Newer
Older
Presentations / Kstmumu / Face2Face_meeting / MMatrix / MMatrix.tex
  1. \documentclass[xcolor=svgnames]{beamer}
  2. \usepackage[utf8]{inputenc}
  3. \usepackage[english]{babel}
  4. \usepackage{polski}
  5. %\usepackage{amssymb,amsmath}
  6. %\usepackage[latin1]{inputenc}
  7. %\usepackage{amsmath}
  8. %\newcommand\abs[1]{\left|#1\right|}
  9. \usepackage{amsmath}
  10. \newcommand\abs[1]{\left|#1\right|}
  11. \usepackage{hepnicenames}
  12. \usepackage{hepunits}
  13. \usepackage{color}
  14.  
  15.  
  16.  
  17. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
  18. \definecolor{mygreen}{cmyk}{0.82,0.11,1,0.25}
  19.  
  20.  
  21. \usetheme{Sybila}
  22.  
  23. \title[Unfolding for counting experiments]{Unfolding for counting experiments}
  24. \author{Marcin Chrz\k{a}szcz$^{1,2}$, Nicola Serra$^{1}$}
  25. \institute{$^1$~University of Zurich,\\ $^2$~Institute of Nuclear Physics, Krakow}
  26. \date{\today}
  27.  
  28. \begin{document}
  29. % --------------------------- SLIDE --------------------------------------------
  30. \frame[plain]{\titlepage}
  31. \author{Marcin Chrz\k{a}szcz}
  32. % ------------------------------------------------------------------------------
  33. % --------------------------- SLIDE --------------------------------------------
  34.  
  35. \begin{frame}\frametitle{Quo vadis $\PBzero \to \PKstar \mu \mu$?}
  36.  
  37. \center \includegraphics[width=0.8\paperwidth]{diagram.png}\\
  38.  
  39. \end{frame}
  40. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  41. \begin{frame}\frametitle{Quo vadis $\PBzero \to \PKstar \mu \mu$?}
  42.  
  43. \center \includegraphics[width=0.8\paperwidth]{matrix.png}\\
  44.  
  45. \end{frame}
  46.  
  47.  
  48. \section{Introduction}
  49. \begin{frame}\frametitle{4D unfolding}
  50. \begin{itemize}
  51. \item Method of moments can use 2 different unfolding techniques.
  52. \item One of them is Christophs 4D unfolding
  53. \item Easy peasy:
  54. \end{itemize}
  55. \begin{equation}
  56. \widehat{x}=\sum_i^n= \dfrac{f(\theta_{li}, \theta_{ki}, \phi_i)}{n} \rightarrow \dfrac{f(\theta_{li}, \theta_{ki}, \phi_i) \times w_i}{\sum_j^n w_j}
  57. \end{equation}
  58. Very easy and has proved to work. See presentation \href{https://indico.cern.ch/event/290857/contribution/1/material/slides/0.pdf}{LINK}
  59. \end{frame}
  60.  
  61. \begin{frame}\frametitle{Matrix unfolding}
  62. \begin{itemize}
  63. \item Our PDF is a vector in 8 dim space, where the dimensions are:\\
  64. $f_{x}$\footnote{See 1st presentation on Method of moments. }
  65. \item Our acceptance is a function:
  66. \end{itemize}
  67. \begin{equation}
  68. \epsilon(\cos \theta_k, \cos \theta_l,\phi)
  69. \end{equation}
  70. \begin{itemize}
  71. \item We assume it's a smooth function($C^{\infty}$).
  72. \item Normal moments:
  73. \end{itemize}
  74. \begin{equation}
  75. M_x=\int PDF \times f_x \rightarrow \overline{M_x}=\int PDF \times f_x \times \epsilon(\cos \theta_k, \cos \theta_l,\phi)
  76. \end{equation}
  77. \begin{itemize}
  78. \item Let's play Christophs trick:
  79. \end{itemize}
  80. \begin{equation}
  81. \epsilon(\cos \theta_k, \cos \theta_l,\phi)=\sum A_{\alpha, \beta, \gamma}\cos^{\alpha} \theta_k \cos^{\beta} \theta_l \phi^{\gamma}
  82. \end{equation}
  83. \end{frame}
  84.  
  85.  
  86.  
  87.  
  88. \begin{frame}\frametitle{Matrix unfolding}
  89. \begin{itemize}
  90. \item Our Moments will become:
  91. \end{itemize}
  92. \small{
  93. \begin{equation}
  94. \int PDF \times f_x \times \epsilon(\cos \theta_k, \cos \theta_l,\phi) =\sum A_{\alpha, \beta, \gamma} \int PDF \times f_x \times \cos^{\alpha} \theta_k \cos^{\beta} \theta_l \phi^{\gamma}
  95. \end{equation}
  96. }
  97. \begin{itemize}
  98. \item We just need to show that:
  99. \end{itemize}
  100.  
  101. \begin{equation}
  102. \int PDF \times f_x \times \cos^{\alpha} \theta_k \cos^{\beta} \theta_l \phi^{\gamma} = \sum_y B_y \int PDF \times f_y = \sum_y B_y~M_y
  103. \end{equation}
  104. \begin{itemize}
  105. \item This is a bit nasty but doable, using Mathematica. You just need to check 8 base functions.
  106. \item As expected it's is linear terms.
  107. \item I also checked this using analytical calculations.
  108. \end{itemize}
  109.  
  110. \end{frame}
  111.  
  112.  
  113. \begin{frame}\frametitle{Constructing Matrix unfolding}
  114. \begin{itemize}
  115. \item Ok, so we know that the matrix exists.
  116. \item How ever we don't know explicate
  117. \end{itemize}
  118. \small{
  119. \begin{equation}
  120. \epsilon(\cos \theta_k, \cos \theta_l,\phi)
  121. \end{equation}
  122. }
  123. \begin{itemize}
  124. \item We don't, we just need to calculate matrix elements
  125. \item Let's use PHSP MC.
  126. \item Moments for PHSP MC are:\\
  127. $v^{T}_{gen}=(2/3 ,0,0,0,0,0,0,0)$
  128. \item After reconstruction we get:
  129. $v^{T}_{rec}=( 0.7069,0.0077,-0.00236466,0.0005,0.0007,0.0011,0.0011,-0.0012)$
  130. \end{itemize}
  131.  
  132.  
  133.  
  134. \end{frame}
  135.  
  136. \begin{frame}\frametitle{Constructing Matrix unfolding}
  137. \begin{itemize}
  138. \item We got first column of the unfolding matrix.
  139. \end{itemize}
  140. \small{
  141. $ \begin{pmatrix}
  142. 1.06 & \cdots & a_{1,8} \\
  143. 0.01157 & \cdots & a_{2,8} \\
  144. -0.003547 & \ddots & \vdots \\
  145. 0.0007841 & \ddots & \vdots \\
  146. 0.001126 & \ddots & \vdots \\
  147. 0.001766 & \ddots & \vdots \\
  148. 0.001664 & \ddots & \vdots \\
  149. -0.001937 & \cdots & a_{8,8}
  150. \end{pmatrix}$
  151.  
  152.  
  153. }
  154. \begin{itemize}
  155. \item How about the others?
  156. \item We can reweight accordingly to $f_x$.
  157. \end{itemize}
  158.  
  159. \end{frame}
  160.  
  161. \begin{frame}\frametitle{Constructing Matrix unfolding}
  162. \begin{itemize}
  163. \item To get $S_3$ each event $i^{th}$ has has weight $f_{S_3}(\cos \theta_{k_i},\cos \theta_{l_i},\phi_i) $
  164. \item One can calculate on MC the reweighed moments in PHPS:
  165. \end{itemize}
  166. \begin{equation}
  167. \int PDF*f_{S_3}=\dfrac{32}{225}
  168. \end{equation}
  169. \begin{itemize}
  170. \item Our base vector now is:$v^{T}_{gen}=(0 ,\frac{32}{225},0,0,0,0,0,0)$
  171. \item So lets see what do we get as reconstructed vector(after multiplying by $\frac{225}{32}$.
  172. \small{$v^{T}_{rec}=( 0.042, 1.105,-0.005,0.003,-0.0023,-0.005,-0.005,-0.006)$ }
  173. \end{itemize}
  174.  
  175. \end{frame}
  176.  
  177. \begin{frame}\frametitle{Constructing Matrix unfolding}
  178. \begin{itemize}
  179. \item Now the matrix looks like:
  180. \end{itemize}
  181. \small{
  182. $ \begin{pmatrix}
  183. 1.06 & 0.042 & \cdots & a_{1,8} \\
  184. 0.01157 & 1.105 & \cdots & a_{2,8} \\
  185. -0.003547 & -0.005 & \ddots & \vdots \\
  186. 0.0007841 &-0.005 & \ddots & \vdots \\
  187. 0.001126 & 0.003 &\ddots & \vdots \\
  188. 0.001766 & -0.0023 &\ddots & \vdots \\
  189. 0.001664 & -0.005 &\ddots & \vdots \\
  190. -0.001937 & -0.006 &\cdots & a_{8,8}
  191. \end{pmatrix}$
  192.  
  193.  
  194. }
  195. \begin{itemize}
  196. \item The others go in the same way.
  197. \item Repenting this exercise from $1^{st}$ year algebra we can get the full matrix
  198. \end{itemize}
  199.  
  200.  
  201. \end{frame}
  202. \begin{frame}\frametitle{Constructing Matrix unfolding}
  203. \begin{itemize}
  204. \item The full transformation matrix from generator space to reconstructed space:
  205. \end{itemize}
  206. \tiny{
  207. $ A_{gen\rightarrow reco}=\begin{pmatrix}
  208. 1.06 & 0.0423 & -0.0081 & 0.0022 & 0.0049 & 0.0037 & 0.0028 & -0.0065 \\
  209.  
  210. 0.0115 & 1.105 & -0.0050 & 0.0027 & -0.0018 & -0.0040 &-0.0054 & -0.0065 \\
  211. -0.0035 & -0.0050 & 0.981 & 0.0005 & -0.0025 & 0.0002 & -0.0037 & -0.0048\\
  212. 0.00078 & 0.0034 & 0.0006 & 1.002 & -0.0032 & -0.0040 & 0.0003 & 0.0018\\
  213. 0.001126 & -0.0023 & -0.0032 & -0.0032 & 1.055 & 0.001& -0.004 & 0.0023\\
  214. 0.00176 & -0.0050 & 0.00036 & -0.0040 & 0.0011 & 0.96 & -0.0057 & 0.0009 \\
  215. 0.0016 & -0.005 & -0.003 & 0.00029& -0.003 &-0.004 & 0.9543 & 0.0000\\
  216. -0.0019 & -0.0065 & -0.004 & 0.001 & 0.0018 & 0.0007 & 0.000 & 1.098 \\
  217.  
  218. \end{pmatrix}$
  219.  
  220.  
  221. }
  222. \begin{itemize}
  223. \item Inverting the matrix is simple, and doable
  224. \end{itemize}
  225. \tiny{
  226. $ A_{reco\rightarrow gen}=\begin{pmatrix}
  227. 0.9434 & -0.036 & 0.007& -0.0020 & -0.0044& -0.0038 & -0.0030 & 0.0054\\
  228. -0.009 & 0.90 & 0.0045 & -0.0024& 0.0016 & 0.003873 & 0.00527& 0.005 \\
  229. 0.003 & 0.00454& 1.019 & -0.00058 & 0.0025& -0.000291 & 0.004 & 0.004 \\
  230. -0.00071 & -0.0030 & -0.0007 & 0.9977 & 0.0030 & 0.004206 &-0.0003 & -0.0017 \\
  231. -0.001 & 0.0020 & 0.0031& 0.0030 & 0.9483 & -0.0010 & 0.004626 & -0.0019 \\
  232. -0.001 & 0.004 & -0.0003 & 0.0042 & -0.001087 & 1.037 & 0.0063 & -0.0009\\
  233. -0.0017 & 0.0053 & 0.0042 & -0.0002 & 0.00370& 0.0050 & 1.048 & 0.0000 \\
  234. 0.0016& 0.0053& 0.00452 & -0.001 & -0.001582 & -0.0007213 &0.000 & 0.9105 \\
  235.  
  236. \end{pmatrix}$
  237. }
  238.  
  239. \end{frame}
  240.  
  241. \begin{frame}\frametitle{Sensitivity to unknowns}
  242. \begin{itemize}
  243. \item We are unfolding based on MC.
  244. \item There are MC/Data differences, which can have impact on the unfolding.
  245. \end{itemize}
  246. Let's put small modification:
  247. \begin{equation}
  248. w_j \to \overline{w_j}= \dfrac{1}{eff(\cos \theta_{l~j}, \cos \theta_{k~j}, \phi_{j})} \times corr(\cos \theta_{l~j}, \cos \theta_{k~j}, \phi_{j})
  249. \end{equation}
  250. Unfortunately God didn't allowed me sneak peak into his cards so I don't know $corr(\cos \theta_{l}, \cos \theta_{k}, \phi)$, but let's try out some functions and see what happens :)
  251.  
  252.  
  253. \end{frame}
  254.  
  255. \begin{frame}\frametitle{Corr1 functions}
  256. \begin{columns}
  257. \column{2in}
  258. \includegraphics[width=\linewidth]{corr/Corr1_cosk.png}\\
  259. \includegraphics[width=\linewidth]{corr/Corr1_cosl.png}\\
  260. \column{2.5in}
  261. $
  262. corr1(\cos_l, \cos_k,\phi)= 1+ 0.032 \cos_l - 0.032 \cos_k + 0.01 \phi
  263. $
  264. \includegraphics[width=0.8\linewidth]{corr/Corr1_phi.png}\\
  265.  
  266. \end{columns}
  267.  
  268. \end{frame}
  269. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  270. \begin{frame}\frametitle{Corr2 functions}
  271. \begin{columns}
  272. \column{2in}
  273. \includegraphics[width=0.85\linewidth]{corr/corr21.png}\\
  274. \includegraphics[width=0.85\linewidth]{corr/corr22.png}\\
  275. \column{2.5in}
  276. $
  277. corr2(\cos_l, \cos_k,\phi)= -0.02 \cos_l^2 + 0.02 \cos_k^2 -
  278. 0.015 \phi^2+ 1
  279. $
  280. \includegraphics[width=0.75\linewidth]{corr/corr23.png}\\
  281.  
  282. \end{columns}
  283.  
  284. \end{frame}
  285.  
  286. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  287. \begin{frame}\frametitle{Corr3 functions}
  288. \begin{columns}
  289. \column{2in}
  290. \includegraphics[width=0.85\linewidth]{corr/corr31.png}\\
  291. \includegraphics[width=0.85\linewidth]{corr/corr32.png}\\
  292. \column{2.5in}
  293. $
  294. corr3(\cos_l, \cos_k,\phi)= 0.02 \cos_l \cos_k + 0.01 \cos_k \phi - 0.01 \phi \cos_l + 1
  295. $
  296. \includegraphics[width=0.75\linewidth]{corr/corr33.png}\\
  297.  
  298. \end{columns}
  299.  
  300. \end{frame}
  301. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  302. \begin{frame}\frametitle{Corr4 functions}
  303. \begin{columns}
  304. \column{2in}
  305. \includegraphics[width=0.85\linewidth]{corr/corr41.png}\\
  306. \includegraphics[width=0.85\linewidth]{corr/corr42.png}\\
  307. \column{2.5in}
  308. $
  309. corr3(\cos_l, \cos_k,\phi)= 0.01 \cos_k \cos_l \phi + 1
  310. $
  311. \includegraphics[width=0.75\linewidth]{corr/corr43.png}\\
  312.  
  313. \end{columns}
  314.  
  315. \end{frame}
  316.  
  317.  
  318.  
  319.  
  320. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  321.  
  322.  
  323. \begin{frame}\frametitle{Corr1- MM}
  324.  
  325.  
  326. \begin{tiny}
  327.  
  328. \begin{center}
  329. \begin{tabular}{ l l l l l l l l l }
  330. \hline
  331. \multicolumn{8}{c}{Mean of the pull} \\ \hline
  332. $q^2$ & $S_3$ & $S_4$ & $S_5$ & $S_{6s}$ & $S_{6c}$ & $S_7$ & $S_8$ \\ \hline \hline
  333.  
  334. 0 & \scalebox{0.5}{$0.0085 \pm 0.026(0.3)$} & \scalebox{0.5}{$0.13 \pm 0.027(4.6)$} & \scalebox{0.5}{$-0.025 \pm 0.027(-0.92)$} & \scalebox{0.5}{$0.46 \pm 0.027(17)$} & \scalebox{0.5}{$-0.13 \pm 0.028(-4.7)$} & \scalebox{0.5}{$0.029 \pm 0.028(1)$} & \scalebox{0.5}{$-0.66 \pm 0.027(-25)$} \\ \hline
  335. 1 & \scalebox{0.5}{$0.0094 \pm 0.028(0.33)$} & \scalebox{0.5}{$0.078 \pm 0.028(2.8)$} & \scalebox{0.5}{$-0.02 \pm 0.028(-0.73)$} & \scalebox{0.5}{$0.24 \pm 0.028(8.5)$} & \scalebox{0.5}{$-0.075 \pm 0.028(-2.7)$} & \scalebox{0.5}{$-0.016 \pm 0.026(-0.63)$} & \scalebox{0.5}{$-0.39 \pm 0.028(-14)$} \\ \hline
  336. 2 & \scalebox{0.5}{$-0.02 \pm 0.027(-0.72)$} & \scalebox{0.5}{$0.027 \pm 0.026(1)$} & \scalebox{0.5}{$-0.024 \pm 0.027(-0.91)$} & \scalebox{0.5}{$0.18 \pm 0.027(6.8)$} & \scalebox{0.5}{$-0.024 \pm 0.027(-0.89)$} & \scalebox{0.5}{$-0.067 \pm 0.027(-2.5)$} & \scalebox{0.5}{$-0.39 \pm 0.028(-14)$} \\ \hline
  337. 3 & \scalebox{0.5}{$0.013 \pm 0.028(0.46)$} & \scalebox{0.5}{$-0.0089 \pm 0.027(-0.32)$} & \scalebox{0.5}{$0.055 \pm 0.026(2.1)$} & \scalebox{0.5}{$0.12 \pm 0.027(4.7)$} & \scalebox{0.5}{$0.11 \pm 0.027(3.9)$} & \scalebox{0.5}{$-0.018 \pm 0.028(-0.63)$} & \scalebox{0.5}{$-0.43 \pm 0.027(-16)$} \\ \hline
  338. 4 & \scalebox{0.5}{$-0.0054 \pm 0.029(-0.18)$} & \scalebox{0.5}{$-0.066 \pm 0.027(-2.4)$} & \scalebox{0.5}{$0.037 \pm 0.028(1.3)$} & \scalebox{0.5}{$0.22 \pm 0.027(8.1)$} & \scalebox{0.5}{$0.099 \pm 0.027(3.7)$} & \scalebox{0.5}{$-0.1 \pm 0.026(-3.8)$} & \scalebox{0.5}{$-0.41 \pm 0.026(-15)$} \\ \hline
  339. 5 & \scalebox{0.5}{$0.06 \pm 0.027(2.2)$} & \scalebox{0.5}{$-0.069 \pm 0.026(-2.6)$} & \scalebox{0.5}{$-0.013 \pm 0.028(-0.49)$} & \scalebox{0.5}{$0.21 \pm 0.027(7.8)$} & \scalebox{0.5}{$0.093 \pm 0.027(3.5)$} & \scalebox{0.5}{$-0.083 \pm 0.028(-3)$} & \scalebox{0.5}{$-0.41 \pm 0.028(-15)$} \\ \hline
  340. 6 & \scalebox{0.5}{$0.0064 \pm 0.026(0.25)$} & \scalebox{0.5}{$-0.051 \pm 0.027(-1.9)$} & \scalebox{0.5}{$-0.029 \pm 0.028(-1)$} & \scalebox{0.5}{$0.26 \pm 0.028(9.2)$} & \scalebox{0.5}{$0.14 \pm 0.027(5.1)$} & \scalebox{0.5}{$-0.081 \pm 0.027(-3)$} & \scalebox{0.5}{$-0.45 \pm 0.028(-16)$} \\ \hline
  341. %7 & \scalebox{0.5}{$0.22 \pm 0.027(8)$} & \scalebox{0.5}{$-0.34 \pm 0.028(-12)$} & \scalebox{0.5}{$-0.43 \pm 0.026(-16)$} & \scalebox{0.5}{$2.4 \pm 0.029(82)$} & \scalebox{0.5}{$0.66 \pm 0.027(24)$} & \scalebox{0.5}{$-0.24 \pm 0.028(-8.6)$} & \scalebox{0.5}{$-0.51 \pm 0.027(-19)$} &
  342. 8 & \scalebox{0.5}{$0.023 \pm 0.027(0.85)$} & \scalebox{0.5}{$-0.031 \pm 0.028(-1.1)$} & \scalebox{0.5}{$0.0042 \pm 0.028(0.15)$} & \scalebox{0.5}{$0.21 \pm 0.026(7.8)$} & \scalebox{0.5}{$0.12 \pm 0.028(4.2)$} & \scalebox{0.5}{$-0.13 \pm 0.027(-4.8)$} & \scalebox{0.5}{$-0.48 \pm 0.026(-18)$} \\ \hline
  343. 9 & \scalebox{0.5}{$-0.017 \pm 0.027(-0.63)$} & \scalebox{0.5}{$-0.015 \pm 0.026(-0.56)$} & \scalebox{0.5}{$-0.0052 \pm 0.026(-0.2)$} & \scalebox{0.5}{$0.27 \pm 0.027(10)$} & \scalebox{0.5}{$0.046 \pm 0.026(1.7)$} & \scalebox{0.5}{$-0.12 \pm 0.026(-4.4)$} & \scalebox{0.5}{$-0.5 \pm 0.026(-19)$} \\ \hline
  344. 10 & \scalebox{0.5}{$-0.054 \pm 0.027(-2)$} & \scalebox{0.5}{$-0.056 \pm 0.026(-2.2)$} & \scalebox{0.5}{$0.036 \pm 0.026(1.4)$} & \scalebox{0.5}{$0.16 \pm 0.028(5.7)$} & \scalebox{0.5}{$0.077 \pm 0.028(2.8)$} & \scalebox{0.5}{$-0.034 \pm 0.027(-1.3)$} & \scalebox{0.5}{$-0.39 \pm 0.028(-14)$} \\ \hline
  345. 11 & \scalebox{0.5}{$0.023 \pm 0.027(0.88)$} & \scalebox{0.5}{$0.021 \pm 0.027(0.8)$} & \scalebox{0.5}{$-0.011 \pm 0.027(-0.41)$} & \scalebox{0.5}{$0.14 \pm 0.027(5)$} & \scalebox{0.5}{$0.042 \pm 0.027(1.6)$} & \scalebox{0.5}{$-0.098 \pm 0.028(-3.5)$} & \scalebox{0.5}{$-0.3 \pm 0.027(-11)$} \\ \hline
  346.  
  347.  
  348. \hline
  349.  
  350.  
  351. \end{tabular}
  352.  
  353. \end{center}
  354.  
  355.  
  356. \end{tiny}
  357. \end{frame}
  358.  
  359. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  360.  
  361.  
  362. \begin{frame}\frametitle{Corr2- MM}
  363.  
  364.  
  365. \begin{tiny}
  366.  
  367. \begin{center}
  368. \begin{tabular}{ l l l l l l l l l }
  369. \hline
  370. \multicolumn{8}{c}{Mean of the pull} \\ \hline
  371. $q^2$ & $S_3$ & $S_4$ & $S_5$ & $S_{6s}$ & $S_{6c}$ & $S_7$ & $S_8$ \\ \hline \hline
  372.  
  373. 0 & \scalebox{0.5}{$-0.21 \pm 0.026(-8.1)$} & \scalebox{0.5}{$0.061 \pm 0.026(2.3)$} & \scalebox{0.5}{$-0.016 \pm 0.026(-0.63)$} & \scalebox{0.5}{$0.048 \pm 0.026(1.8)$} & \scalebox{0.5}{$-0.0062 \pm 0.027(-0.23)$} & \scalebox{0.5}{$-0.012 \pm 0.028(-0.44)$} & \scalebox{0.5}{$0.0091 \pm 0.026(0.36)$} \\ \hline
  374. 1 & \scalebox{0.5}{$-0.12 \pm 0.028(-4.5)$} & \scalebox{0.5}{$0.032 \pm 0.027(1.2)$} & \scalebox{0.5}{$-0.0071 \pm 0.026(-0.27)$} & \scalebox{0.5}{$0.02 \pm 0.027(0.75)$} & \scalebox{0.5}{$-0.086 \pm 0.027(-3.2)$} & \scalebox{0.5}{$-0.03 \pm 0.025(-1.2)$} & \scalebox{0.5}{$0.021 \pm 0.027(0.79)$} \\ \hline
  375. 2 & \scalebox{0.5}{$-0.15 \pm 0.027(-5.8)$} & \scalebox{0.5}{$-0.013 \pm 0.026(-0.49)$} & \scalebox{0.5}{$0.011 \pm 0.026(0.44)$} & \scalebox{0.5}{$-0.039 \pm 0.026(-1.5)$} & \scalebox{0.5}{$-0.032 \pm 0.027(-1.2)$} & \scalebox{0.5}{$-0.066 \pm 0.027(-2.5)$} & \scalebox{0.5}{$0.018 \pm 0.028(0.64)$} \\ \hline
  376. 3 & \scalebox{0.5}{$-0.15 \pm 0.027(-5.6)$} & \scalebox{0.5}{$0.025 \pm 0.026(0.96)$} & \scalebox{0.5}{$0.016 \pm 0.027(0.58)$} & \scalebox{0.5}{$-0.062 \pm 0.027(-2.3)$} & \scalebox{0.5}{$0.037 \pm 0.026(1.4)$} & \scalebox{0.5}{$0.026 \pm 0.027(0.96)$} & \scalebox{0.5}{$-0.016 \pm 0.027(-0.6)$} \\ \hline
  377. 4 & \scalebox{0.5}{$-0.12 \pm 0.028(-4.5)$} & \scalebox{0.5}{$-0.024 \pm 0.026(-0.92)$} & \scalebox{0.5}{$0.045 \pm 0.027(1.6)$} & \scalebox{0.5}{$0.0075 \pm 0.026(0.29)$} & \scalebox{0.5}{$0.015 \pm 0.027(0.53)$} & \scalebox{0.5}{$-0.036 \pm 0.026(-1.4)$} & \scalebox{0.5}{$0.037 \pm 0.026(1.4)$} \\ \hline
  378. 5 & \scalebox{0.5}{$-0.095 \pm 0.027(-3.6)$} & \scalebox{0.5}{$-0.032 \pm 0.026(-1.2)$} & \scalebox{0.5}{$0.014 \pm 0.026(0.52)$} & \scalebox{0.5}{$-0.013 \pm 0.026(-0.48)$} & \scalebox{0.5}{$-0.0093 \pm 0.027(-0.35)$} & \scalebox{0.5}{$-0.013 \pm 0.026(-0.51)$} & \scalebox{0.5}{$0.042 \pm 0.027(1.6)$} \\ \hline
  379. 6 & \scalebox{0.5}{$-0.17 \pm 0.025(-6.5)$} & \scalebox{0.5}{$0.008 \pm 0.027(0.3)$} & \scalebox{0.5}{$0.012 \pm 0.027(0.45)$} & \scalebox{0.5}{$0.029 \pm 0.027(1.1)$} & \scalebox{0.5}{$0.0072 \pm 0.027(0.27)$} & \scalebox{0.5}{$-0.0012 \pm 0.026(-0.046)$} & \scalebox{0.5}{$0.011 \pm 0.027(0.42)$} \\ \hline
  380. %7 & \scalebox{0.5}{$0.078 \pm 0.026(3)$} & \scalebox{0.5}{$-0.3 \pm 0.026(-11)$} & \scalebox{0.5}{$-0.34 \pm 0.026(-13)$} & \scalebox{0.5}{$2.1 \pm 0.028(73)$} & \scalebox{0.5}{$0.47 \pm 0.026(18)$} & \scalebox{0.5}{$-0.17 \pm 0.027(-6.1)$} & \scalebox{0.5}{$0.0051 \pm 0.027(0.19)$} \\ \hline
  381. 8 & \scalebox{0.5}{$-0.13 \pm 0.026(-5.1)$} & \scalebox{0.5}{$-0.0077 \pm 0.027(-0.28)$} & \scalebox{0.5}{$0.05 \pm 0.027(1.9)$} & \scalebox{0.5}{$-0.03 \pm 0.026(-1.2)$} & \scalebox{0.5}{$-0.012 \pm 0.028(-0.44)$} & \scalebox{0.5}{$-0.046 \pm 0.026(-1.7)$} & \scalebox{0.5}{$0.031 \pm 0.026(1.2)$} \\ \hline
  382. 9 & \scalebox{0.5}{$-0.15 \pm 0.026(-5.7)$} & \scalebox{0.5}{$-0.0083 \pm 0.026(-0.32)$} & \scalebox{0.5}{$0.03 \pm 0.026(1.2)$} & \scalebox{0.5}{$0.044 \pm 0.027(1.6)$} & \scalebox{0.5}{$-0.07 \pm 0.026(-2.7)$} & \scalebox{0.5}{$-0.022 \pm 0.026(-0.84)$} & \scalebox{0.5}{$-0.045 \pm 0.026(-1.7)$} \\ \hline
  383. 10 & \scalebox{0.5}{$-0.15 \pm 0.025(-5.8)$} & \scalebox{0.5}{$-0.032 \pm 0.025(-1.3)$} & \scalebox{0.5}{$0.059 \pm 0.026(2.2)$} & \scalebox{0.5}{$-0.072 \pm 0.028(-2.6)$} & \scalebox{0.5}{$-0.029 \pm 0.027(-1.1)$} & \scalebox{0.5}{$0.064 \pm 0.027(2.4)$} & \scalebox{0.5}{$0.014 \pm 0.027(0.51)$} \\ \hline
  384. 11 & \scalebox{0.5}{$-0.067 \pm 0.026(-2.6)$} & \scalebox{0.5}{$0.017 \pm 0.026(0.65)$} & \scalebox{0.5}{$-0.015 \pm 0.026(-0.56)$} & \scalebox{0.5}{$-0.051 \pm 0.026(-1.9)$} & \scalebox{0.5}{$-0.0086 \pm 0.026(-0.33)$} & \scalebox{0.5}{$-0.018 \pm 0.028(-0.67)$} & \scalebox{0.5}{$0.017 \pm 0.027(0.62)$} \\ \hline
  385.  
  386.  
  387.  
  388.  
  389.  
  390.  
  391. \hline
  392.  
  393.  
  394. \end{tabular}
  395.  
  396. \end{center}
  397.  
  398.  
  399. \end{tiny}
  400. \end{frame}
  401.  
  402.  
  403. \begin{frame}\frametitle{Corr3- MM}
  404.  
  405.  
  406. \begin{tiny}
  407.  
  408. \begin{center}
  409. \begin{tabular}{ l l l l l l l l l }
  410. \hline
  411. \multicolumn{8}{c}{Mean of the pull} \\ \hline
  412. $q^2$ & $S_3$ & $S_4$ & $S_5$ & $S_{6s}$ & $S_{6c}$ & $S_7$ & $S_8$ \\ \hline \hline
  413.  
  414. 0 & \scalebox{0.5}{$-0.021 \pm 0.026(-0.81)$} & \scalebox{0.5}{$0.041 \pm 0.026(1.5)$} & \scalebox{0.5}{$0.009 \pm 0.027(0.34)$} & \scalebox{0.5}{$0.043 \pm 0.026(1.6)$} & \scalebox{0.5}{$0.13 \pm 0.028(4.8)$} & \scalebox{0.5}{$-0.0072 \pm 0.028(-0.26)$} & \scalebox{0.5}{$0.044 \pm 0.026(1.7)$} \\ \hline
  415. 1 & \scalebox{0.5}{$-0.014 \pm 0.028(-0.51)$} & \scalebox{0.5}{$0.03 \pm 0.027(1.1)$} & \scalebox{0.5}{$0.022 \pm 0.027(0.82)$} & \scalebox{0.5}{$0.015 \pm 0.028(0.53)$} & \scalebox{0.5}{$0.078 \pm 0.028(2.8)$} & \scalebox{0.5}{$-0.037 \pm 0.025(-1.4)$} & \scalebox{0.5}{$0.057 \pm 0.027(2.1)$} \\ \hline
  416. 2 & \scalebox{0.5}{$-0.037 \pm 0.027(-1.4)$} & \scalebox{0.5}{$-0.0013 \pm 0.027(-0.048)$} & \scalebox{0.5}{$-0.015 \pm 0.027(-0.54)$} & \scalebox{0.5}{$-0.052 \pm 0.026(-2)$} & \scalebox{0.5}{$0.1 \pm 0.027(3.8)$} & \scalebox{0.5}{$-0.051 \pm 0.026(-1.9)$} & \scalebox{0.5}{$0.022 \pm 0.028(0.78)$} \\ \hline
  417. 3 & \scalebox{0.5}{$-0.015 \pm 0.027(-0.55)$} & \scalebox{0.5}{$0.036 \pm 0.028(1.3)$} & \scalebox{0.5}{$-0.039 \pm 0.027(-1.4)$} & \scalebox{0.5}{$-0.072 \pm 0.027(-2.7)$} & \scalebox{0.5}{$0.17 \pm 0.027(6.2)$} & \scalebox{0.5}{$-0.0044 \pm 0.028(-0.15)$} & \scalebox{0.5}{$-0.024 \pm 0.027(-0.9)$} \\ \hline
  418. 4 & \scalebox{0.5}{$-0.00047 \pm 0.029(-0.017)$} & \scalebox{0.5}{$-0.012 \pm 0.027(-0.43)$} & \scalebox{0.5}{$0.0099 \pm 0.028(0.35)$} & \scalebox{0.5}{$-0.002 \pm 0.026(-0.076)$} & \scalebox{0.5}{$0.17 \pm 0.028(6.2)$} & \scalebox{0.5}{$-0.062 \pm 0.027(-2.3)$} & \scalebox{0.5}{$0.0086 \pm 0.027(0.32)$} \\ \hline
  419. 5 & \scalebox{0.5}{$0.046 \pm 0.027(1.7)$} & \scalebox{0.5}{$-0.02 \pm 0.026(-0.76)$} & \scalebox{0.5}{$-0.04 \pm 0.027(-1.5)$} & \scalebox{0.5}{$-0.012 \pm 0.027(-0.44)$} & \scalebox{0.5}{$0.13 \pm 0.027(4.8)$} & \scalebox{0.5}{$-0.04 \pm 0.027(-1.5)$} & \scalebox{0.5}{$-0.0056 \pm 0.027(-0.21)$} \\ \hline
  420. 6 & \scalebox{0.5}{$-0.013 \pm 0.026(-0.52)$} & \scalebox{0.5}{$0.041 \pm 0.027(1.5)$} & \scalebox{0.5}{$-0.033 \pm 0.028(-1.2)$} & \scalebox{0.5}{$-0.0019 \pm 0.027(-0.068)$} & \scalebox{0.5}{$0.15 \pm 0.027(5.4)$} & \scalebox{0.5}{$-0.034 \pm 0.027(-1.3)$} & \scalebox{0.5}{$-0.021 \pm 0.028(-0.75)$} \\ \hline
  421. %7 & \scalebox{0.5}{$0.25 \pm 0.027(9.1)$} & \scalebox{0.5}{$-0.27 \pm 0.027(-10)$} & \scalebox{0.5}{$-0.41 \pm 0.027(-16)$} & \scalebox{0.5}{$2.1 \pm 0.029(73)$} & \scalebox{0.5}{$0.65 \pm 0.027(24)$} & \scalebox{0.5}{$-0.19 \pm 0.028(-7)$} & \scalebox{0.5}{$-0.053 \pm 0.028(-1.9)$} \\ \hline
  422. 8 & \scalebox{0.5}{$0.039 \pm 0.026(1.5)$} & \scalebox{0.5}{$0.01 \pm 0.028(0.36)$} & \scalebox{0.5}{$-0.027 \pm 0.028(-0.96)$} & \scalebox{0.5}{$-0.024 \pm 0.026(-0.9)$} & \scalebox{0.5}{$0.12 \pm 0.027(4.3)$} & \scalebox{0.5}{$-0.092 \pm 0.026(-3.5)$} & \scalebox{0.5}{$-0.036 \pm 0.027(-1.3)$} \\ \hline
  423. 9 & \scalebox{0.5}{$-0.01 \pm 0.027(-0.38)$} & \scalebox{0.5}{$0.0024 \pm 0.027(0.09)$} & \scalebox{0.5}{$-0.018 \pm 0.026(-0.68)$} & \scalebox{0.5}{$0.022 \pm 0.028(0.79)$} & \scalebox{0.5}{$0.068 \pm 0.027(2.6)$} & \scalebox{0.5}{$-0.069 \pm 0.026(-2.6)$} & \scalebox{0.5}{$-0.078 \pm 0.026(-3)$} \\ \hline
  424. 10 & \scalebox{0.5}{$-0.017 \pm 0.027(-0.62)$} & \scalebox{0.5}{$-0.015 \pm 0.026(-0.57)$} & \scalebox{0.5}{$0.012 \pm 0.027(0.46)$} & \scalebox{0.5}{$-0.074 \pm 0.028(-2.6)$} & \scalebox{0.5}{$0.1 \pm 0.027(3.8)$} & \scalebox{0.5}{$-0.003 \pm 0.027(-0.11)$} & \scalebox{0.5}{$-0.043 \pm 0.029(-1.5)$} \\ \hline
  425. 11 & \scalebox{0.5}{$0.032 \pm 0.026(1.2)$} & \scalebox{0.5}{$0.024 \pm 0.026(0.91)$} & \scalebox{0.5}{$-0.04 \pm 0.026(-1.5)$} & \scalebox{0.5}{$-0.066 \pm 0.027(-2.5)$} & \scalebox{0.5}{$0.098 \pm 0.027(3.7)$} & \scalebox{0.5}{$-0.043 \pm 0.028(-1.6)$} & \scalebox{0.5}{$-0.0018 \pm 0.028(-0.064)$} \\ \hline
  426.  
  427.  
  428.  
  429. \hline
  430.  
  431.  
  432. \end{tabular}
  433.  
  434. \end{center}
  435.  
  436.  
  437. \end{tiny}
  438. \end{frame}
  439.  
  440. \begin{frame}\frametitle{Corr4- MM}
  441.  
  442.  
  443. \begin{tiny}
  444.  
  445. \begin{center}
  446. \begin{tabular}{ l l l l l l l l l }
  447. \hline
  448. \multicolumn{8}{c}{Mean of the pull} \\ \hline
  449. $q^2$ & $S_3$ & $S_4$ & $S_5$ & $S_{6s}$ & $S_{6c}$ & $S_7$ & $S_8$ \\ \hline \hline
  450.  
  451.  
  452. 0 & \scalebox{0.5}{$-0.019 \pm 0.026(-0.71)$} & \scalebox{0.5}{$0.048 \pm 0.027(1.8)$} & \scalebox{0.5}{$0.018 \pm 0.027(0.67)$} & \scalebox{0.5}{$0.059 \pm 0.027(2.2)$} & \scalebox{0.5}{$-0.015 \pm 0.028(-0.55)$} & \scalebox{0.5}{$0.061 \pm 0.027(2.2)$} & \scalebox{0.5}{$0.012 \pm 0.027(0.44)$} \\ \hline
  453. 1 & \scalebox{0.5}{$-0.014 \pm 0.028(-0.51)$} & \scalebox{0.5}{$0.043 \pm 0.027(1.6)$} & \scalebox{0.5}{$0.013 \pm 0.027(0.49)$} & \scalebox{0.5}{$0.024 \pm 0.028(0.86)$} & \scalebox{0.5}{$-0.038 \pm 0.028(-1.4)$} & \scalebox{0.5}{$0.024 \pm 0.026(0.94)$} & \scalebox{0.5}{$0.037 \pm 0.027(1.3)$} \\ \hline
  454. 2 & \scalebox{0.5}{$-0.03 \pm 0.027(-1.1)$} & \scalebox{0.5}{$-0.0021 \pm 0.027(-0.076)$} & \scalebox{0.5}{$-0.01 \pm 0.027(-0.39)$} & \scalebox{0.5}{$-0.017 \pm 0.027(-0.61)$} & \scalebox{0.5}{$-0.016 \pm 0.027(-0.58)$} & \scalebox{0.5}{$0.013 \pm 0.027(0.49)$} & \scalebox{0.5}{$0.027 \pm 0.028(0.98)$} \\ \hline
  455. 3 & \scalebox{0.5}{$-0.007 \pm 0.027(-0.26)$} & \scalebox{0.5}{$0.03 \pm 0.028(1.1)$} & \scalebox{0.5}{$-0.036 \pm 0.027(-1.3)$} & \scalebox{0.5}{$-0.074 \pm 0.027(-2.8)$} & \scalebox{0.5}{$0.041 \pm 0.027(1.5)$} & \scalebox{0.5}{$0.08 \pm 0.028(2.9)$} & \scalebox{0.5}{$-0.0083 \pm 0.027(-0.31)$} \\ \hline
  456. 4 & \scalebox{0.5}{$0.00089 \pm 0.029(0.031)$} & \scalebox{0.5}{$-0.021 \pm 0.027(-0.77)$} & \scalebox{0.5}{$0.0032 \pm 0.028(0.11)$} & \scalebox{0.5}{$0.0031 \pm 0.026(0.12)$} & \scalebox{0.5}{$0.012 \pm 0.027(0.44)$} & \scalebox{0.5}{$0.019 \pm 0.026(0.71)$} & \scalebox{0.5}{$0.034 \pm 0.027(1.3)$} \\ \hline
  457. 5 & \scalebox{0.5}{$0.044 \pm 0.028(1.6)$} & \scalebox{0.5}{$-0.022 \pm 0.026(-0.82)$} & \scalebox{0.5}{$-0.041 \pm 0.027(-1.5)$} & \scalebox{0.5}{$-0.014 \pm 0.027(-0.53)$} & \scalebox{0.5}{$-0.029 \pm 0.027(-1.1)$} & \scalebox{0.5}{$0.041 \pm 0.027(1.5)$} & \scalebox{0.5}{$0.042 \pm 0.028(1.5)$} \\ \hline
  458. 6 & \scalebox{0.5}{$-0.011 \pm 0.026(-0.42)$} & \scalebox{0.5}{$0.041 \pm 0.027(1.5)$} & \scalebox{0.5}{$-0.045 \pm 0.028(-1.6)$} & \scalebox{0.5}{$0.011 \pm 0.027(0.41)$} & \scalebox{0.5}{$-0.0089 \pm 0.027(-0.33)$} & \scalebox{0.5}{$0.067 \pm 0.027(2.5)$} & \scalebox{0.5}{$0.036 \pm 0.027(1.3)$} \\ \hline
  459. %7 & \scalebox{0.5}{$0.25 \pm 0.027(9.1)$} & \scalebox{0.5}{$-0.26 \pm 0.027(-9.9)$} & \scalebox{0.5}{$-0.42 \pm 0.027(-16)$} & \scalebox{0.5}{$2.1 \pm 0.029(73)$} & \scalebox{0.5}{$0.47 \pm 0.027(18)$} & \scalebox{0.5}{$-0.077 \pm 0.028(-2.8)$} & \scalebox{0.5}{$0.029 \pm 0.028(1)$} \\ \hline
  460. 8 & \scalebox{0.5}{$0.05 \pm 0.026(1.9)$} & \scalebox{0.5}{$0.0021 \pm 0.028(0.074)$} & \scalebox{0.5}{$-0.025 \pm 0.028(-0.91)$} & \scalebox{0.5}{$-0.023 \pm 0.026(-0.87)$} & \scalebox{0.5}{$-0.024 \pm 0.028(-0.85)$} & \scalebox{0.5}{$0.022 \pm 0.026(0.82)$} & \scalebox{0.5}{$0.026 \pm 0.026(0.98)$} \\ \hline
  461. 9 & \scalebox{0.5}{$-0.0064 \pm 0.027(-0.23)$} & \scalebox{0.5}{$0.012 \pm 0.027(0.44)$} & \scalebox{0.5}{$-0.0075 \pm 0.026(-0.28)$} & \scalebox{0.5}{$0.029 \pm 0.027(1.1)$} & \scalebox{0.5}{$-0.087 \pm 0.027(-3.2)$} & \scalebox{0.5}{$0.036 \pm 0.027(1.3)$} & \scalebox{0.5}{$-0.02 \pm 0.026(-0.76)$} \\ \hline
  462. 10 & \scalebox{0.5}{$-0.019 \pm 0.027(-0.71)$} & \scalebox{0.5}{$-0.0051 \pm 0.025(-0.2)$} & \scalebox{0.5}{$0.0081 \pm 0.026(0.31)$} & \scalebox{0.5}{$-0.077 \pm 0.028(-2.7)$} & \scalebox{0.5}{$-0.03 \pm 0.027(-1.1)$} & \scalebox{0.5}{$0.11 \pm 0.027(4.1)$} & \scalebox{0.5}{$0.013 \pm 0.028(0.46)$} \\ \hline
  463. 11 & \scalebox{0.5}{$0.027 \pm 0.026(1)$} & \scalebox{0.5}{$0.032 \pm 0.027(1.2)$} & \scalebox{0.5}{$-0.038 \pm 0.027(-1.4)$} & \scalebox{0.5}{$-0.048 \pm 0.026(-1.8)$} & \scalebox{0.5}{$-0.021 \pm 0.027(-0.77)$} & \scalebox{0.5}{$0.019 \pm 0.028(0.69)$} & \scalebox{0.5}{$0.035 \pm 0.027(1.3)$} \\ \hline
  464.  
  465.  
  466. \hline
  467.  
  468. \end{tabular}
  469.  
  470. \end{center}
  471.  
  472. \end{tiny}
  473. \end{frame}
  474.  
  475.  
  476.  
  477.  
  478. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  479. \section{Reverse Engineering Unfolding}
  480.  
  481. \begin{frame}\frametitle{Reverse Engineering- Corr1}
  482. \begin{itemize}
  483. \item Let's try to understand if we can understand why this happens:
  484. \item Let's calculate what should I expect with the unfolding
  485. \item This is up to normalization!
  486. \begin{itemize}
  487. \item $M_5=0.4 S_5 \to M_5=0.00512 S_3 + 0.4 S_5 - 0.002 S_7$
  488. \item $M_8=0.32 S_8 \to M_8=0.0016 S_4 + 0.00512 S_7 + 0.32 S_8$
  489. \item $M_7=0.4 S_7 \to M_7=0.002 S_5 + 0.4 S_7 + 0.00512 S_8$
  490. \item $M_3=0.32 S_3 \to M_3=0.32 S_3 - 0.0008 S_9$
  491. \end{itemize}
  492. \item The way you can look at this is that i just shown you how our unfolding matrix works like.
  493. \end{itemize}
  494.  
  495.  
  496.  
  497. \end{frame}
  498.  
  499. \begin{frame}\frametitle{Reverse Engineering- Corr2}
  500. \begin{itemize}
  501. \item Let's try to understand if we can understand why this happens:
  502. \item Let's calculate what should I expect with the unfolding
  503. \item This is up to normalization!
  504. \begin{itemize}
  505. \item $M_5=0.4 S_5 \to M_5= 0.4 S_5$
  506. \item $M_8=0.32 S_8 \to M_8=0.32 S_5$
  507. \item $M_7=0.4 S_7 \to M_7=0.4 S_7$
  508. \item $M_3=0.32 S_3 \to M_3=-0.0036 + 0.0012 Fl + 0.32 S_3$
  509. \end{itemize}
  510. \item The way you can look at this is that i just shown you how our unfolding matrix works like.
  511. \end{itemize}
  512.  
  513.  
  514.  
  515. \end{frame}
  516.  
  517.  
  518.  
  519.  
  520. \begin{frame}\frametitle{Summary}
  521. \begin{itemize}
  522. \item Developed a systematic way how to get Unfolding matrix
  523. \item Moments are resistant against variety of unfolding discrepancies.
  524. \item This might lead to reduced systematics in the future.
  525. \end{itemize}
  526.  
  527.  
  528.  
  529.  
  530. \end{frame}
  531.  
  532.  
  533.  
  534. \end{document}