% This program can be redistributed and/or modified under the terms % of the GNU Public License, version 3. % % Seth Brown, Ph.D. % sethbrown@drbunsen.org % % Compiled with XeLaTeX % Dependencies: % Fontin Sans font (http://www.exljbris.com/fontinsans.fsrtml) % \documentclass{beamer} \usepackage{pgf} \usepackage{tikz} \usepackage{times} \usepackage[T1]{fontenc} %\usepackage[mathscr]{eucal} %\usepackage{mathptmx} %\usepackage{mathrsfs} \usepackage{hyperref} \usepackage{color} \usepackage{graphicx} \usepackage{wasysym} % \usepackage{pgfpagfes} % \setbeameroption{show notes on second screen} %\pgfpagesuselayout{4 on 1}[a4paper,border shrink=5mm,landscape] \usepackage{xcolor} \usepackage{xcolor,multirow} %\usepackage[table]{xcolor} %\usepackage[dvipsnames]{xcolor} %\usepackage{amsfonts} %\usepackage{amsmath} % \usepackage[amssymb]{SIunits} %\usepackage{natbib} %\usepackage{amssymb} \usepackage{hepparticles} \usepackage{hepnicenames} \usepackage{hepunits} \usepackage{tikz} \usepackage[english]{babel} %%\usepackage{lmodern} %\usepackage{feynmp} % suppress navigation bar \beamertemplatenavigationsymbolsempty \usepackage[mathscr]{eucal} \usepackage{mathrsfs} \mode<presentation> { \usetheme{bunsen} \setbeamercovered{transparent} \setbeamertemplate{items}[circle] } \newcommand{\Simley}[1]{% \begin{tikzpicture}[scale=0.15] \newcommand*{\SmileyRadius}{1.0}% \draw [fill=brown!10] (0,0) circle (\SmileyRadius)% outside circle %node [yshift=-0.22*\SmileyRadius cm] {\tiny #1}% uncomment this to see the smile factor ; \pgfmathsetmacro{\eyeX}{0.5*\SmileyRadius*cos(30)} \pgfmathsetmacro{\eyeY}{0.5*\SmileyRadius*sin(30)} \draw [fill=cyan,draw=none] (\eyeX,\eyeY) circle (0.15cm); \draw [fill=cyan,draw=none] (-\eyeX,\eyeY) circle (0.15cm); \pgfmathsetmacro{\xScale}{2*\eyeX/180} \pgfmathsetmacro{\yScale}{1.0*\eyeY} \draw[color=red, domain=-\eyeX:\eyeX] plot ({\x},{ -0.1+#1*0.15 % shift the smiley as smile decreases -#1*1.75*\yScale*(sin((\x+\eyeX)/\xScale))-\eyeY}); \end{tikzpicture}% }% % set fonts \usepackage{amsfonts} \usepackage{amsmath} \usepackage{verbatim} \usepackage{fancyvrb} \DefineVerbatimEnvironment{code}{Verbatim}{fontsize=\small} \DefineVerbatimEnvironment{example}{Verbatim}{fontsize=\small} \usepackage{listings} \usepackage{courier} \lstset{ basicstyle=\footnotesize\ttfamily, % Standardschrift %numbers=left, % Ort der Zeilennummern numberstyle=\tiny, % Stil der Zeilennummern %stepnumber=2, % Abstand zwischen den Zeilennummern numbersep=5pt, % Abstand der Nummern zum Text tabsize=2, % Groesse von Tabs extendedchars=true, % breaklines=true, % Zeilen werden Umgebrochen keywordstyle=\color{red}, frame=b, % keywordstyle=[1]\textbf, % Stil der Keywords % keywordstyle=[2]\textbf, % % keywordstyle=[3]\textbf, % % keywordstyle=[4]\textbf, \sqrt{\sqrt{}} % stringstyle=\color{white}\ttfamily, % Farbe der String showspaces=false, % Leerzeichen anzeigen ? showtabs=false, % Tabs anzeigen ? xleftmargin=17pt, framexleftmargin=17pt, framexrightmargin=5pt, framexbottommargin=4pt, %backgroundcolor=\color{lightgray}, showstringspaces=false % Leerzeichen in Strings anzeigen ? } %\DeclareCaptionFont{blue}{\color{blue}} %\captionsetup[lstlisting]{singlelinecheck=false, labelfont={blue}, textfont={blue}} \usepackage{caption} \DeclareCaptionFont{white}{\color{white}} \DeclareCaptionFormat{listing}{\colorbox[cmyk]{0.43, 0.35, 0.35,0.01}{\parbox{\textwidth}{\hspace{15pt}#1#2#3}}} \captionsetup[lstlisting]{format=listing,labelfont=white,textfont=white, singlelinecheck=false, margin=0pt, font={bf,footnotesize}} \usetikzlibrary{arrows} \usetikzlibrary{shapes} %\usepackage{gfsartemisia-euler} %\usepackage[T1]{fontenc} \setbeamerfont{frametitle}{size=\LARGE,series=\bfseries} \tikzstyle{decision} = [diamond, draw, fill=gray!20, text width=4.5em, text badly centered, node distance=3cm, inner sep=0pt] \tikzstyle{block} = [rectangle, draw, fill=blue!10, text width=5em, text centered, rounded corners, minimum height=2em] \tikzstyle{line} = [draw, -latex'] \tikzstyle{cloud} = [draw, ellipse,fill=red!10, node distance=3cm, minimum height=2em] \tikzstyle{every picture}+=[remember picture] \renewcommand{\PKs}{{\HepParticle{K}{S}{}\xspace}} % color definitions \usepackage{color} \definecolor{uipoppy}{RGB}{225, 64, 5} \definecolor{uipaleblue}{RGB}{96,123,139} \definecolor{uiblack}{RGB}{0, 0, 0} % caption styling %\DeclareCaptionFont{uiblack}{\color{uiblack}} %\DeclareCaptionFont{uipoppy}{\color{uipoppy}} %\captionsetup{labelfont={uipoppy},textfont=uiblack} % see the macros.tex file for definitions \include{macros } % title slide definition \title{$\tau \to 3\mu$ Status Update} \author{Johannes Albrecht$^{1}$,Marta Calvi$^2$, \underline{Marcin Chrz\k{a}szcz}$^{3,4}$, Jon Harrison$^{5}$, Basem Khanji$^{2}$, George Lafferty$^{5}$, Nicola Serra$^{3}$, Paul Seyfert$^6$} \institute[UZH, IFJ] { $^{1}$ Dortmund, $^{2}$ Milano, $^{3}$ Zurich, $^{4}$ Krakow,\\ $^{5}$ ManchesterManchester, $^{6}$ Heidelberg } \date{ \begin{small} $28^{th}$ August 2013 \end{small}} %-------------------------------------------------------------------- % Introduction %-------------------------------------------------------------------- \begin{document} \setbeamertemplate{background} {\includegraphics[width=\paperwidth,height=\paperheight]{frontpage_bg_mine}} \setbeamertemplate{footline}[default] \begin{frame} \vspace{1.1cm} \begin{columns} \column{2.75in} \titlepage \begin{center} \includegraphics[height=1.0cm ]{pic/uzh.jpg} % \hspace{0.5cm} % \includegraphics[height=1.5cm]{pic/babar.jpg} \hspace{1cm} \includegraphics[height=1.0cm]{pic/ifj.png} \hspace{1cm} %\includegraphics[height=1.0cm]{pic/SNS.jpg} \end{center} \vspace{10cm} \column{2.0in} \end{columns} \end{frame} %-------------------------------------------------------------------- % OUTLINE %-------------------------------------------------------------------- \section[Outline]{} \begin{frame} \tableofcontents \end{frame} %------------------------------------------------------------------- % Introduction %------------------------------------------------------------------- % % Set the background for the rest of the slides. % Insert infoline \setbeamertemplate{background} {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}} \setbeamertemplate{footline}[bunsentheme] \title{Update on analysis} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \setbeamertemplate{background} {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}} \setbeamertemplate{footline}[bunsentheme] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%2>%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Status} \begin{frame}\frametitle{Status} \begin{columns} \column{2in} \begin{center} $1 $fb$^{-1}$ analysis of \textcolor{violet}{$\tau \to \mu \mu \mu$} and \textcolor{blue}{$\tau \to p \mu \mu$} appeared in PLB. \end{center} \column{3in} \includegraphics[scale=0.197]{RD_meeting/PLB.png} \end{columns} \begin{exampleblock}{2011 results:} \begin{enumerate} \item Obtained limit for $\tau \to \mu \mu \mu$: $8.0 \times 10^{-8}$. \item BaBar and Belle: $2.1 (3.2) \times 10^{-8}$ at $90\%$ CL. \item For 2012 + 2011 planned to implement several improvements. \end{enumerate} \end{exampleblock} \textref {M.Chrz\k{a}szcz 2013} \end{frame} \section{MC Samples} \begin{frame}\frametitle{MC Samples} \only<1> { \begin{exampleblock}{~} \begin{enumerate} \item In 2011 analysis one of the biggest contributions to the systematic error from MC was the reweighting the MC signal for the correct cross section. \item For 2012 we solved this problem by simulating signal in 5 parts. One for each production channel(normalization to 1M events): \end{enumerate} \end{exampleblock} } \begin{center} \fcolorbox{blue}{yellow}{ %\begin{equation}NUmber of ne $\tau \to \mu \mu \mu = \begin{cases} \PB \to \Ptau \to \mu \mu \mu & 116,600 \\ \PB \to \PDs \to \tau \to \mu \mu \mu & 87,200\\ \PB \to \PD \to \tau \to \mu \mu \mu & 1,800\\ \PDs \to \tau \to \mu \mu \mu & 750,600\\ \PD \to \tau \to \mu \mu \mu & 43,800 \end{cases}$ %\end{equation} } % $\HepParticle{B}{}{\pm} \to \HepParticle{D}{}{(\ast)} \tau^{\pm} \nu$} \end{center} \textref {M.Chrz\k{a}szcz 2013} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55 \begin{frame}\frametitle{MC Generator Cuts} \only<1> { In order to reduce the number of unwanted events we introduced generator level cuts. \begin{center} \begin{tabular}{ | c | c || l | c |} \hline \multicolumn{2}{|c|| }{Signal sample\footnote{$X \to \tau\to 3\mu$, $\PDs \to \eta(\mu\mu \gamma) \mu \nu$, $\PDs \to \phi(\mu\mu) \pi$ }} & \multicolumn{2}{|c| }{Background sample(Dimuon)\footnote{$c\bar{c}$, $b\bar{b}$ }} \\ \hline \hline $p_{t\mu}$ & $>250MeV$ & $p_{t\mu}$ & $>280MeV$ \\ \hline $p_{\mu}$ & $>2.5GeV$ & $p_{\mu}$ & $>2.9GeV$ \\ \cline{3-4} & & $m(\mu\mu)$ & $<4.5GeV$\\ \cline{3-4} & & DOCA$(\mu\mu)$ & $<0.35mm$\\ \hline \end{tabular} \end{center} } Gain a factor of $\sim 8$ in statistics compared to 2011. \textref {M.Chrz\k{a}szcz 2013} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55 \section{Normalization channel} \begin{frame}\frametitle{Normalization channel} \only<1> { As last year we will use \textcolor{blue}{$\PDs \to \phi(\mu\mu) \pi$}. Events are split into 2 categories: \begin{exampleblock}{~} \begin{enumerate} \item $cc \to \PDs \to \phi (\mu\mu) \pi$ 897,000 \item $bb \to \PDs \to \phi (\mu\mu) \pi$ 103,000 \end{enumerate} \end{exampleblock} We avoid reweighting of the samples as in 2011. } \textref {M.Chrz\k{a}szcz 2013} \end{frame} \begin{frame}\frametitle{Mass correction} \only<1> { \begin{center} \begin{tiny} \begin{columns} \column{2.5in} \begin{center} $D_s \to \phi(\mu\mu)\pi$ in data.\\ \includegraphics[scale=0.14]{Ds_Mass/Ds_mass_data.png} \\ \begin{itemize} \item mean = $1970.3 \pm 0.9 MeV$ \end{itemize} \end{center} \column{2.5in} \begin{center} $D_s \to \phi(\mu\mu)\pi$ in MC.\\ \includegraphics[scale=0.14]{Ds_Mass/D_mass_base.png}\\ \begin{itemize} \item mean = $1969.1 \pm 0.60 MeV$ \end{itemize} \end{center} \end{columns} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{columns} \column{2.5in} \begin{center} \begin{small} \begin{itemize} \item $m_{\tau \to 3\mu} = \dfrac{1970.3}{1969.1} \times 1777.7 =$\textcolor{blue}{$ 1778.8 \pm 1.1 MeV$} \end{itemize} {~} \\ In agreement with 2011. \end{small} \end{center} \column{2.5in} \begin{center} Fit $\tau \to \mu\mu\mu$ in MC. \\ \includegraphics[scale=0.14]{Ds_Mass/tau_mass_base.png}\\ \begin{itemize} \item mean = $1777.7 \pm 0.4 MeV$ \\ \end{itemize} \end{center} \end{columns} \end{tiny} \end{center} } \textref {M.Chrz\k{a}szcz 2013} \end{frame} \section{Peaking backgrounds} \begin{frame}\frametitle{Peaking backgrounds} \only<1> { \begin{exampleblock}{~} \begin{enumerate} \item The dominant background source of peaking background in this analysis is \textcolor{blue}{$\PDs \to \eta(\mu\mu\gamma) \mu \nu$}\\ \item In 2011 we suffered from lack of MC statistics. \item Thanks to generator cuts our pdfs became more stable. \end{enumerate} \end{exampleblock} \begin{columns} \column{2.5in} \begin{center} \includegraphics[scale=0.11]{RD_meeting/pid_0_65_0_725geo-0_48_0_05.png} \\ \begin{tiny} PID:$0.65;0.725$,GEO:$-0.48;0.05$ \end{tiny} \end{center} \column{2.5in} \begin{center} \includegraphics[scale=0.11]{RD_meeting/pid_0_725_0_86geo0_35_0_65.png}\\ \begin{tiny} PID:$0.725;0.0.86$,GEO:$0.35;0.65$ \end{tiny} \end{center} \end{columns} } \textref {M.Chrz\k{a}szcz 2013} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \section{Normalization} \begin{frame}\frametitle{Normalization} \only<1> { For the normalization of background samples($c\bar{c}$ and $b\bar{b}$) we used generator cuts efficiencies and corrected the nominal cross section accordingly:\\ \begin{center} $\mathcal{L} = \dfrac{N_{MC}}{\varepsilon_{acc} \times \varepsilon_{gen} \times \sigma{LHCb}}$ \end{center} The obtained luminosities(per 1M events): \begin{exampleblock}{~} \begin{enumerate} \item $\mathcal{L}_{cc} = 0.25 \pm 0.04 pb^{-1}$ \item $\mathcal{L}_{bb} = 1.20 \pm 0.15 pb^{-1}$ \end{enumerate} \end{exampleblock} } Dominant uncertainty from the cross section. \textref {M.Chrz\k{a}szcz 2013} \end{frame} \section{Isolating parameter} \begin{frame}\frametitle{Isolating parameters} {~} \only<1> { \begin{exampleblock}{~} \begin{enumerate} \item In 2011 we used the isolation parameter developed for $\PBs \to \mu\mu$. For 2012 data we optimised the isolation parameter for our channel based on MVA(BDT). \item Instead of training on isolating vs non-isoalting tracks we train on combinatorial background vs signal. \item We see big improvement compared to old isolation. \end{enumerate} \end{exampleblock} } \begin{columns} \column{2.5in} \begin{center} \includegraphics[scale=0.18]{RD_meeting/mva_BDT.png} \\ \end{center} \column{2.5in} \begin{center} \includegraphics[scale=0.17]{RD_meeting/rejBvsS.png}\\ \end{center} \end{columns} \textref {M.Chrz\k{a}szcz 2013} \end{frame} \section{Ensemble Selection} \begin{frame}\frametitle{Ensemble Selection} {~} \only<1> { \begin{exampleblock}{~} \begin{enumerate} \item In the last few years people winning leading machine learning contests started to combine their classifiers to squeeze the best out of them. \item This technique/method is know as Ensemble Selection or Blending. \item The plan for $\tau \to \mu \mu \mu$ is to take it to the next level. \item Combine not only different channels, but also different $\tau$ sources(slide 4). \end{enumerate} \end{exampleblock} } \only<2> { \begin{columns} \column{2.5in} \begin{center} \includegraphics[scale=0.16]{RD_meeting/rejBvsS_21513000.png}\\ \begin{itemize} \item $\PB \to \PD \to \tau$ \end{itemize} \end{center} \column{2.5in} \begin{center} \includegraphics[scale=0.16]{RD_meeting/rejBvsS_21513001.png}\\ \begin{itemize} \item $\PD \to \tau$ \end{itemize} \end{center} \end{columns} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{columns} \column{2.5in} \begin{center} \includegraphics[scale=0.16]{RD_meeting/rejBvsS_23513000.png}\\ \begin{itemize} \item $\PB \to \PDs \to \tau$ \end{itemize} \end{center} \column{2.5in} \begin{center} \includegraphics[scale=0.16]{RD_meeting/rejBvsS_23513001.png}\\ \begin{itemize} \item $\PDs \to \tau$ \end{itemize} \end{center} \end{columns} } \textref {M.Chrz\k{a}szcz, N.Serra 2013} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5555 \section{Binning optimisation} \begin{frame}\frametitle{Binning optimisation} {~} \only<1> { For the 2011 analysis we had two classifiers: $PIDNN$ and $M_{GEO}$. Each of them we optimised separately. For the 2012 analysis we are performing a simultaneous 2D optimisation. \begin{columns} \column{2.5in} \includegraphics[scale=0.13]{inflaton/punzi1.png} \column{2.5in} \includegraphics[scale=0.27]{RD_meeting/2d-data.pdf} \end{columns} } \end{frame} \section{Conclusions} \begin{frame}\frametitle{Conclusions} {~} \only<1> { \begin{exampleblock}{~} \begin{enumerate} \item Analysis is well underway. \item MC samples are almost there. \item Hope to improve the selection. \item $\tau \to p \mu \mu$ mode will be studied in parallel. \end{enumerate} \end{exampleblock} } \includegraphics[scale=0.45]{RD_meeting/phd052805.png}\\ \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} {~} \begin{Huge} BACKUP \end{Huge} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55 \begin{frame}\frametitle{$B \to \tau$} {~}\\ We really suck in selecting this channel. \includegraphics[scale=0.4]{tmva/ROC_31113002.png} \textref {M.Chrz\k{a}szcz 2013} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{$B \to D_s \to \tau$} {~}\\ On the biggest contributing channel we are quite optimal. \includegraphics[scale=0.4]{tmva/ROC_23513000.png} \textref {M.Chrz\k{a}szcz 2013} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{$D_s \to \tau$} {~}\\ On the biggest contributing channel we are quite optimal. \includegraphics[scale=0.4]{tmva/ROC_23513001.png} \textref {M.Chrz\k{a}szcz 2013} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{$B \to D^+ \to \tau$} {~}\\ On the biggest contributing channel we are quite optimal. \includegraphics[scale=0.4]{tmva/21513000_roc2.png} \textref {M.Chrz\k{a}szcz 2013} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{$D^+ \to \tau$} {~}\\ On the biggest contributing channel we are quite optimal. \includegraphics[scale=0.4]{tmva/ROC_21513001.png} \textref {M.Chrz\k{a}szcz 2013} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{Comparison on mix sample} {~}\\ On the biggest contributing channel we are quite optimal. \includegraphics[scale=0.4]{tmva/mix.png} \textref {M.Chrz\k{a}szcz 2013} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{Conclusions on TMVA} {~}\\ \begin{itemize} \item Each of the signal components is enormously larger than MVA trained on mix. \item Method looks very promising if we can find a nice blending method(work for next week). \item Mayby discusion on TMVA/MatrixNet/Neurobayes is next to leading order effect compared to this method? \end{itemize} \textref {M.Chrz\k{a}szcz 2013} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{Comparison on mix sample} {~}\\ \begin{columns} \column{2.5in} \includegraphics[scale=0.27]{RD_meeting/rejBvsS_oryginal.png} \column{2.5in} \includegraphics[scale=0.27]{RD_meeting/rejBvsS_blend.png} \end{columns} \textref {M.Chrz\k{a}szcz 2013} \end{frame} \end{document}