Newer
Older
Presentations / NuFact_2016 / LongLive / mchrzasz.tex
@mchrzasz mchrzasz on 24 Aug 2016 37 KB updated everything
\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}

\usepackage[english]{babel}
\usepackage{polski}


\usetheme[
	bullet=circle,		% Other option: square
	bigpagenumber,		% circled page number on lower right
	topline=true,			% colored bar at the top of the frame
	shadow=false,			% Shading for beamer blocks
	watermark=BG_lower,	% png file for the watermark
	]{Flip}

%\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}


\usepackage[lf]{berenis}
\usepackage[LY1]{fontenc}
\usepackage[utf8]{inputenc}

\usepackage{emerald}
\usefonttheme{professionalfonts}
\usepackage[no-math]{fontspec}
\defaultfontfeatures{Mapping=tex-text}	% This seems to be important for mapping glyphs properly

\setmainfont{Gillius ADF}			% Beamer ignores "main font" in favor of sans font
\setsansfont{Gillius ADF}			% This is the font that beamer will use by default
% \setmainfont{Gill Sans Light}		% Prettier, but harder to read

\setbeamerfont{title}{family=\fontspec{Gillius ADF}}

\input t1augie.fd

%\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
%\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
% \newcommand{\handwriting}{}	% If you prefer no special handwriting font or don't have augie

%% Gill Sans doesn't look very nice when boldfaced
%% This is a hack to use Helvetica instead
%% Usage: \textbf{\forbold some stuff}
%\newcommand{\forbold}{\fontspec{Arial}}

\usepackage{graphicx}
\usepackage[export]{adjustbox}
\usepackage[absolute,overlay]{textpos}

\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{colortbl}
\usepackage{mathrsfs} 			% For Weinberg-esque letters
\usepackage{cancel}				% For "SUSY-breaking" symbol
\usepackage{slashed}            % for slashed characters in math mode
\usepackage{bbm}                % for \mathbbm{1} (unit matrix)
\usepackage{amsthm}				% For theorem environment
\usepackage{multirow}			% For multi row cells in table
\usepackage{arydshln} 			% For dashed lines in arrays and tables
\usepackage{siunitx}
\usepackage{xhfill}
\usepackage{grffile}
\usepackage{textpos}
\usepackage{subfigure}
\usepackage{tikz}

%\usepackage{hepparticles}
\usepackage[italic]{hepparticles}

\usepackage{hepnicenames}

% Drawing a line
\tikzstyle{lw} = [line width=20pt]
\newcommand{\topline}{%
  \tikz[remember picture,overlay] {%
    \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
             -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}



% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\usepackage{tikzfeynman}		% For Feynman diagrams
\usetikzlibrary{arrows,shapes}
\usetikzlibrary{trees}
\usetikzlibrary{matrix,arrows} 				% For commutative diagram
% http://www.felixl.de/commu.pdf
\usetikzlibrary{positioning}				% For "above of=" commands
\usetikzlibrary{calc,through}				% For coordinates
\usetikzlibrary{decorations.pathreplacing}  % For curly braces
% http://www.math.ucla.edu/~getreuer/tikz.html
\usepackage{pgffor}							% For repeating patterns

\usetikzlibrary{decorations.pathmorphing}	% For Feynman Diagrams
\usetikzlibrary{decorations.markings}
\tikzset{
	% >=stealth', %%  Uncomment for more conventional arrows
	vector/.style={decorate, decoration={snake}, draw},
	provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
	antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
	fermion/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
	fermionbar/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
	fermionnoarrow/.style={draw=gray},
	gluon/.style={decorate, draw=black,
		decoration={coil,amplitude=4pt, segment length=5pt}},
	scalar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	scalarbar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
	scalarnoarrow/.style={dashed,draw=black},
	electron/.style={draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
}

% TIKZ - for block diagrams,
% from http://www.texample.net/tikz/examples/control-system-principles/
% \usetikzlibrary{shapes,arrows}
\tikzstyle{block} = [draw, rectangle,
minimum height=3em, minimum width=6em]




\usetikzlibrary{backgrounds}
\usetikzlibrary{mindmap,trees}	% For mind map
\newcommand{\degree}{\ensuremath{^\circ}}
\newcommand{\E}{\mathrm{E}}
\newcommand{\Var}{\mathrm{Var}}
\newcommand{\Cov}{\mathrm{Cov}}
\newcommand\Ts{\rule{0pt}{2.6ex}}       % Top strut
\newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut

\graphicspath{{images/}}	% Put all images in this directory. Avoids clutter.

% SOME COMMANDS THAT I FIND HANDY
% \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
\newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
\newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
\newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
\newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
\newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
%% "\alert" is already a beamer pre-defined
\newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%

\def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}

\usepackage{gmp}
\usepackage[final]{feynmp-auto}

\usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
\bibliography{bib}
\setbeamertemplate{bibliography item}[text]

\makeatletter\let\frametextheight\beamer@frametextheight\makeatother

% suppress frame numbering for backup slides
% you always need the appendix for this!
\newcommand{\backupbegin}{
	\newcounter{framenumberappendix}
	\setcounter{framenumberappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
	\addtocounter{framenumberappendix}{-\value{framenumber}}
	\addtocounter{framenumber}{\value{framenumberappendix}}
}


\definecolor{links}{HTML}{2A1B81}
%\hypersetup{colorlinks,linkcolor=,urlcolor=links}

% For shapo's formulas:
\def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\newcommand{\lsim}{\mathop{\lsi}}
\newcommand{\gsim}{\mathop{\gsi}}
\newcommand{\wt}{\widetilde}
%\newcommand{\ol}{\overline}
\newcommand{\Tr}{\rm{Tr}}
\newcommand{\tr}{\rm{tr}}
\newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
\newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
\newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
\newcommand{\eV}{\rm{eV}}
\newcommand{\keV}{\rm{keV}}
\newcommand{\GeV}{\rm{GeV}}
\newcommand{\MeV}{\rm{MeV}}
\newcommand{\im}{\rm{Im}}
\newcommand{\re}{{\rm Re}}
\newcommand{\invfb}{\rm{fb^{-1}}}
\newcommand{\fixme}{\rm{{\color{red}{FIXME!}}}}
\newcommand{\thetal}{\theta_l}
\newcommand{\thetak}{\theta_k}
\newcommand{\nn}{\nonumber}
\newcommand{\eq}[1]{\begin{equation} #1 \end{equation}}
%\newcommand{\eqn}[1]{\begin{displaymath} #1 \end{displaymath}}
\newcommand{\eqa}[1]{\begin{eqnarray} #1 \end{eqnarray}}
\newcommand{\apeL}{{A_\perp^L}}
\newcommand{\apeR}{{A_\perp^R}}
\newcommand{\apeLR}{{A_\perp^{L,R}}}
\newcommand{\apaL}{{A_\|^L}}
\newcommand{\apaR}{{A_\|^R}}
\newcommand{\apaLR}{{A_\|^{L,R}}}
\newcommand{\azeL}{{A_0^L}}
\newcommand{\azeR}{{A_0^R}}
\newcommand{\azeLR}{{A_0^{L,R}}}
\newcommand{\Real}{\ensuremath{\mathcal{R}e}\xspace}
\newcommand{\Imag}{\ensuremath{\mathcal{I}m}\xspace}

\renewcommand{\C}[1]{{\cal C}_{#1}}
\newcommand{\Ceff}[1]{{\cal C}^{\rm eff}_{#1}}
\newcommand{\Cpeff}[1]{{\cal C}^{\rm eff\prime}_{#1}}
\newcommand{\Cp}[1]{{\cal C}^{\prime}_{#1}}
\def\FL       {\ensuremath{F_{\mathrm{L}}}\xspace}
\def\ATDPH    {\ensuremath{A_{\mathrm{T,PR}}^{(2)}}\xspace}
\def\ATImPH     {\ensuremath{A_{\mathrm{T,PR}}^{\mathrm{Im}}}\xspace}
\def\ATRePH     {\ensuremath{A_{\mathrm{T,PR}}^{\mathrm{Re}}}\xspace}
\def\FLPH      {\ensuremath{F_{\mathrm{L,PR}}}\xspace}
\def\ATDKG    {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{(2)}}\xspace}
\def\ATImKG     {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{\mathrm{Im}}}\xspace}
\def\ATReKG     {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{\mathrm{Re}}}\xspace}
\def\FLKG       {\ensuremath{F_{\mathrm{L,\Kstarz \gamma}}}\xspace}
\def\ATD     {\ensuremath{A_{\mathrm{T}}^{(2)}}\xspace}
\def\ATIm     {\ensuremath{A_{\mathrm{T}}^{\mathrm{Im}}}\xspace}
\def\ATRe     {\ensuremath{A_{\mathrm{T}}^{\mathrm{Re}}}\xspace}

\def\cgreen{\color{green}}
\definecolor{green}{rgb}{0.2,0.6,0.2}


\newcommand{\disp}{\displaystyle}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\ba{\begin{eqnarray}}
\def\ea{\end{eqnarray}}
\def\d{\partial}
\def\l{\left(}
\def\r{\right)}
\def\la{\langle}
\def\ra{\rangle}
\def\e{{\rm e}}
\def\Br{{\rm Br}}

\def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace}

\newcommand\textref[1]{%
  \begin{textblock*}{\paperwidth}(0pt,0.025\textheight)
    \raggedleft \small{{\color{RoyalBlue} \emph{#1}}}\hspace{1.5em}
  \end{textblock*}}

\newcommand\textahref[2]{%
  \begin{textblock*}{\paperwidth}(0pt,0.025\textheight)
  \raggedleft \small{\emph{\href{#1}{#2}  }}\hspace{1.5em}
  \end{textblock*}}


\author{ {\fontspec{Trebuchet MS}Marcin Chrz\k{a}szcz} (Universit\"{a}t Z\"{u}rich)}
\institute{UZH}
\title[Search for massive neutrinos at LHCb and discovery potential of the FCC]{Search for massive neutrinos at LHCb and discovery potential of the FCC}
\date{21-27 August 2016}


\begin{document}
\tikzstyle{every picture}+=[remember picture]

{
\setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
\begin{frame}[c]%{\phantom{title page}}
\begin{center}
\begin{center}
	\begin{columns}
		\begin{column}{0.75\textwidth}
			\flushright\fontspec{Trebuchet MS}\bfseries \LARGE {Search for massive neutrinos at LHCb and discovery potential of the FCC}
		\end{column}
                \begin{column}{0.02\textwidth}
                  {~}
                  \end{column}
                \begin{column}{0.23\textwidth}
                 % \hspace*{-1.cm}
                  \vspace*{-3mm}
                  \includegraphics[width=0.6\textwidth]{lhcb-logo}\\
                  \includegraphics[width=0.7\textwidth]{fcclogo}
                  
                  \end{column}

	\end{columns}
\end{center}
	\quad
	\vspace{3em}
\begin{columns}
\begin{column}{0.44\textwidth}
\flushright \vspace{-1.8em} {\fontspec{Trebuchet MS} \Large Marcin ChrzÄ…szcz\\\vspace{-0.1em}\small \href{mailto:mchrzasz@cern.ch}{mchrzasz@cern.ch}}

\end{column}
\begin{column}{0.53\textwidth}
\includegraphics[height=1.3cm]{uzh-transp}
\end{column}
\end{columns}

\vspace{1em}
%		\footnotesize\textcolor{gray}{With N. Serra, B. Storaci\\Thanks to the theory support from M. Shaposhnikov, D. Gorbunov}\normalsize\\
\vspace{0.5em}
 \textcolor{normal text.fg!50!Comment}{NuFact 2016, Quy Nhon, 21-27 August, 2016}

	
\end{center}
\end{frame}
}

\iffalse
\section[Outline]{}
\begin{frame}
%\tableofcontents
%FIXME!
\begin{enumerate}
\item Rare $\PB$ decays:
\begin{itemize}
\item $\PB^+ \to \PK^+ \Ppi^- \Ppi^+ \Pphoton$
\item $\PBs/\PBzero \to \mu^- \mu^+$.
\item $\PBzero \to \PKstar \Pmuon \APmuon$.
\end{itemize}

\end{enumerate}

\end{frame}
\fi

%-------------------------------------------------------------------
%                          Introduction
%-------------------------------------------------------------------
%
% Set the background for the rest of the slides.
% Insert infoline
%\setbeamertemplate{background}
% {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}}
%\setbeamertemplate{footline}[bunsentheme]



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%\setbeamertemplate{background}
% {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}}
%\setbeamertemplate{footline}[bunsentheme]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\section{LHCb detector}

%\begin{frame}\frametitle{LHCb detector}
%\begin{columns}
%\column{3.in}
%\begin{center}
%\includegraphics[width=0.98\textwidth]{det.jpg}
%\end{center}

%\column{2.0in}
%\begin{footnotesize}


 %     LHCb is a forward spectrometer:
 %       	\begin{itemize}
 %       	\item Excellent vertex resolution.
 %       	\item Efficient trigger.
 %       	\item High acceptance for $\Ptau$ and $\PB$.
 %       	\item Great Particle ID
 %       	\end{itemize}



%\end{footnotesize}
%\end{columns}

%\end{frame}

%\section{Introduction}
\iffalse
\begin{frame}\frametitle{Why long-lived particles?}
\begin{columns}
\column{3in}
\begin{itemize}
\item We all know here that the SM is incomplete.
\item Unfortunately we do no know what is the scale of NP.
\item NP can occur in the neutrino sector.
\item NP still can come from the Higgs sector $\Rightarrow$ not all properties are yet constrained.
\item There is a long list of theoretical models that predict the existence
of new particles that couple to the SM sector by mixing with the
Higgs.
\end{itemize}

\column{2in}
\includegraphics[width=0.9\textwidth]{susy/NP_couplings.png}


\end{columns}
\begin{itemize}

\item Inflaton, axion-like, dark matter mediator models also predict the
new boson to be light.
\item SUSY models also can have stable long living particles like $\Psquark$, $\Pslepton$.
\end{itemize}


\end{frame}

\fi

\begin{frame}\frametitle{Outline}

\begin{Large}
\ARROW LHCb detector and operations.\\
\ARROW Majorana neutrino search.\\
\ARROW Inflaton search in $\PB \to \PKstar \chi (\mu \mu)$.\\
\ARROW Hidden valley searches.
\end{Large}


\end{frame}


\begin{frame}
\only<1>{\frametitle{LHCb detector - tracking} 

\begin{columns}
\column{3in}
\includegraphics[width=0.9\textwidth]{images/1050px-Lhcbview.jpg}

\column{2in}
\includegraphics[width=0.95\textwidth]{images/sketch.png}
\end{columns}
\begin{itemize}
\item Excellent Impact Parameter (IP) resolution ($20~\rm \mu m$).\\
$\Rightarrow$ Identify secondary vertices from heavy flavour decays
\item Proper time resolution $\sim~40~\rm fs$.\\
$\Rightarrow$ Good separation of primary and secondary vertices.
\item Excellent momentum ($\delta p/p \sim 0.5 - 1.0\%$) and inv. mass resolution.\\
$\Rightarrow$ Low combinatorial background.

\end{itemize}

}

\only<2>{\frametitle{LHCb detector - PID}

\begin{columns}
\column{3in}
\includegraphics[width=0.9\textwidth]{images/1050px-Lhcbview.jpg}

\column{2in}
\includegraphics[width=0.95\textwidth]{images/cher.png}
\end{columns}
\begin{itemize}
\item Excellent Muon identification $\epsilon_{\mu \to \mu} \sim 97\%$, $\epsilon_{\pi \to \mu} \sim 1-3\%$
\item Good $\PK-\Ppi$ separation via RICH detectors, $\epsilon_{\PK \to \PK} \sim 95\%$,  $\epsilon_{\Ppi \to \PK} \sim 5\%$.\\
$\Rightarrow$ Reject peaking backgrounds.
\item High trigger efficiencies, low momentum thresholds.
Muons: $p_T > 1.76 \GeV$ at L0, $p_T > 1.0 \GeV$ at HLT1,\\
$B \to \PJpsi X $: Trigger $\sim 90\%$.

\end{itemize}


}

\textref{Int. J. Mod. Phys. A30 (2015) 1530022}
\vspace*{2.1cm}
\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Data taken by LHCb}

\includegraphics[width=0.6\textwidth]{susy/data.png}
\includegraphics[width=0.4\textwidth]{images/IntegratedLumiLHCbTime_Outreach.png}
\begin{itemize}
\item In 2011 and 2012 LHCb has gathered $3~{\rm{fb^{-1}}}$ of $pp$ collisions.
\item Got $1~{\rm{fb^{-1}}}$ in 2016 already!
\item The cross section are now two times bigger compared to Run1.
\end{itemize}

\end{frame}



\begin{frame}%[t]
\frametitle{Majorana neutrinos in bottom decays}%$\PBminus\to h^{+}\ell^{-}\ell^{-}$}

\only<1>{
\begin{columns}\begin{column}{.5\textwidth}
on-shell neutrino

\includegraphics[width=\textwidth]{pic/B-Majorana2.pdf}
\end{column}
{\begin{column}{.45\textwidth}
virtual neutrino

\includegraphics[width=\textwidth]{pic/B-Majorana1.pdf}
\end{column}
}
\end{columns}
\begin{columns}
\begin{column}{.5\textwidth}
\begin{itemize}
\item resonant production in accessible mass range
\item rates depend on Majorana neutrino--lepton coupling $|V_{\mu 4}|$
\newline {\footnotesize{(e.g.\ \href{http://arxiv.org/abs/0901.3589}{arXiv:0901.3589)}}}
\item $m_4 = m_{\Plepton^{-},\Ppiplus}$
\item $m_{\mu} + m_{\pi} < m_4 < m_{\PB} - m_{\mu}$
\end{itemize}
\end{column}
{
\begin{column}{.5\textwidth}
\begin{exampleblock}{~}
%\begin{itemize}
Diagram without mass restriction
 Cabibbo favoured for $\PB\to\PD$ 
 Analogous to double $\beta$ decay.
%\end{itemize}
\end{exampleblock}
\end{column}
}
\end{columns}
}
 %  \textref{M.Chrz\k{a}szcz 2014}
\end{frame}




\begin{frame}[t]
\frametitle{On-shell Majorana neutrinos}
\begin{itemize}
\item $\PBminus \to \Ppiplus \Pmuon \Pmuon$ searched with full data set${~}3~\invfb $.
%\item Cut based analysis.
%\item Normalization channel $\PBplus \to \PJpsi(\mu\mu)\PKplus$.
\item Searches performed for two scenarios:
\begin{itemize}
\item Short life-time neutrinos: $\tau_4 <1ps$
\item Long life-time neutrinos: $\tau_4  \in (1,1000) ps$
\end{itemize}
\end{itemize}
\begin{columns}

\only<1>{
\includegraphics[width=\textwidth]{Figure2.png}
}

\end{columns}


\begin{columns}
\begin{column}{8.5cm}

\includegraphics[width=\textwidth]{Figure3.png}

\end{column}
\begin{column}{.5cm}
%\includegraphics[width=\textwidth]{pic/LHCb_logo.jpg}
\end{column}

\begin{column}{4cm}
\hspace{.4cm}


 {\footnotesize{\href{http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.131802}{\texttt{Phys. Rev. Lett. 112, 131802 }}}}

\end{column}
\end{columns}




% \textref{M.Chrz\k{a}szcz 2014}
\end{frame}


\begin{frame}[t]
\frametitle{On-shell Majorana neutrinos}
{~}\\
\begin{columns}
\column{2.5in}
\includegraphics[width=\textwidth]{Figure5.png}\\
\includegraphics[width=\textwidth]{Figure6.png}\\


\column{2.5in}
\begin{small}
\begin{itemize}
\item In absence of signal UL. were set.
\item $Br(\PBminus \to \Ppiplus \Pmuon \Pmuon)$ in range $10^{-9}$.
\item Limits also set for the coupling $| V_{\mu 4} |^2$ 
\end{itemize}
\begin{tiny}
{~}{~}$Br(\PBminus \to \Ppiplus \Pmuon \Pmuon) = \dfrac{G_f^4 f_B^2f_{\pi}^2}{128\pi\hbar }      \tau_B m_B^5 |V_{ub}V_{ud}|^2|V_{\mu4}|^4(1- \dfrac{m_4^2}{m_B^2})\dfrac{m_4}{\Gamma_{N_4}}$
\end{tiny}

\end{small}
\end{columns}

% \textref{M.Chrz\k{a}szcz 2014}
\end{frame}

\begin{frame}
\frametitle{Summary on Majorana neutrinos in $\textbf{B}$ decays}
\vspace{0.5cm}
\begin{columns}
\begin{column}{.65\textwidth}
\begin{footnotesize}
\begin{tabular}{lclr}
channel & limit & & \\\hline
 $\mathcal{B}(\PBminus\to\Ppi^{+}\Pelectron\Pelectron) $     &  $<2.3\times 10^{-8}$     &  @$90\,\%$ CL       &\includegraphics[height=.25cm]{babar}\footnote{BaBar,\href{http://link.aps.org/doi/10.1103/PhysRevD.85.071103}{Phys.\ Rev.\ D \textbf{85}, 071103} (2012)\label{babarB}}\\
 $\mathcal{B}(\PBminus\to\PK^{+}\Pelectron\Pelectron) $     &  $<3.0\times 10^{-8}$     &  @$90\,\%$ CL       &\includegraphics[height=.25cm]{babar}\footnotesize{$^{\text{\ref{babarB}}}$}\\
 $\mathcal{B}(\PBminus\to\PK^{*+}\Pelectron\Pelectron) $    &  $<2.8\times 10^{-6}$    & @$90\,\%$ CL   & \includegraphics[height=.25cm]{cleo}\footnote{CLEO, \href{http://link.aps.org/doi/10.1103/PhysRevD.65.111102}{Phys.\ Rev.\ D \textbf{65}, 111102} (2002)\label{cleolnv}}\\
 $\mathcal{B}(\PBminus\to\Prho^{+}\Pelectron\Pelectron) $    &  $<2.6\times 10^{-6}$    & @$90\,\%$ CL   & \includegraphics[height=.25cm]{cleo}\footnotesize{$^{\text{\ref{cleolnv}}}$}\\
 $\mathcal{B}(\PBminus\to\PD^{+}\Pelectron\Pelectron) $     &  $<2.6\times 10^{-6}$     &  @$90\,\%$ CL       & \includegraphics[height=.25cm]{belle2-logo}\footnote{Belle, \href{http://link.aps.org/doi/10.1103/PhysRevD.84.071106}{Phys.\ Rev.\ D \textbf{84}, 071106(R)}, (2011)\label{bellelnv}}\\
 $\mathcal{B}(\PBminus\to\PD^{+}\Pelectron\Pmuon) $     &  $<1.8\times 10^{-6}$     &  @$90\,\%$ CL       & \includegraphics[height=.25cm]{belle2-logo}\footnotesize{$^{\text{\ref{bellelnv}}}$}\\
%$\mathcal{B}(\PBminus\to\Ppi^{+}\Pmuon\Pmuon)$     &  $<1.3\times 10^{-8}$    &   @$95\,\%$ CL      & \includegraphics[height=.25cm]{pic/LHCb_logo.jpg}\footnote{LHCb, CERN-PH-EP-2012-006, \href{http://arxiv.org/abs/1201.5600}{\texttt{arXiv:1201.5600}} (2012)\label{xxxxx}} \\

 $\mathcal{B}(\PBminus\to\PK^{+}\Pmuon\Pmuon) $     &  $<5.4\times 10^{-7}$     &  @$95\,\%$ CL       &\includegraphics[height=.25cm]{pic/LHCb_logo.jpg}\footnote{LHCb, \href{http://link.aps.org/doi/10.1103/PhysRevLett.108.101601}{Phys.\ Rev.\ Lett.\ 108 101601} (2012)} \\
 %$\mathcal{B}(\PBminus\to\PK^{*+}\Pmuon\Pmuon) $    &  $<4.4\times 10^{-6}$    & @$90\,\%$ CL   & \includegraphics[height=.25cm]{cleo}\footnotesize{$^{\text{\ref{cleolnv}}}$}\\
 %$\mathcal{B}(\PBminus\to\Prho^{+}\Pmuon\Pmuon) $    &  $<5.0\times 10^{-6}$    & @$90\,\%$ CL   & \footnotesize{$^{\text{\ref{cleolnv}}}$}\\
 $\mathcal{B}(\PBminus\to\PD^{+}\Pmuon\Pmuon) $     &  $<6.9\times 10^{-7}$     &  @$95\,\%$ CL       & \includegraphics[height=.25cm]{pic/LHCb_logo.jpg}\footnote{LHCb,Phys. Rev. Lett. (112) 131802 (2014)\label{xxxxx}} \\
 $\mathcal{B}(\PBminus\to\PD^{*+}\Pmuon\Pmuon)$     &  $<2.4\times 10^{-6}$    &   @$95\,\%$ CL      &  \includegraphics[height=.25cm]{pic/LHCb_logo.jpg}\footnotesize{$^{\text{\ref{xxxxx}}}$}\\
 $\mathcal{B}(\PBminus\to\PDs^{+}\Pmuon\Pmuon)$     &  $<5.8\times 10^{-7}$    &   @$95\,\%$ CL      &  \includegraphics[height=.25cm]{pic/LHCb_logo.jpg}\footnotesize{$^{\text{\ref{xxxxx}}}$}\\
 $\mathcal{B}(\PBminus\to\PDzero\Ppiminus\Pmuon\Pmuon)$     &  $<1.5\times 10^{-6}$    &   @$95\,\%$ CL      &  \includegraphics[height=.25cm]{pic/LHCb_logo.jpg}\footnotesize{$^{\text{\ref{xxxxx}}}$}\\
\hline
\end{tabular}  %pic/LHCb_logo.jpg
\end{footnotesize}
\end{column}
\end{columns}


%\textref{M.Chrz\k{a}szcz 2014}
\end{frame}





%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{$\PB \to \PKstar \chi(\mu\mu)$ search}
\begin{itemize}
\item Search for displaced di-muon vertex coming form $\PB$ meson.
\end{itemize}
\begin{columns}
\column{2.5in}
\begin{Large}
$\PBzero \to \PKstar \chi( \Pmuon \APmuon)$
\end{Large}
\column{2.5in}
\includegraphics[width=0.9\textwidth]{susy/inflaton.png}
\end{columns}
\begin{itemize}
\item If $\chi$ mixes with the Higgs and it is light:
\begin{itemize}
\item $\Gamma(\PK \to \Ppi \chi) \propto m_t^4 \lambda^5$
\item $\Gamma(\PD \to \Ppi \chi) \propto m_b^4 \lambda^5$
\item $\Gamma(\PB \to \PK \chi) \propto m_t^4 \lambda^2$
\end{itemize}
\item In addition; $\PKstar \to \PK^+ \Ppi^-$ helps in vertex reconstruction.
\item High $\mathcal{B}(\chi \to \Pmuon \APmuon)$. 
\end{itemize}

\end{frame}



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
  \frametitle{$B^0 \rightarrow K^{*0} (\chi \rightarrow \mu^+ \mu^-)$: motivation}

\begin{columns}
   \begin{column}{0.59\textwidth}     
	Benchmark models: 
	\vspace*{1mm}
	
	\begin{enumerate}
	\item \textit{\underline{Inflaton}}: \href{http://arxiv.org/abs/1403.4638}{\color{blue}\footnotesize arXiv:1403.4638}
		\begin{itemize}
		\item $\tau_\chi = 10^{-8} \div 10^{-10}$ s,
		\item $m_\chi < \mathcal{O}$(1 GeV),  
		\item $\mathcal{B}(B \rightarrow K \chi) \sim 10^{-6}$
		\end{itemize}  
	\vspace*{2mm}
	
	\item \textit{\underline{Axion portal}}: \href{http://arxiv.org/abs/0911.5355}{\color{blue}\footnotesize Phys.Rev.D81(2010)034001}
		\begin{itemize}
		\item prompt decay are favourite
		\item axion decay constant: $f_\chi \sim$ 1 - 3 TeV
		\item $\mathcal{B}(\chi \rightarrow \mu \mu)$:
			\begin{itemize}
			\item is dominant for $360 < m_\chi < 800$ MeV
			\item $\sim \mathcal{O}(10^{-2})$ for 800 MeV $< m_\chi < 2m_\tau$  
			\end{itemize}	
		\end{itemize}  
	\end{enumerate}  
   \end{column}
   \pause
   \begin{column}{0.4\textwidth}
   \vspace*{-0.6mm}
   
   \begin{center}
   $\;\;$Existing experimental limit
   \vspace*{1.3mm}
   	
   \includegraphics[width=4.7cm]{images/limit_inflaton2.png}
   \vspace*{-2mm}
	
   $\qquad$\href{http://arxiv.org/abs/1412.5174}{\scriptsize [JHEP 1503 (2015) 171]}
   \end{center}   
   \end{column}
\end{columns}

\end{frame}  
%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
  \frametitle{$B^0 \rightarrow K^{*0} (\chi \rightarrow \mu^+ \mu^-)$: strategy of the search}

\vspace*{-1mm}

\begin{small}
\begin{itemize}
\item Looking for di-muon resonance: \hspace*{1cm} \begin{scriptsize} \href{http://arxiv.org/abs/1503.04767}{[JINST 10(2015)P06002]} \end{scriptsize}
	\begin{itemize}
	\item scan in step of $1/2$ $\sigma_m(\chi)$
	\end{itemize}
\end{itemize}
	
\begin{columns}
   \begin{column}{0.55\textwidth}   	
	\begin{itemize}
\item Definition of search regions:
	\begin{itemize}
	\item \textit{signal}: $\mid m_{test} - m \mid < 2 \sigma_m$
	\item \textit{background}: $3 \sigma_m < \mid m_{test} - m \mid < (2 x + 3) \sigma_m$
	\end{itemize}
	\end{itemize}
   \end{column}
     \begin{column}{0.45\textwidth}   	
   \includegraphics[width=0.95\textwidth]{pic/sss.png}
   \end{column}
\end{columns}
\begin{itemize}
\item Background evaluation assume local linearity:
\begin{itemize}
%\item Likelihood:\begin{itemize}
%	\item $\mathcal{L}(n_s, n_b, x \mid s, b, y) = \mathcal{P}(n_s, s+b) \cdot \mathcal{P}(n_b, yb) \cdot \mathcal{G}(y, x, \sigma_y) $
%	\begin{itemize}
%		\item $ \sigma_y$ accounts for linearity deviation, $\mathcal{O}(10 \%)$ is allowed
%	\end{itemize}	
	\item wide resonances are safe (small deviation from local linearity)
	\item narrow resonances must be vetoed
	\item $\mathcal{O}(10 \%)$ deviations are allowed
		\begin{itemize}
		\item $x = 5$ below the $J/\psi$ mass
		\item $x = 1$ above the $J/\psi$ mass
		\end{itemize}	
	\end{itemize} 
\end{itemize}

\vspace*{-12mm}

\begin{columns}
   \begin{column}{0.55\textwidth}     
	\begin{itemize}
	\item A global $p$-value is assigned from the minumum local $p$-value observed
	\end{itemize}
   \end{column}
   \begin{column}{0.35\textwidth}
     \includegraphics[width=4.1cm]{images/p_value.png}
   \end{column}
\end{columns}

\end{small}

\end{frame}  







%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{Selection}
\begin{itemize}
\item Trigger on muons.
\item Multivariate selection: ${\rm{\mu BDT}}$ \href{http://arxiv.org/abs/1305.7248}{JINST 8(2013)}
\begin{itemize}
\item ${\rm{\mu BDT}}$ ensures flat efficiency in lifetime of $\chi$.
\end{itemize}
\item Optimized on Punzi figure-of-merit:
\begin{align*}
P_a = \dfrac{S}{\frac{5}{2}+\sqrt{B}},
\end{align*}
with $S$ and $B$ are signal and background yields.
\item Factorize lifetime into two components: $\mathcal{L}=\mathcal{L}^{{\rm{prompt}}}  \bigotimes \mathcal{L}^{{\rm{displaced}}}$
\begin{itemize}
\item Prompt: $\tau < 3\sigma_{\tau}$\\
$\mapsto$ SM background of $\PBzero \to \PKstar \Pmuon \APmuon$
\item Displaced: $\tau > 3\sigma_{\tau}$\\
$\mapsto$ Almost background free.
\end{itemize}
\end{itemize}


\textref{Phys. Rev. Lett. 115, 161802 (2015)}

\end{frame}

\iffalse
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{Search strategy}
\begin{columns}

\column{0.05in}
{~}
\column{3.4in}
\begin{itemize}
\item $\PBzero$ mass constrained.
\item Di-muon mass resolution $\sigma_m  =1 -7~\MeV$.
\item Scan $m_{{\rm test}}$ in steps of $0.5~\sigma_m$.
\begin{itemize}
\item {\color{orange}{Wide resonances}} can't affect the search.
\item {\color{turtlegreen}{Narrows resonances}} we veto.
\end{itemize} 
\item Calculations performed in each $m_{test}$ window.
\end{itemize}
\column{1.6in}
\includegraphics[width=0.9\textwidth]{susy/williams.png}
\end{columns}

\textref{Phys. Rev. Lett. 115, 161802 (2015)}

\end{frame}
\fi
%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
  \frametitle{$B^0 \rightarrow K^{*0} (\chi \rightarrow \mu^+ \mu^-)$: results}

Grey regions correspond to narrow SM di-muon resonances and are vetoed in the analysis

\vspace*{-2mm}

\begin{center}

\end{center}
\vspace*{-8mm}

\begin{figure}[htbp]
	\centering
   \includegraphics[angle=-90,width=10cm]{images/Fig3.pdf}
\end{figure}

\vspace*{-5mm}

Largest deviation at $m_\chi = 253$ MeV, not statistically relevant:
\begin{itemize}
\item[]
	\begin{itemize}
	\item local $p$-value = 0.02
	\end{itemize}
\end{itemize}
\textref{Phys. Rev. Lett. 115, 161802 (2015)}

\end{frame}  
%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
  \frametitle{Exclusion limit}
    

\underline{No deviation from the standard model is observed}
\begin{itemize}
\item We set a 95\% CL upper limit as function of mass and lifetime of the new particle (in the LHCb accessible range)
\item Lower lifetimes have better limit due to higher reconstruction efficiency
\item The new particle is assumed to be a scalar
\end{itemize}  
  
\vspace*{-5mm}

\begin{figure}[htbp]
	\centering
   \includegraphics[angle=-90,width=10cm]{images/img/Fig4.pdf}
\end{figure}

\vspace*{-10mm}

%\begin{center}

%\end{center}
\textref{Phys. Rev. Lett. 115, 161802 (2015)}

\end{frame}  
%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
  \frametitle{The two benchmark models}
 
\vspace*{-1mm}
	  
Interpretation of the result in two specific model:
 
\vspace*{-3.5mm}

\begin{center}

\end{center}

\vspace*{-7.5mm}
 
\begin{columns}
      \begin{column}{0.45\textwidth} 
      \begin{center}      
      \underline{Inflaton model}
	  \end{center}
	  \vspace*{-3mm}
 
        \includegraphics[angle=-90,width=\columnwidth]{images/img/Fig5b.pdf}      
      \end{column}
      \begin{column}{0.45\textwidth}
	  \begin{center}	        
      \underline{Axion portal}
    	  \end{center}
	  \vspace*{-3mm}
	  
	 	\includegraphics[angle=-90,width=\columnwidth]{images/img/Fig5a.pdf}      
      \end{column}
\end{columns}
\vspace*{-1mm}

\begin{enumerate}
\item Able to exclude the large part of inflaton parameter space
\item Two exclusion limits are shown in the interpretation of the axion portal
	\begin{itemize}
	\item $\chi$ dominantly decaying into muons
	\item $\mathcal{B}(\chi\rightarrow \mu \mu) \sim \mathcal{O}(10^{-2})$ (when $\chi \rightarrow 3\pi$ becomes dominant)
	\end{itemize}
\end{enumerate}
\textref{Phys. Rev. Lett. 115, 161802 (2015)}

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{Hidden valley searches}
\begin{itemize}
\item A possible extensions of the SM are models where the new particles have a small couplings to the SM particles.
\item Such models are:
\begin{itemize}
\item Lightest SUSY
\item B/LNV
\item Gravity mediated SUSY
\item Hidden Valleys
\end{itemize}
\item LHCb have performed a search for $\pi_{\nu}$ particles that are pair produced from Higgs like SM particle.
\item They have a long lifetime and decay to pair of jets.
\end{itemize}
\textref{Eur. Phys. J. C 75 (2015) 152}

\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{Analysis strategy}
\begin{itemize}
\item Efficient trigger for long living particles.
\item Reconstruction of two jets.
\item MVA used for vertex search.
%\item Remove interactions with material.

\item Search performed in different regions of displaced vertexes ($R_{xy}$).
\begin{itemize}
\item $0.4< R_{xy}<4\rm ~mm$, removes heavy flavour and material interaction backgrounds.
\end{itemize}
\end{itemize}
\begin{columns}



\column{0.5\textwidth}
\includegraphics[angle=-90,width=1.\textwidth]{images/Fig1a.pdf}

\column{0.5\textwidth}
\includegraphics[angle=-90,width=1.\textwidth]{images/Fig1b.pdf}

\end{columns}

\textref{Eur. Phys. J. C 75 (2015) 152}

\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{Di-jet distribution}

\includegraphics[width=0.8\textwidth]{dijet.png}

\begin{itemize}
\item {\color{turtlegreen}{Signal component fit result}}, {\color{cyan}{Background component}}
\end{itemize}
\textref{Eur. Phys. J. C 75 (2015) 152}

\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{Results}
\includegraphics[width=0.85\textwidth]{images/Fig4.pdf}

\textref{Eur. Phys. J. C 75 (2015) 152}

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{Conclusion}
\begin{enumerate}
	\item Three examples of displaced vertex searches for new physics have been presented, using the Run I LHCb data set
	\begin{itemize}
	\item very clear new physics signature, SM background highly suppressed
	\item more channels are going to be studied
	\end{itemize}
	\item Results are the most up-to-date exclusion limit on the processes
	\item LHCb is able to exclude almost all the theoretical predicted parameter space of a specific Inflaton model
\end{enumerate}


\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{Future Circular Collider (FCC) }
\begin{columns}
\column{0.5\textwidth}
\begin{itemize}
\item $p - p$ collider $\mathcal{O}(100{\rm TeV})$:
\begin{itemize}
\item $16~T$ in $100~\rm km$ tunnel!!!
\end{itemize}
\item The collider would benefit form existing CERN infrastructure.
\item Before one reaches the technology for $\mathcal{O}(100{\rm TeV})$:
\begin{itemize}
\item Collide $e^+ e^-$ with energy $90-400~{\rm GeV}$.
\item The third option is the $p-e$ is also on the table.
\end{itemize}
\end{itemize}


\column{0.5\textwidth}
\includegraphics[width=1.0\textwidth]{tunel}

\end{columns}
\includegraphics[width=0.2\textwidth]{tunel2.png}
\includegraphics[width=0.8\textwidth]{geo.png}

\textref{M.Benedikt, J. Osborne, C. Cook}

\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{Why FCCee?}
\begin{columns}
\column{0.35\textwidth}
\begin{itemize}
\item FCCee is also a $Z$-factory!
\item Current design produces $2.5 \times 10^{12}$ $Z$ peer year!
\item We all love $Z$:
\begin{itemize}
\item LFV: $Z \to \ell \ell^{\prime}$.
\item $\mathcal{O}(10^{12}) \rm{ b\bar{b}}$, flavour factory.
\end{itemize}
\end{itemize}


\column{0.65\textwidth}
\includegraphics[width=1.0\textwidth]{lumi}

\end{columns}
\textref{A. Blondel}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{Sterile neutrinos}

\ARROW There are 3 missing pieces missing:\\
\begin{center}
\includegraphics[width=0.95\textwidth]{netrino.png}

\end{center}
\ARROW The neutrinos have masses (no one knows from where).\\
\ARROW New degrees of freedom needed!

\end{frame}



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{RHNS, at $Z$ threshold}

\ARROW Production:
\begin{small}
\begin{align*}
BR(Z \to \nu \nu_m) = 2 \times BR(Z \to \nu \bar{\nu}) \sum_i \vert U_{im} \vert^2 \left(1- \frac{m^2_{\nu_m}}{m^2_Z} \right)^2 \left(1 + \frac{1}{2} \frac{m^2_{\nu_m}}{m^2_Z} \right)^2
\end{align*}
\end{small}
\pause
\begin{exampleblock}{Decays}
\begin{columns}
\column{0.5\textwidth}
\begin{center}
\includegraphics[width=0.9\textwidth]{HNL.png}

\end{center}
\column{0.5\textwidth}
Decay Lenght:
\begin{align*}
L=\frac{3~{\rm cm}}{ \vert U \vert^2 \left( m_{\nu_m} [{\rm GeV/c^2}] \right)^6}
\end{align*}

\end{columns}

\end{exampleblock}
\ARROW Possible backgrounds:
\begin{align*}
e^+ e^- \to W^{\ast +} W^{\ast -}, Z(\nu\nu) + Z^{\ast}/\gamma
\end{align*}
\end{frame}



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{RHNS, at $Z$ threshold}
\ARROW Expected sensitivity:
{~}\\

\begin{columns}
\column{0.5\textwidth}
\includegraphics[width=0.99\textwidth]{exclusion}
\column{0.5\textwidth}
\includegraphics[width=0.99\textwidth]{eventdisplay2}


\end{columns}


\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{FCCee conclusions}

\ARROW FCCee is one of the future colliders that are on the table.\\
\ARROW I deal environment to do flavour physics!\\
\ARROW Can reach the $\vert U \vert^2$ up to $10^{-11}$.\\
\ARROW Now is the right time to plan physics of 2035-2040:

\begin{center}
\includegraphics[width=0.8\textwidth]{time.png}

\end{center}

\end{frame}









\backupbegin

\begin{frame}\frametitle{Backup}


\end{frame}





\begin{frame}[t]
\frametitle{Virtual Majorana neutrinos}


\begin{columns}
\only<1>{
\begin{column}{.78\textwidth}
\begin{block}{}
%\begin{itemize}
 $\PBminus\to\PDplus\Pmuon\Pmuon\quad\quad\quad\quad\quad\quad\PBminus\to\PD^{*+}\Pmuon\Pmuon$
%\end{itemize}
\includegraphics[width=\textwidth]{pic/MassFitDp_.pdf}
\end{block}
\end{column}
}


\end{columns}
\only<1>{{
{~}

\begin{columns}
\column{2.5in}
$\quad\mathcal{B}(\PBminus\to\PDplus\Pmuon\Pmuon)<6.9\times 10^{-7}$
\column{2.5in}

$\mathcal{B}(\PBminus\to\PD^{*+}\Pmuon\Pmuon)<2.4\times 10^{-6}$

\end{columns}
}}


 {@ 95\,\% CL}\hspace{.35\textwidth}
 {@ 95\,\% CL}
\\ Based on $0.41~\invfb ${~}$7~\rm TeV$ data.

{~}

\begin{columns}
\begin{column}{6.5cm}
\end{column}
\begin{column}{1.5cm}
%\includegraphics[width=\textwidth]{pic/LHCb_logo.jpg}
\end{column}
\begin{column}{4cm}
\hspace{.4cm}

 {\footnotesize{\href{http://prd.aps.org/abstract/PRD/v85/i11/e112004}{\texttt{Phys. Rev.D85 (2012) 112004 }}}}

\end{column}
\end{columns}

%LHCb, arXiv:1201.5600
%\includegraphics[width=.5\textwidth]{UpperAll}
 %  \textref{M.Chrz\k{a}szcz 2014}
\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{Long living charged particles like $\PStau$}

$\Rrightarrow$ Long living particles can also be produced in the PV. \\
\begin{itemize}
\item This kind of particles would be produce in relatively low velocities and could be identified by their time -of-flight, $dE/dx$ or in Cherenkov detectors.
\end{itemize}
$\Rrightarrow$ LHCb performed a search for long living $\PStau$ particles.\\
$\Rrightarrow$ $\PStau^+ \PStau^-$ produced by Drell-Yan process. \\

\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{$\PStau$ analysis strategy}
$\Rrightarrow$ Search performed $\PStau$ in mass range of $124-309~\GeV$.\\
$\Rrightarrow$ After the loose preselection to reduce normal Drell-Yan production.

\includegraphics[width=1.05\textwidth]{susy/stau.png}

$\Rrightarrow$ After the preselection an Neural Net is trained based on Cherenkov detectors to calculate to further suppress the remaining background.

\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{$\PStau$ results}
\begin{itemize}
\item No significant signal yield has been observed.
\item $95~\%$ upper limit has been set.
\end{itemize}
\includegraphics[width=0.8\textwidth]{susy/sps7.png}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{}

\begin{center}
\includegraphics[width=0.9\textwidth]{newlimits}
\end{center}

\end{frame}




\backupend

\end{document}