Newer
Older
Presentations / SUSY_2015 / LongLive / mchrzasz.tex
@mchrzasz mchrzasz on 15 Aug 2015 19 KB wrote second presentation for SUSY
\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}

\usepackage[english]{babel}
\usepackage{polski}


\usetheme[
	bullet=circle,		% Other option: square
	bigpagenumber,		% circled page number on lower right
	topline=true,			% colored bar at the top of the frame
	shadow=false,			% Shading for beamer blocks
	watermark=BG_lower,	% png file for the watermark
	]{Flip}

%\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}


\usepackage[lf]{berenis}
\usepackage[LY1]{fontenc}
\usepackage[utf8]{inputenc}

\usepackage{emerald}
\usefonttheme{professionalfonts}
\usepackage[no-math]{fontspec}
\defaultfontfeatures{Mapping=tex-text}	% This seems to be important for mapping glyphs properly

\setmainfont{Gillius ADF}			% Beamer ignores "main font" in favor of sans font
\setsansfont{Gillius ADF}			% This is the font that beamer will use by default
% \setmainfont{Gill Sans Light}		% Prettier, but harder to read

\setbeamerfont{title}{family=\fontspec{Gillius ADF}}

\input t1augie.fd

%\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
%\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
% \newcommand{\handwriting}{}	% If you prefer no special handwriting font or don't have augie

%% Gill Sans doesn't look very nice when boldfaced
%% This is a hack to use Helvetica instead
%% Usage: \textbf{\forbold some stuff}
%\newcommand{\forbold}{\fontspec{Arial}}

\usepackage{graphicx}
\usepackage[export]{adjustbox}

\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{colortbl}
\usepackage{mathrsfs} 			% For Weinberg-esque letters
\usepackage{cancel}				% For "SUSY-breaking" symbol
\usepackage{slashed}            % for slashed characters in math mode
\usepackage{bbm}                % for \mathbbm{1} (unit matrix)
\usepackage{amsthm}				% For theorem environment
\usepackage{multirow}			% For multi row cells in table
\usepackage{arydshln} 			% For dashed lines in arrays and tables
\usepackage{siunitx}
\usepackage{xhfill}
\usepackage{grffile}
\usepackage{textpos}
\usepackage{subfigure}
\usepackage{tikz}

%\usepackage{hepparticles}
\usepackage[italic]{hepparticles}

\usepackage{hepnicenames}

% Drawing a line
\tikzstyle{lw} = [line width=20pt]
\newcommand{\topline}{%
  \tikz[remember picture,overlay] {%
    \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
             -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}



% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\usepackage{tikzfeynman}		% For Feynman diagrams
\usetikzlibrary{arrows,shapes}
\usetikzlibrary{trees}
\usetikzlibrary{matrix,arrows} 				% For commutative diagram
% http://www.felixl.de/commu.pdf
\usetikzlibrary{positioning}				% For "above of=" commands
\usetikzlibrary{calc,through}				% For coordinates
\usetikzlibrary{decorations.pathreplacing}  % For curly braces
% http://www.math.ucla.edu/~getreuer/tikz.html
\usepackage{pgffor}							% For repeating patterns

\usetikzlibrary{decorations.pathmorphing}	% For Feynman Diagrams
\usetikzlibrary{decorations.markings}
\tikzset{
	% >=stealth', %%  Uncomment for more conventional arrows
	vector/.style={decorate, decoration={snake}, draw},
	provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
	antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
	fermion/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
	fermionbar/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
	fermionnoarrow/.style={draw=gray},
	gluon/.style={decorate, draw=black,
		decoration={coil,amplitude=4pt, segment length=5pt}},
	scalar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	scalarbar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
	scalarnoarrow/.style={dashed,draw=black},
	electron/.style={draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
}

% TIKZ - for block diagrams,
% from http://www.texample.net/tikz/examples/control-system-principles/
% \usetikzlibrary{shapes,arrows}
\tikzstyle{block} = [draw, rectangle,
minimum height=3em, minimum width=6em]




\usetikzlibrary{backgrounds}
\usetikzlibrary{mindmap,trees}	% For mind map
\newcommand{\degree}{\ensuremath{^\circ}}
\newcommand{\E}{\mathrm{E}}
\newcommand{\Var}{\mathrm{Var}}
\newcommand{\Cov}{\mathrm{Cov}}
\newcommand\Ts{\rule{0pt}{2.6ex}}       % Top strut
\newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut

\graphicspath{{images/}}	% Put all images in this directory. Avoids clutter.

% SOME COMMANDS THAT I FIND HANDY
% \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
\newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
\newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
\newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
\newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
\newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
%% "\alert" is already a beamer pre-defined
\newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%
\newcommand{\thetal}{\theta_l}
\newcommand{\thetak}{\theta_k}

\def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}

\usepackage{gmp}
\usepackage[final]{feynmp-auto}

\usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
\bibliography{bib}
\setbeamertemplate{bibliography item}[text]

\makeatletter\let\frametextheight\beamer@frametextheight\makeatother

% suppress frame numbering for backup slides
% you always need the appendix for this!
\newcommand{\backupbegin}{
	\newcounter{framenumberappendix}
	\setcounter{framenumberappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
	\addtocounter{framenumberappendix}{-\value{framenumber}}
	\addtocounter{framenumber}{\value{framenumberappendix}}
}


\definecolor{links}{HTML}{2A1B81}
%\hypersetup{colorlinks,linkcolor=,urlcolor=links}

% For shapo's formulas:
\def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\newcommand{\lsim}{\mathop{\lsi}}
\newcommand{\gsim}{\mathop{\gsi}}
\newcommand{\wt}{\widetilde}
%\newcommand{\ol}{\overline}
\newcommand{\Tr}{\rm{Tr}}
\newcommand{\tr}{\rm{tr}}
\newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
\newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
\newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
\newcommand{\eV}{\rm{eV}}
\newcommand{\keV}{\rm{keV}}
\newcommand{\GeV}{\rm{GeV}}
\newcommand{\MeV}{\rm{MeV}}
\newcommand{\TeV}{\rm{TeV}}
\newcommand{\im}{\rm{Im}}
\newcommand{\disp}{\displaystyle}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\ba{\begin{eqnarray}}
\def\ea{\end{eqnarray}}
\def\d{\partial}
\def\l{\left(}
\def\r{\right)}
\def\la{\langle}
\def\ra{\rangle}
\def\e{{\rm e}}
\def\Br{{\rm Br}}



\author{ {\fontspec{Trebuchet MS}Marcin Chrz\k{a}szcz} (Universit\"{a}t Z\"{u}rich)}
\institute{UZH}
\title[Searches for long-lived particles at LHCb]{Searches for long-lived particles at LHCb}
\date{25 September 2014}


\begin{document}
\tikzstyle{every picture}+=[remember picture]

{
\setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
\begin{frame}[c]%{\phantom{title page}}
\begin{center}
\begin{center}
	\begin{columns}
		\begin{column}{0.75\textwidth}
			\flushright\fontspec{Trebuchet MS}\bfseries \LARGE {Searches for long-lived particles at LHCb}
		\end{column}
                \begin{column}{0.02\textwidth}
                  {~}
                  \end{column}
                \begin{column}{0.23\textwidth}
                 % \hspace*{-1.cm}
                  \vspace*{-3mm}
                  \includegraphics[width=0.6\textwidth]{lhcb-logo}
                  \end{column}

	\end{columns}
\end{center}
	\quad
	\vspace{3em}
\begin{columns}
\begin{column}{0.44\textwidth}
\flushright \vspace{-1.8em} {\fontspec{Trebuchet MS} \Large Marcin Chrząszcz\\\vspace{-0.1em}\small \href{mailto:mchrzasz@cern.ch}{mchrzasz@cern.ch}}

\end{column}
\begin{column}{0.53\textwidth}
\includegraphics[height=1.3cm]{uzh-transp}
\end{column}
\end{columns}

\vspace{1em}
%		\footnotesize\textcolor{gray}{With N. Serra, B. Storaci\\Thanks to the theory support from M. Shaposhnikov, D. Gorbunov}\normalsize\\
\vspace{0.5em}
 \textcolor{normal text.fg!50!Comment}{SUSY 2015, Tahoe City, 23-29 August, 2015}

	
\end{center}
\end{frame}
}

\iffalse
\section[Outline]{}
\begin{frame}
%\tableofcontents
%FIXME!
\begin{enumerate}
\item Rare $\PB$ decays:
\begin{itemize}
\item $\PB^+ \to \PK^+ \Ppi^- \Ppi^+ \Pphoton$
\item $\PBs/\PBzero \to \mu^- \mu^+$.
\item $\PBzero \to \PKstar \Pmuon \APmuon$.
\end{itemize}

\end{enumerate}

\end{frame}
\fi

%-------------------------------------------------------------------
%                          Introduction
%-------------------------------------------------------------------
%
% Set the background for the rest of the slides.
% Insert infoline
%\setbeamertemplate{background}
% {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}}
%\setbeamertemplate{footline}[bunsentheme]



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%\setbeamertemplate{background}
% {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}}
%\setbeamertemplate{footline}[bunsentheme]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\section{LHCb detector}

%\begin{frame}\frametitle{LHCb detector}
%\begin{columns}
%\column{3.in}
%\begin{center}
%\includegraphics[width=0.98\textwidth]{det.jpg}
%\end{center}

%\column{2.0in}
%\begin{footnotesize}


 %     LHCb is a forward spectrometer:
 %       	\begin{itemize}
 %       	\item Excellent vertex resolution.
 %       	\item Efficient trigger.
 %       	\item High acceptance for $\Ptau$ and $\PB$.
 %       	\item Great Particle ID
 %       	\end{itemize}



%\end{footnotesize}
%\end{columns}

%\end{frame}

\section{Introduction}

\begin{frame}\frametitle{Why long living particles?}
\begin{columns}
\column{3in}
\begin{itemize}
\item We all know here that the SM is incomplete.
\item Unfortunately we do no know what is the scale of NP.
\item NP still can come from the Higgs sector $\Rightarrow$ not all properties are yet constrained.
\end{itemize}

\column{2in}
\includegraphics[width=0.9\textwidth]{susy/NP_couplings.png}


\end{columns}
\begin{itemize}
\item There is a long list of theoretical models that predict the existence
of new particles that couple to the SM sector by mixing with the
Higgs.
\item Inflaton, axion-like, dark matter mediator models also predict the
new boson to be light.
\item SUSY models also can have create stable long living particles like $\Psquark$, $\Pslepton$.
\end{itemize}


\end{frame}

\begin{frame}
\only<1>{\frametitle{LHCb detector - tracking}
\begin{columns}
\column{3in}
\includegraphics[width=0.9\textwidth]{susy/1050px-Lhcbview.jpg}

\column{2in}
\includegraphics[width=0.95\textwidth]{susy/sketch.png}
\end{columns}
\begin{itemize}
\item Excellent Impact Parameter (IP) resolution ($20~\rm \mu m$).\\
$\Rightarrow$ Identify secondary vertices from heavy flavour decays
\item Proper time resolution $\sim~40~\rm fs$.\\
$\Rightarrow$ Good separation of primary and secondary vertices.
\item Excellent momentum ($\delta p/p \sim 0.4 − 0.6\%$) and inv. mass resolution.\\
$\Rightarrow$ Low combinatorial background.

\end{itemize}


}

\only<2>{\frametitle{LHCb detector - particle identification}
\begin{columns}
\column{3in}
\includegraphics[width=0.9\textwidth]{susy/1050px-Lhcbview.jpg}

\column{2in}
\includegraphics[width=0.95\textwidth]{susy/cher.png}
\end{columns}
\begin{itemize}
\item Excellent Muon identification $\epsilon_{\mu \to \mu} \sim 97\%$, $\epsilon_{\pi \to \mu} \sim 1-3\%$
\item Good $\PK-\Ppi$ separation via RICH detectors, $\epsilon_{\PK \to \PK} \sim 95\%$,  $\epsilon_{\Ppi \to \PK} \sim 5\%$.\\
$\Rightarrow$ Reject peaking backgrounds.
\item High trigger efficiencies, low momentum thresholds.
Muons: $p_T > 1.76 \GeV$ at L0, $p_T > 1.0 \GeV$ at HLT1,\\
$B \to \PJpsi X $: Trigger $\sim 90\%$.

\end{itemize}


}


\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Data taken by LHCb}
\includegraphics[width=0.9\textwidth]{susy/data.png}

\begin{itemize}
\item In 2011 and 2012 LHCb has gather $3~{\rm{fb^{-1}}}mak$ of $pp$ collisions.
\end{itemize}

\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{$\PB \to \PKstar \chi(\mu\mu)$ search}
\begin{itemize}
\item Search for displaced di-muon vertex coming form $\PB$ meson.
\end{itemize}
\begin{columns}
\column{2.5in}
\begin{Large}
$\PBzero \to \PKstar \chi( \Pmuon \APmuon)$
\end{Large}
\column{2.5in}
\includegraphics[width=0.9\textwidth]{susy/inflaton.png}
\end{columns}
\begin{itemize}
\item If $\chi$ mixes with the Higgs and it is light:
\begin{itemize}
\item $\Gamma(\PK \to \Ppi \chi) \propto m_t^4 \lambda^5$
\item $\Gamma(\PD \to \Ppi \chi) \propto m_b^4 \lambda^5$
\item $\Gamma(\PD \to \PK \chi) \propto m_t^4 \lambda^2$
\end{itemize}
\item In additional $\PKstar \to \PK \Ppi$ helps in vertex reconstruction.
\item High $\mathcal{B}(\chi \to \Pmuon \APmuon)$. 
\end{itemize}

\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{$\PB \to \PKstar \chi(\mu\mu)$ motivation}
Possible models:
\begin{enumerate}
\item \textbf{Inflaton:} \href{http://arxiv.org/abs/1403.4638}{{\color{blue}{Phys.Lett. B736 (2014) 494}}}
\begin{itemize}
\item $\tau_{\chi} = 10^{-8} - 10^{-10}~s$
\item $m_{\chi} ~\mathcal{O}(1~\GeV)$
\item $\mathcal{B}(\PB \to \PK \chi)~\sim 10^{-6}$
\item effective couplings to SM particles:
\begin{itemize}
\item $g_Y\frac{m_f}{v_{EW}},~g_Y=\sin \theta$
\end{itemize}
\end{itemize}
\item \textbf{Axion portal:} \href{http://arxiv.org/abs/0911.5355}{{\color{blue}{Phys.Rev.D81:034001,2010}}}
\begin{itemize}
\item Prompt decay.
\item Large allowed masses.
\item Axion decay constant: $f_{\chi} \sim 1-3~\TeV$
\begin{itemize}
\item Coupling $\propto \frac{m_f}{f_{\chi}}$.
\end{itemize}
\end{itemize}
\end{enumerate}

All those particles have width much smaller than resolution of LHCb detector.


\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{Signal properties}
$\Rrightarrow$ Depending on the coupling of the hidden sector we can identify two lifetime regimes:\\{~}

\begin{columns}
\column{0.1in}
{~}
\column{2.5in}
\textbf{Long lifetime} ($>0.2~{\rm{ps}}$)
\begin{itemize}
\item Inflaton \href{http://arxiv.org/abs/0912.0390v2}{{\color{blue}{JHEP 1005:010}}}
\item Displaced vertex.
\item Almost background free.
\item Lower reconstruction efficiency.
\end{itemize}

\column{2.5in}
\textbf{Long lifetime} ($\leq0.2~{\rm{ps}}$)
\begin{itemize}
\item Dark matter mediator \href{http://arxiv.org/abs/1310.6752}{{\color{blue}{	Phys. Lett. B727 }}}
\item Axion \href{http://arxiv.org/abs/0911.5355}{{\color{blue}{Phys.Rev.D81}}}
\item Prompt decay.
\item Contaminated via Sm decay.
\end{itemize}

\end{columns}
\begin{columns}
\column{0.1in}
{~}

\column{2.5in}
\includegraphics[width=0.95\textwidth]{susy/displaced.png}

\column{2.5in}
\includegraphics[width=0.95\textwidth]{susy/prompt.png}

\end{columns}

\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{Selection}
\begin{itemize}
\item Trigger on muons.
\item Multivariate selection: ${\rm{\mu BDT}}$ \href{JINST 8(2013)}{http://arxiv.org/abs/1305.7248}
\begin{itemize}
\item ${\rm{\mu BDT}}$ ensures flat efficiency in lifetime of $\chi$.
\end{itemize}
\item Optimized on Punzi figure-of-merit:
\begin{align*}
P_a = \dfrac{S}{\frac{5}{2}+\sqrt{B}},
\end{align*}
with $S$ and $B$ are signal and background yields.
\item Factorize lifetime into two components: $\mathcal{L}=\mathcal{L}^{{\rm{prompt}}}  \bigotimes \mathcal{L}^{{\rm{displaced}}}$
\begin{itemize}
\item Prompt: $\tau < 3\sigma_{\tau}$\\
$\mapsto$ SM background of $\PBzero \to \PKstar \Pmuon \APmuon$
\item Displeased: $\tau > 3\sigma_{\tau}$\\
$\mapsto$ Almost background free.
\end{itemize}
\end{itemize}



\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{Search strategy}
\begin{columns}

\column{0.05in}
{~}
\column{3.4in}
\begin{itemize}
\item $\PBzero$ mass constrained.
\item Di-muon mass resolution $\sigma_m  =1 -7~\MeV$.
\item Scan $m_{{\rm test}}$ in steps of $0.5~\sigma_m$.
\begin{itemize}
\item {\color{orange}{Wide resonances}} can't affect the search.
\item {\color{green}{Narrows resonances}} one we veto.
\end{itemize} 
\item Calculations performed in each $m_{test}$ window.
\item A global p-value is assigned form minimum local p-value observed.
\end{itemize}
\column{1.6in}
\includegraphics[width=0.9\textwidth]{susy/williams.png}
\end{columns}


\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{Results}

\includegraphics[width=0.95\textwidth]{susy/results.png}

$\Rrightarrow$ Grey regions correspond to vetoed regions where narrow resonances are expected.\\
$\Rrightarrow$ Largest deviation seen in $m_{\chi}=253~\MeV$.\\
$\rightarrowtail$ Not statistically significant: local p-value $=0.2$.\\

$\Rrightarrow$ LHCb-PAPER-2015-036 in preparation.

\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{Branching fraction exclusion limit}

\includegraphics[width=0.95\textwidth]{susy/limit.png}

$\Rrightarrow$ No deviations from background only hypothesis is observed.
\begin{itemize}
\item We set a $95\%$ CL upper limit as function of mass and lifetime of the new particle (in the LHCb accessible range).
\item Lower lifetimes have better limit due to higher reconstruction efficiency.
\end{itemize}


\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{Benchmark models}



$\Rrightarrow$ Interpretation of the results in to specific models:\\{~}\\

\includegraphics[width=1.05\textwidth]{susy/benchmarks.png}
\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{Long living charged particles}

$\Rrightarrow$ Long living particles can also be produced in the PV. \\
\begin{itemize}
\item This kind of particles would be produce in relatively low velocities and could be identified by their time -of-flight, $dE/dx$ or in Cherenkov detectors.
\end{itemize}
$\Rrightarrow$ LHCb performed a search for long living $\PStau$ particles.\\
$\Rrightarrow$ $\PStau^+ \PStau^-$ produced by Drell-Yan process. \\



\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{$\PStau$ analysis strategy}
$\Rrightarrow$ Search performed $\PStau$ in mass range of $124-309~\GeV$.\\
$\Rrightarrow$ After the loose preselection to reduce normal Drell-Yan production.

\includegraphics[width=1.05\textwidth]{susy/stau.png}

$\Rrightarrow$ After the preselection an Neural Network is trained based on Cherenkov detectors to calculate to further suppress the remaining background.

\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{$\PStau$ results}
\begin{itemize}
\item No significant signal yield has been observed.
\item Upper limit has been set.
\end{itemize}
\includegraphics[width=0.8\textwidth]{susy/sps7.png}
\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{Conclusion}
\begin{itemize}
\item A search for a dark boson in the decay channel\\ $\PBzero \to \PKstar \Pmuon \APmuon$ has been presented.
\begin{itemize}
\item No deviations form SM observed.

\end{itemize}
\item Results are the most constraining exclusion limit on the process.
\item LHCb is suited for search for long living particles.
\item Stay tuned, more searches like this are on they way.

\end{itemize}



\end{frame}


\backupbegin

\begin{frame}\frametitle{Backup}
\topline

\end{frame}

\backupend

\end{document}