & & DOCA$(\mu\mu)$ & $<0.35mm$\\ \hline
  190. \end{tabular}
  191. \end{center}
  192. }
  193. Gain a factor of $\sim 2-3$ in signal statistics compared to 2011 and factor of ~8 in background.
  194.  
  195. %\textref {M.Chrz\k{a}szcz 2013}
  196.  
  197. \end{frame}
  198. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  199. \begin{frame}\frametitle{Trigger lines}
  200. \only<1>
  201. {
  202. In 2011 we took all trigger lines into account. Studies shown we can gain on limiting ourselves to specific lines (2011 data sample).
  203.  
  204.  
  205. \begin{center}
  206. \begin{tabular}{| c | c | c | c | c | }
  207. \hline
  208. Line Name & $\epsilon [\%]$ & $\epsilon' [\%]$ & $\beta [\%]$ & $\beta' [\%]$ \\ \hline \hline
  209. Hlt2CharmSemilepD2HMuMu & $81.7$ & $81.7$ & $56.8$ & $56.8$ \\ \hline
  210. Hlt2DiMuonDetached & $75.0$ & $12.5$ & $54.1$ & $17.6$ \\ \hline
  211. Hlt2TriMuonTau & $66.3$ & $2.9$ & $60.0$ & $12.2$ \\ \hline
  212. Others & - & $2.2$ & - & $11.6$ \\ \hline
  213. \end{tabular}
  214. \end{center}
  215. , where $\epsilon$ is the signal efficiency (any Hlt2physics), $\epsilon'$ is the gain of the efficiency.\\ $\beta$ is the efficiency of background and $\beta'$ is the gain of the bck efficiency\\
  216.  
  217. Rule of thumb (using $\frac{s}{\sqrt{b}}$ FOM) tells us that we can gain $\mathcal{O}(5\%)$.
  218.  
  219. }
  220.  
  221.  
  222. %\textref {M.Chrz\k{a}szcz 2013}
  223.  
  224. \end{frame}
  225.  
  226.  
  227. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55
  228. \section{Normalization}
  229. \begin{frame}\frametitle{Normalization channel}
  230. \only<1>
  231. {
  232. As last year we will use \textcolor{blue}{$\PDs \to \phi(\mu\mu) \pi$}.Similarly to signal channels we produced them with correct proportion:
  233. \begin{exampleblock}{~}
  234. \begin{enumerate}
  235. \item $cc \to \PDs \to \phi (\mu\mu) \pi$ $89.7\%$
  236. \item $bb \to \PDs \to \phi (\mu\mu) \pi$ $10.3\%$
  237. \end{enumerate}
  238. \end{exampleblock}
  239. We avoid reweighting of the samples as in 2011.
  240. }
  241.  
  242. %\textref {M.Chrz\k{a}szcz 2013}
  243.  
  244. \end{frame}
  245. \begin{frame}\frametitle{Mass correction}
  246. \only<1>
  247. {
  248. \begin{center}
  249. \begin{tiny}
  250. \begin{columns}
  251. \column{2.5in}
  252. \begin{center}
  253. $D_s \to \phi(\mu\mu)\pi$ in data.\\
  254. \includegraphics[scale=0.13]{Ds_Mass/Ds_mass_data.png} \\
  255. \begin{itemize}
  256. \item mean = $1970.3 \pm 0.9 MeV$
  257. \end{itemize}
  258. \end{center}
  259.  
  260. \column{2.5in}
  261. \begin{center}
  262. $D_s \to \phi(\mu\mu)\pi$ in MC.\\
  263. \includegraphics[scale=0.13]{Ds_Mass/D_mass_base.png}\\
  264. \begin{itemize}
  265. \item mean = $1969.1 \pm 0.60 MeV$
  266. \end{itemize}
  267. \end{center}
  268. \end{columns}
  269. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
  270. \begin{columns}
  271. \column{2.5in}
  272. \begin{center}
  273. \begin{small}
  274. \begin{itemize}
  275. \item $m_{\tau \to 3\mu} = \dfrac{1970.3}{1969.1} \times 1777.7 =$\textcolor{blue}{$ 1778.8 \pm 1.1 MeV$}
  276. \end{itemize}
  277. {~} \\ In agreement with 2011.
  278. \end{small}
  279. \end{center}
  280.  
  281.  
  282. \column{2.5in}
  283. \begin{center}
  284. Fit $\tau \to \mu\mu\mu$ in MC. \\
  285. \includegraphics[scale=0.11]{Ds_Mass/tau_mass_base.png}\\
  286. % \begin{itemize}
  287. % \item mean = $1777.7 \pm 0.4 MeV$ \\
  288. % \end{itemize}
  289. \end{center}
  290. \end{columns}
  291.  
  292. \end{tiny}
  293. \end{center}
  294.  
  295. }
  296.  
  297.  
  298.  
  299.  
  300. % \textref {M.Chrz\k{a}szcz 2013}
  301.  
  302. \end{frame}
  303. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  304. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
  305.  
  306. \begin{frame}\frametitle{Background samples normalization}
  307. \only<1>
  308. {
  309. For the normalization of background samples($c\bar{c}$ and $b\bar{b}$) we used generator cuts efficiencies and corrected the nominal cross section accordingly:\\
  310. \begin{center}
  311. $\mathcal{L} = \dfrac{N_{MC}}{\varepsilon_{acc} \times \varepsilon_{gen} \times \sigma_{LHCb}}$
  312. \end{center}
  313. The obtained luminosities(per 1M events):
  314. \begin{exampleblock}{~}
  315. \begin{enumerate}
  316. \item $\mathcal{L}_{cc} = 0.25 \pm 0.04 pb^{-1}$
  317. \item $\mathcal{L}_{bb} = 1.20 \pm 0.15 pb^{-1}$
  318. \end{enumerate}
  319. \end{exampleblock}
  320. }
  321. Dominant uncertainty from the cross section.
  322.  
  323.  
  324. % \textref {M.Chrz\k{a}szcz 2013}
  325.  
  326. \end{frame}
  327.  
  328.  
  329.  
  330.  
  331. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  332.  
  333. \section{Peaking backgrounds}
  334. \begin{frame}\frametitle{$\PDs \to \eta(\mu \mu \gamma) \mu \nu$}
  335. \only<1>
  336. {
  337. \begin{exampleblock}{~}
  338. \begin{enumerate}
  339. \item The dominant background source of peaking background in this analysis is \textcolor{blue}{$\PDs \to \eta(\mu\mu\gamma) \mu \nu$}\\
  340. \item In 2011 we suffered from lack of MC statistics.
  341. \item Thanks to generator cuts our pdfs became more stable.
  342. \item Pdf used: $\mathcal{P} = exp(m) \times Pol^n(m)$
  343. \end{enumerate}
  344. \end{exampleblock}
  345.  
  346. \begin{columns}
  347. \column{2.5in}
  348. \begin{center}
  349.  
  350. \includegraphics[scale=0.09]{RD_meeting/pid_0_65_0_725geo-0_48_0_05.png} \\
  351. \begin{tiny} PID:$0.65;0.725$,GEO:$-0.48;0.05$ \end{tiny}
  352. \end{center}
  353.  
  354. \column{2.5in}
  355. \begin{center}
  356. \includegraphics[scale=0.09]{RD_meeting/pid_0_725_0_86geo0_35_0_65.png}\\
  357. \begin{tiny} PID:$0.725;0.0.86$,GEO:$0.35;0.65$ \end{tiny}
  358.  
  359. \end{center}
  360. \end{columns}
  361. }
  362.  
  363. % \textref {M.Chrz\k{a}szcz 2013}
  364.  
  365. \end{frame}
  366. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  367. \begin{frame}\frametitle{$D \to \Ph \Ph \Ph $}
  368. \only<1>
  369. {
  370. In 2011 we saw a triple miss-ID background: $\PDp \to \PK \Ppi \Ppi$. This background was in trash-bins that were not used in the analysis.\\
  371. Also new sources of bck($D_x\to 3\pi$) are well under control.
  372.  
  373. \begin{columns}
  374. \column{1.6in}
  375. \begin{center}
  376. \includegraphics[scale=0.17]{images/pipipi_peak_2011.pdf}\\
  377. \begin{itemize}
  378. \item 2011 data
  379. \end{itemize}
  380. \end{center}
  381. \column{1.6in}
  382. \begin{center}
  383. \includegraphics[scale=0.17]{images/pipipi_peak_2012.pdf}\\
  384. \begin{itemize}
  385. \item 2012 data
  386. \end{itemize}
  387. \end{center}
  388. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55
  389. \column{1.6in}
  390. \begin{center}
  391. \includegraphics[scale=0.19]{images/FittoDkpipi_2012.pdf}\\{~}\\
  392. \begin{itemize}
  393. \item 2012 data
  394. \end{itemize}
  395. \end{center}
  396.  
  397.  
  398. \end{columns}
  399. {~}\\
  400. In 2012 there is still no significant amount of triple mis-ID background in the bins important to the analysis.
  401.  
  402.  
  403.  
  404.  
  405. }
  406.  
  407. % \textref {M.Chrz\k{a}szcz 2013}
  408.  
  409. \end{frame}
  410. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
  411.  
  412.  
  413.  
  414.  
  415. \section{MVA development}
  416. \begin{frame}\frametitle{Isolating parameters}
  417. {~}
  418. \only<1>
  419. {
  420. Inputs for isolating parameter(based on Giampiero work):
  421. \begin{center}
  422. \begin{tabular}{ | c | p{10cm} |}
  423. \hline
  424. Variable & Description \\ \hline
  425. \hline
  426. IP $\chi^2$ & Impact parameter $\chi^2$ wrt any PV \\ \hline
  427. IP & Impact parameter wrt any PV \\ \hline
  428. angle & angle between $\mu$ and track \\ \hline
  429. doca & doca between the $\mu$ and the track \\ \hline
  430. PVdis & $\vert \overrightarrow{TV} - \overrightarrow{PV} \vert$, signed according to $z_{TV} - z_{PV}$. \\ \hline
  431. SVdis & $\vert \overrightarrow{TV} - \overrightarrow{SV} \vert$, signed according to $z_{STV} - z_{PV}$. \\ \hline
  432. fc & $\dfrac{\vert \overrightarrow{P_{\mu}} + \overrightarrow{P_{tr}} \times \alpha }{\vert \overrightarrow{P_{\mu}} + \overrightarrow{P_{tr}} \times \alpha + P_{T_{\mu}}+ P_{T_{tr}}}$\footnote{$\alpha$ is the angle between $\overrightarrow{P}_{\mu} + \overrightarrow{P}_{tr}$ and $\overrightarrow{PV} - \overrightarrow{TV}$ }\\ \hline
  433. \end{tabular}
  434. \end{center}
  435.  
  436.  
  437.  
  438.  
  439.  
  440. }
  441.  
  442. \only<2>
  443. {
  444.  
  445. \begin{enumerate}
  446.  
  447. \item In 2011 we used the isolation parameter developed for $\PBs \to \mu\mu$. For 2012 data we optimised the isolation parameter for our channel based on MVA(BDT).
  448. \item We follow two approaches: train a MVA on signal vs. bkg tracks, and the isolating vs. non-isolating tracks.
  449. \item We see a big improvement compared to old isolation.
  450. \end{enumerate}
  451. \begin{columns}
  452. \column{1.6in}
  453. \begin{center}
  454.  
  455. \includegraphics[scale=0.15]{RD_meeting/mva_BDT.png} \\
  456.  
  457. \end{center}
  458.  
  459. \column{1.6in}
  460. \begin{center}
  461. \includegraphics[scale=0.15]{RD_meeting/rejBvsS.png}\\
  462.  
  463. \end{center}
  464.  
  465. \column{1.6in}
  466. \begin{center}
  467. \includegraphics[scale=0.15]{images/Laura/rejBvsS.png}\\
  468.  
  469. \end{center}
  470.  
  471. \end{columns}
  472.  
  473. }
  474. % \textref {M.Chrz\k{a}szcz 2013}
  475.  
  476. \end{frame}
  477.  
  478.  
  479. \begin{frame}\frametitle{Ensemble Selection}
  480. {~}
  481.  
  482. \begin{exampleblock}{~}
  483. \begin{enumerate}
  484. \item In the last few years people winning leading machine learning contests started to combine their classifiers to squeeze the best out of them.
  485. \item This technique/method is know as Ensemble Selection or Blending.
  486. \item The plan for $\tau \to \mu \mu \mu$ is to take it to the next level.
  487. \item Combine not only different signal classifiers, but also different $\tau$ sources(slide 4).
  488. \item Allows for usage different isolating parameters for each channel.
  489. \end{enumerate}
  490. \end{exampleblock}
  491. \end{frame}
  492.  
  493.  
  494. \begin{frame}\frametitle{Ensemble Selection - How to}
  495. {~}
  496. How to make an Ensemble Selection
  497. \begin{exampleblock}{~}
  498. \begin{enumerate}
  499. \item Construct a reduced training set.
  500. \item Train you different models on the reduced training set.
  501. \item Combine/Blend all the models on the rest of the data set.
  502. \item The output is a function that mixes the individual model predictions into a blended prediction, hopefully better than any individual result.
  503. \end{enumerate}
  504. \end{exampleblock}
  505. \end{frame}
  506.  
  507. \begin{frame}\frametitle{Ensemble Selection}
  508.  
  509. %%%%%%%%%%%%%%%%%%%%%%%5
  510. \begin{columns}
  511. \column{1.6in}
  512. \begin{center}
  513. \includegraphics[scale=0.15]{RD_meeting/rejBvsS_21513000.png}\\
  514. \begin{itemize}
  515. \item $\PB \to \PD \to \tau$
  516. \end{itemize}
  517. \end{center}
  518.  
  519. \column{1.6in}
  520. \begin{center}
  521. \includegraphics[scale=0.15]{RD_meeting/rejBvsS_21513001.png}\\
  522. \begin{itemize}
  523. \item $\PD \to \tau$
  524. \end{itemize}
  525. \end{center}
  526.  
  527. \column{1.6in}
  528. \begin{center}
  529. \includegraphics[scale=0.15]{RD_meeting/rejBvsS_23513000.png}\\
  530. \begin{itemize}
  531. \item $\PB \to \PDs \to \tau$
  532. \end{itemize}
  533. \end{center}
  534.  
  535.  
  536. %\column{2.5in}
  537. %\begin{center}
  538. % \includegraphics[scale=0.15]{RD_meeting/rejBvsS_23513001.png}\\
  539. % \begin{itemize}
  540. % \item $\PDs \to \tau$
  541. % \end{itemize}
  542. %\end{center}
  543. \end{columns}
  544.  
  545. \end{frame}
  546. \begin{frame}\frametitle{Ensemble Selection}
  547.  
  548. % \begin{columns}
  549. %\column{2.5in}
  550. % \includegraphics[scale=0.2]{RD_meeting/rejBvsS_oryginal.png}
  551. % \column{2.5in}
  552. % \includegraphics[scale=0.2]{RD_meeting/rejBvsS_blend.png}
  553. % \end{columns}
  554.  
  555.  
  556.  
  557. \begin{center}
  558. \includegraphics[scale=0.3]{images/BDT_comparison.png}
  559. \end{center}
  560.  
  561.  
  562.  
  563. % \textref {M.Chrz\k{a}szcz, N.Serra 2013}
  564.  
  565. \end{frame}
  566.  
  567. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5555
  568. \section{Binning optimisation}
  569.  
  570. \begin{frame}\frametitle{Binning optimisation}
  571. {~}
  572. \only<1>
  573. {
  574. For the 2011 analysis we had two classifiers: $PIDNN$ and $M_{GEO}$. Each of them we optimised separately. For the 2012 analysis we are performing a simultaneous 2D optimisation.
  575.  
  576. \begin{columns}
  577. \column{2.5in}
  578.  
  579.  
  580. \includegraphics[scale=0.13]{inflaton/punzi1.png}
  581. \begin{itemize}
  582. \item FOM as a function of N. of bins.
  583. \end{itemize}
  584. \column{2.5in}
  585. \includegraphics[scale=0.27]{RD_meeting/2d-data.pdf}
  586. \begin{itemize}
  587. \item Signal efficiency in 2011 binning.
  588. \end{itemize}
  589. \end{columns}
  590. }
  591.  
  592. \end{frame}
  593.  
  594. \section{Model dependence}
  595. \begin{frame}\frametitle{Model dependence}
  596. \begin{exampleblock}{Minimal Lepton Flavour Violation Model\footnote{arXiv:0707.0988}}
  597. \begin{itemize}
  598. \item In effective-field-theory we introduce new operators that at electro-weak scale are compatible with $SU(2)_L \times U(1)$.
  599. \item Left handed lepton doublets add right handed lepton singlets follow the group symmetry: $G_{LF} = SU(3)_L \times SU(3)_E$.
  600. \item LFV arises from breaking this group.
  601. \item We focus on three operators that have dominant contribution to NP:
  602. \begin{enumerate}
  603. \item Purely left handed iterations: $(\overline{L} \gamma_{\mu} L)(\overline{L} \gamma^{\mu} L)$
  604. \item Mix term: $(\overline{R}\gamma_{\mu} R)(\overline{L} \gamma^{\mu} L)$
  605. \item Radiative operator: $g'(\overline{L}H\sigma_{\mu\nu}R)B^{\mu\nu}$
  606. \end{enumerate}
  607. \end{itemize}
  608. \end{exampleblock}
  609.  
  610. \end{frame}
  611.  
  612.  
  613. \begin{frame}\frametitle{Reweighting MC samples}
  614. \only<1>{
  615. \begin{center}
  616. \begin{columns}
  617. \column{2.5in}
  618. {~}Reconstruction:\\
  619. {~}\includegraphics[scale=0.22]{images/acceptance.png}
  620.  
  621. \column{2.5in}
  622. Offline:\\
  623. \includegraphics[scale=0.22]{images/offline.png}
  624.  
  625.  
  626. \end{columns}
  627. \end{center}
  628. }
  629.  
  630. \only<2>{
  631. \begin{center}
  632. \begin{columns}
  633. \column{1.6in}
  634. {~}$(\overline{L} \gamma_{\mu} L)(\overline{L} \gamma^{\mu} L)$\\
  635. {~}\includegraphics[scale=0.22]{images/gammallll.png}
  636.  
  637. \column{1.6in}
  638. $(\overline{R}\gamma_{\mu} R)(\overline{L} \gamma^{\mu} L)$\\
  639. \includegraphics[scale=0.22]{images/gammallrr.png}
  640. \column{1.6in}
  641. $g'(\overline{L}H\sigma_{\mu\nu}R)B^{\mu\nu}$\\
  642. \includegraphics[scale=0.22]{images/gammarad.png}
  643.  
  644. \end{columns}
  645. \end{center}
  646. }
  647.  
  648. \begin{equation}
  649. \epsilon_{gen\&rec} = C\epsilon^{LHCbMC}_{gen\&rec} \sum \rho^{model}(m_{12},m_{23})
  650. \end{equation}
  651.  
  652. \only<1>{
  653. \begin{itemize}
  654. \item Simulated signal events with PHSP
  655. \item Take into account reconstruction and selection.
  656. \item Reweight accordingly to a given distribution.
  657. \end{itemize}
  658.  
  659.  
  660. }
  661.  
  662.  
  663. \only<2>{
  664. \begin{itemize}
  665. \item Simulated signal events with PHSP
  666. \item Take into account reconstruction and selection.
  667. \item Reweight accordingly to a given distribution.
  668. \end{itemize}
  669.  
  670.  
  671. }
  672.  
  673. \end{frame}
  674.  
  675.  
  676.  
  677.  
  678.  
  679.  
  680.  
  681.  
  682.  
  683.  
  684.  
  685. \section{Conclusions}
  686.  
  687. \begin{frame}\frametitle{Conclusions}
  688. {~}
  689. \only<1>
  690. {
  691. \begin{exampleblock}{~}
  692. \begin{enumerate}
  693. \item Analysis is well underway.
  694. \item More efficient use of computing resources and increased MC
  695. statistics helps at all ends
  696. \item Hope to improve the MVA/binning.
  697. \end{enumerate}
  698. \end{exampleblock}
  699. }
  700. \includegraphics[scale=0.4]{RD_meeting/phd052805.png}\\
  701.  
  702.  
  703.  
  704. \end{frame}
  705. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  706.  
  707. \begin{frame}
  708. {~}
  709. \begin{Huge}
  710. BACKUP
  711. \end{Huge}
  712.  
  713.  
  714. \end{frame}
  715.  
  716.  
  717. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55
  718.  
  719. \begin{frame}\frametitle{$B \to \tau$}
  720. {~}\\
  721. We really suck in selecting this channel.
  722.  
  723. \includegraphics[scale=0.4]{tmva/ROC_31113002.png}
  724.  
  725.  
  726.  
  727. % \textref {M.Chrz\k{a}szcz 2013}
  728. \end{frame}
  729.  
  730. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
  731. \begin{frame}\frametitle{$B \to D_s \to \tau$}
  732. {~}\\
  733. On the biggest contributing channel we are quite optimal.
  734.  
  735.  
  736. \includegraphics[scale=0.4]{tmva/ROC_23513000.png}
  737.  
  738.  
  739.  
  740. % \textref {M.Chrz\k{a}szcz 2013}
  741. \end{frame}
  742.  
  743. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
  744. \begin{frame}\frametitle{$D_s \to \tau$}
  745. {~}\\
  746. On the biggest contributing channel we are quite optimal.
  747.  
  748.  
  749. \includegraphics[scale=0.4]{tmva/ROC_23513001.png}
  750.  
  751.  
  752.  
  753. %\textref {M.Chrz\k{a}szcz 2013}
  754. \end{frame}
  755.  
  756. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
  757. \begin{frame}\frametitle{$B \to D^+ \to \tau$}
  758. {~}\\
  759. On the biggest contributing channel we are quite optimal.
  760.  
  761.  
  762. \includegraphics[scale=0.4]{tmva/21513000_roc2.png}
  763.  
  764.  
  765.  
  766. % \textref {M.Chrz\k{a}szcz 2013}
  767. \end{frame}
  768.  
  769. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
  770. \begin{frame}\frametitle{$D^+ \to \tau$}
  771. {~}\\
  772. On the biggest contributing channel we are quite optimal.
  773.  
  774.  
  775. \includegraphics[scale=0.4]{tmva/ROC_21513001.png}
  776.  
  777.  
  778.  
  779. %\textref {M.Chrz\k{a}szcz 2013}
  780. \end{frame}
  781.  
  782. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
  783.  
  784. \begin{frame}\frametitle{Comparison on mix sample}
  785. {~}\\
  786. On the biggest contributing channel we are quite optimal.
  787.  
  788.  
  789. \includegraphics[scale=0.4]{tmva/mix.png}
  790.  
  791.  
  792.  
  793. %\textref {M.Chrz\k{a}szcz 2013}
  794. \end{frame}
  795.  
  796. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
  797.  
  798.  
  799. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
  800. \begin{frame}\frametitle{Conclusions on TMVA}
  801. {~}\\
  802. \begin{itemize}
  803. \item Each of the signal components is enormously larger than MVA trained on mix.
  804. \item Method looks very promising if we can find a nice blending method(work for next week).
  805. \item Mayby discusion on TMVA/MatrixNet/Neurobayes is next to leading order effect compared to this method?
  806.  
  807.  
  808. \end{itemize}
  809.  
  810.  
  811. % \textref {M.Chrz\k{a}szcz 2013}
  812. \end{frame}
  813. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
  814. \begin{frame}\frametitle{Comparison on mix sample}
  815. {~}\\
  816. \begin{columns}
  817. \column{2.5in}
  818.  
  819.  
  820. \includegraphics[scale=0.27]{RD_meeting/rejBvsS_oryginal.png}
  821. \column{2.5in}
  822. \includegraphics[scale=0.27]{RD_meeting/rejBvsS_blend.png}
  823.  
  824. \end{columns}
  825.  
  826.  
  827. %\textref {M.Chrz\k{a}szcz 2013}
  828. \end{frame}
  829. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  830. \begin{frame}\frametitle{$D_s$ correction}
  831. {~}
  832.  
  833.  
  834. \only<1>
  835. {
  836.  
  837. \begin{columns}
  838. \column{2.5in}
  839. \includegraphics[scale=0.18]{Ds_Splot/cdf1.png} \\
  840.  
  841.  
  842.  
  843. \column{2.5in}
  844. \includegraphics[scale=0.18]{Ds_Splot/cdf2.png}\\
  845.  
  846.  
  847. \end{columns}
  848. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  849. \begin{columns}
  850. \column{2.5in}
  851. \includegraphics[scale=0.18]{Ds_Splot/ciso.png}\\
  852.  
  853.  
  854.  
  855. \column{2.5in}
  856. \includegraphics[scale=0.18]{Ds_Splot/doca12.png}\\
  857.  
  858.  
  859. \end{columns}
  860.  
  861.  
  862. }
  863.  
  864.  
  865.  
  866. \end{frame}
  867.  
  868. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5555
  869. \begin{frame}\frametitle{$D_s$ correction}
  870. {~}
  871.  
  872.  
  873. \only<1>
  874. {
  875.  
  876. \begin{columns}
  877. \column{2.5in}
  878. \includegraphics[scale=0.18]{Ds_Splot/doca23.png} \\
  879.  
  880.  
  881.  
  882. \column{2.5in}
  883. \includegraphics[scale=0.18]{Ds_Splot/doca13.png}\\
  884.  
  885.  
  886. \end{columns}
  887. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  888. \begin{columns}
  889. \column{2.5in}
  890. \includegraphics[scale=0.18]{Ds_Splot/FD.png}\\
  891.  
  892.  
  893.  
  894. \column{2.5in}
  895. \includegraphics[scale=0.18]{Ds_Splot/FDE.png}\\
  896.  
  897.  
  898. \end{columns}
  899.  
  900.  
  901. }
  902.  
  903.  
  904. \end{frame}
  905.  
  906.  
  907. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5555
  908. \begin{frame}\frametitle{$D_s$ correction}
  909. {~}
  910.  
  911.  
  912. \only<1>
  913. {
  914.  
  915. \begin{columns}
  916. \column{2.5in}
  917. \includegraphics[scale=0.18]{Ds_Splot/IP.png} \\
  918.  
  919.  
  920.  
  921. \column{2.5in}
  922. \includegraphics[scale=0.18]{Ds_Splot/isoa.png}\\
  923.  
  924.  
  925. \end{columns}
  926. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  927. \begin{columns}
  928. \column{2.5in}
  929. \includegraphics[scale=0.18]{Ds_Splot/isob.png}\\
  930.  
  931.  
  932.  
  933. \column{2.5in}
  934. \includegraphics[scale=0.18]{Ds_Splot/isoc.png}\\
  935.  
  936.  
  937. \end{columns}
  938.  
  939.  
  940. }
  941.  
  942.  
  943. \end{frame}
  944.  
  945. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5555
  946. \begin{frame}\frametitle{$D_s$ correction}
  947. {~}
  948.  
  949.  
  950. \only<1>
  951. {
  952.  
  953. \begin{columns}
  954. \column{2.5in}
  955. \includegraphics[scale=0.18]{Ds_Splot/isod.png} \\
  956.  
  957.  
  958.  
  959. \column{2.5in}
  960. \includegraphics[scale=0.18]{Ds_Splot/isoe.png}\\
  961.  
  962.  
  963. \end{columns}
  964. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  965. \begin{columns}
  966. \column{2.5in}
  967. \includegraphics[scale=0.18]{Ds_Splot/isof.png}\\
  968.  
  969.  
  970.  
  971. \column{2.5in}
  972. \includegraphics[scale=0.18]{Ds_Splot/Life_time.png}\\
  973.  
  974.  
  975. \end{columns}
  976.  
  977.  
  978. }
  979.  
  980.  
  981. \end{frame}
  982.  
  983. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5555
  984. \begin{frame}\frametitle{$D_s$ correction}
  985. {~}
  986.  
  987.  
  988. \only<1>
  989. {
  990.  
  991. \begin{columns}
  992. \column{2.5in}
  993. \includegraphics[scale=0.18]{Ds_Splot/p0_IP.png} \\
  994.  
  995.  
  996.  
  997. \column{2.5in}
  998. \includegraphics[scale=0.18]{Ds_Splot/p0_IPSig.png}\\
  999.  
  1000.  
  1001. \end{columns}
  1002. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1003. \begin{columns}
  1004. \column{2.5in}
  1005. \includegraphics[scale=0.18]{Ds_Splot/p1_IP.png}\\
  1006.  
  1007.  
  1008.  
  1009. \column{2.5in}
  1010. \includegraphics[scale=0.18]{Ds_Splot/p1_IPSig.png}\\
  1011.  
  1012.  
  1013. \end{columns}
  1014.  
  1015.  
  1016. }
  1017.  
  1018.  
  1019. \end{frame}
  1020.  
  1021. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5555
  1022. \begin{frame}\frametitle{$D_s$ correction}
  1023. {~}
  1024.  
  1025.  
  1026. \only<1>
  1027. {
  1028.  
  1029. \begin{columns}
  1030. \column{2.5in}
  1031. \includegraphics[scale=0.18]{Ds_Splot/p2_IP.png} \\
  1032.  
  1033.  
  1034.  
  1035. \column{2.5in}
  1036. \includegraphics[scale=0.18]{Ds_Splot/p2_IPSig.png}\\
  1037.  
  1038.  
  1039. \end{columns}
  1040. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1041. \begin{columns}
  1042. \column{2.5in}
  1043. \includegraphics[scale=0.18]{Ds_Splot/pangle.png}\\
  1044.  
  1045.  
  1046.  
  1047. \column{2.5in}
  1048. \includegraphics[scale=0.18]{Ds_Splot/pt.png}\\
  1049.  
  1050.  
  1051. \end{columns}
  1052.  
  1053.  
  1054. }
  1055.  
  1056.  
  1057. \end{frame}
  1058.  
  1059.  
  1060. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5555
  1061. \begin{frame}\frametitle{$D_s$ correction}
  1062. {~}
  1063.  
  1064.  
  1065. \only<1>
  1066. {
  1067.  
  1068.  
  1069. \includegraphics[scale=0.18]{Ds_Splot/vtxchi2.png} \\
  1070.  
  1071.  
  1072.  
  1073. }
  1074.  
  1075.  
  1076. \end{frame}
  1077.  
  1078.  
  1079.  
  1080. \end{document}
  1081.  
  1082.