\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer} \usepackage[english]{babel} \usepackage{polski} \usetheme[ bullet=circle, % Other option: square bigpagenumber, % circled page number on lower right topline=true, % colored bar at the top of the frame shadow=false, % Shading for beamer blocks watermark=BG_lower, % png file for the watermark ]{Flip} %\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}} \usepackage[lf]{berenis} \usepackage[LY1]{fontenc} \usepackage[utf8]{inputenc} %\usepackage{emerald} \usefonttheme{professionalfonts} \usepackage[no-math]{fontspec} \defaultfontfeatures{Mapping=tex-text} % This seems to be important for mapping glyphs properly \setmainfont{Gillius ADF} % Beamer ignores "main font" in favor of sans font \setsansfont{Gillius ADF} % This is the font that beamer will use by default % \setmainfont{Gill Sans Light} % Prettier, but harder to read \setbeamerfont{title}{family=\fontspec{Gillius ADF}} \input t1augie.fd %\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font %\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font % \newcommand{\handwriting}{} % If you prefer no special handwriting font or don't have augie %% Gill Sans doesn't look very nice when boldfaced %% This is a hack to use Helvetica instead %% Usage: \textbf{\forbold some stuff} %\newcommand{\forbold}{\fontspec{Arial}} \usepackage{graphicx} \usepackage[export]{adjustbox} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{colortbl} \usepackage{mathrsfs} % For Weinberg-esque letters \usepackage{cancel} % For "SUSY-breaking" symbol \usepackage{slashed} % for slashed characters in math mode \usepackage{bbm} %for \mathbbm{1} (unit matrix) \usepackage{amsthm} % For theorem environment \usepackage{multirow} % For multi row cells in table \usepackage{arydshln} % For dashed lines in arrays and tables \usepackage{siunitx} \usepackage{xhfill} \usepackage{grffile} \usepackage{textpos} \usepackage{subfigure} \usepackage{tikz} %\usepackage{hepparticles} %\usepackage[italic]{hepparticles} \usepackage{hepnicenames} \usepackage{hepparticles} % Drawing a line \tikzstyle{lw} = [line width=20pt] \newcommand{\topline}{% \tikz[remember picture,overlay] {% \draw[crimsonred] ([yshift=-23.5pt]current page.north west) -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}} % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % \usepackage{tikzfeynman} % For Feynman diagrams \usetikzlibrary{arrows,shapes} \usetikzlibrary{trees} \usetikzlibrary{matrix,arrows} % For commutative diagram % http://www.felixl.de/commu.pdf \usetikzlibrary{positioning} % For "above of=" commands \usetikzlibrary{calc,through} % For coordinates \usetikzlibrary{decorations.pathreplacing} % For curly braces % http://www.math.ucla.edu/~getreuer/tikz.html \usepackage{pgffor} % For repeating patterns \usetikzlibrary{decorations.pathmorphing} % For Feynman Diagrams \usetikzlibrary{decorations.markings} \tikzset{ % >=stealth', %% Uncomment for more conventional arrows vector/.style={decorate, decoration={snake}, draw}, provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw}, antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw}, fermion/.style={draw=gray, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}}, fermionbar/.style={draw=gray, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}}, fermionnoarrow/.style={draw=gray}, gluon/.style={decorate, draw=black, decoration={coil,amplitude=4pt, segment length=5pt}}, scalar/.style={dashed,draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}}, scalarbar/.style={dashed,draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}}, scalarnoarrow/.style={dashed,draw=black}, electron/.style={draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}}, bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw}, } % TIKZ - for block diagrams, % from http://www.texample.net/tikz/examples/control-system-principles/ % \usetikzlibrary{shapes,arrows} \tikzstyle{block} = [draw, rectangle, minimum height=3em, minimum width=6em] \usetikzlibrary{backgrounds} \usetikzlibrary{mindmap,trees} % For mind map \newcommand{\degree}{\ensuremath{^\circ}} \newcommand{\E}{\mathrm{E}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\Cov}{\mathrm{Cov}} \newcommand\Ts{\rule{0pt}{2.6ex}} % Top strut \newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut \graphicspath{{images/}} % Put all images in this directory. Avoids clutter. % SOME COMMANDS THAT I FIND HANDY % \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec \newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild \newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold \newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold \newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert \newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert %% "\alert" is already a beamer pre-defined \newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}% \def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}} \usepackage{gmp} \usepackage[final]{feynmp-auto} \usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex} \bibliography{bib} \setbeamertemplate{bibliography item}[text] \makeatletter\let\frametextheight\beamer@frametextheight\makeatother % suppress frame numbering for backup slides % you always need the appendix for this! \newcommand{\backupbegin}{ \newcounter{framenumberappendix} \setcounter{framenumberappendix}{\value{framenumber}} } \newcommand{\backupend}{ \addtocounter{framenumberappendix}{-\value{framenumber}} \addtocounter{framenumber}{\value{framenumberappendix}} } \definecolor{links}{HTML}{2A1B81} %\hypersetup{colorlinks,linkcolor=,urlcolor=links} % For shapo's formulas: \def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}} \def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}} \newcommand{\lsim}{\mathop{\lsi}} \newcommand{\gsim}{\mathop{\gsi}} \newcommand{\wt}{\widetilde} %\newcommand{\ol}{\overline} \newcommand{\Tr}{\rm{Tr}} \newcommand{\tr}{\rm{tr}} \newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&} \newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}} \newcommand{\abs}[1]{\rm{$\left| #1 \right|$}} \newcommand{\eV}{\rm{eV}} \newcommand{\keV}{\rm{keV}} \newcommand{\GeV}{\rm{GeV}} \newcommand{\im}{\rm{Im}} \newcommand{\disp}{\displaystyle} \def\be{\begin{equation}} \def\ee{\end{equation}} \def\ba{\begin{eqnarray}} \def\ea{\end{eqnarray}} \def\d{\partial} \def\l{\left(} \def\r{\right)} \def\la{\langle} \def\ra{\rangle} \def\e{{\rm e}} \def\Br{{\rm Br}} \def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace} \def\ARROWR{{\color{WildStrawberry}{$\Rrightarrow$}}\xspace} \author{ {M.Chrzaszcz} (UZH,IFJ)} \institute{UZH} \title[$\Lambda_c \to \Pproton \Pmu \Pmu$ Status and Plans]{$\Lambda_c \to \Pproton \Pmu \Pmu$ Status and Plans} \date{30 January 2017} \begin{document} \tikzstyle{every picture}+=[remember picture] { \setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}} \begin{frame}[c]%{\phantom{title page}} \begin{center} \begin{center} \begin{columns} \begin{column}{0.75\textwidth} \flushright\bfseries \Huge {$\Lambda_c^+ \to \Pproton \Pmu \Pmu$ \\Status Update \\and Plans for future} \end{column} \begin{column}{0.02\textwidth} {~} \end{column} \begin{column}{0.23\textwidth} % \hspace*{-1.cm} \vspace*{-3mm} \includegraphics[width=0.6\textwidth]{lhcb-logo} \end{column} \end{columns} \end{center} \quad \vspace{3em} \begin{columns} \begin{column}{0.44\textwidth} \flushright \vspace{-1.8em} { \large Marcin Chrzaszcz\\\vspace{-0.1em} } \end{column} \begin{column}{0.53\textwidth} \includegraphics[height=1.3cm]{uzh-transp} \end{column} \end{columns} \vspace{0.1em} on behalf of the $\PLambdac \to \Pproton \Pmu \Pmu$ team:\\ \vspace{0.2em} T.Lesiak(IFJ, Krakow), B.Nowak(IFJ, Krakow), M.Witek (IFJ, Krakow), \\ L.Pescatore(EPFL, Lousanne), M.Stamenkovic(EPFL, Lousanne), M.Martinelli(EPFL, Lousanne) \vspace{0.4em} \vspace{0.5em} \textcolor{normal text.fg!50!Comment}{Analysis and Software Week, CERN\\April, 2017} \end{center} \end{frame} } \begin{frame}\frametitle{Topics covered in this presentation} \begin{enumerate} \item Physics of $\Lambda_c^+ \to \Pproton \Pmu \Pmu$ \item Pre-Selection. \item MVA selection. \item PID. \item Normalization. \item Systematics. \item Expected limits. \item Run2 extensions. \end{enumerate} \end{frame} \begin{frame}\frametitle{Yellow pages} \ARROW Review started on 31.03.2017.\\ \ARROW Reviewers: Tom Blake, Harry Cliff\\ \ARROW Twiki:\\ \href{https://twiki.cern.ch/twiki/bin/view/LHCbPhysics/Lc2PMuMu}{https://twiki.cern.ch/twiki/bin/view/LHCbPhysics/Lc2PMuMu }\\ \ARROW The newest version of the ANA note:\\ \href{https://twiki.cern.ch/twiki/pub/LHCbPhysics/Lc2PMuMu/LHCb-ANA-2016-15_v5.pdf}{CLIC} \end{frame} \begin{frame}\frametitle{Physics of $\Lambda_c^+ \to \Pproton \Pmu \Pmu$} \ARROW $\Lambda_c^+ \to \Pproton \Pmu \Pmu$ is a FCNC in the charm sector: \begin{center} \includegraphics[width=0.3\textwidth]{images/diag.png} \includegraphics[width=0.3\textwidth]{images/diag2.png} \end{center} \begin{columns} \column{0.35\textwidth} \ARROW SM prediction: \begin{itemize} \item Short distance $Br \sim \mathcal{O}(10^{-8})$ \item Long distance $Br \sim \mathcal{O}(10^{-6})$ \item Expected to improve by $\mathcal{O}(10^2)$ \end{itemize} \column{0.65\textwidth} \ARROW Current experimental situation: \begin{itemize} \item $Br(\Lambda_c^+ \to \Pproton \Pmu \Pmu) < 4.4 \times 10^{-5}$ at $90~\%\rm CL$ arXiv:1107.4465 (BaBar) \end{itemize} \begin{center} \includegraphics[width=0.45\textwidth]{images/bab.png} \end{center} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{Strategy} \ARROW We follow the strategy of previous analysis: $\tau \to \mu \mu \mu$ and $\tau \to \Pproton \mu \mu$.\\ \ARROW Analysis based on $2011$ and $2012$ data sets.\\ \ARROW Blind the signal window: $\vert m_{p\mu\mu} - m_{\PLambdac}^{PDG} \vert < 40~\rm MeV$\\ \ARROW We start from stripping and loose pre-selection.\\ \ARROW MVA: \begin{itemize} \item Signal MC. \item Background side-bands. \end{itemize} \ARROW k-Folding technique applied.\\ \ARROW Two BDT are used: \begin{itemize} \item BDT1 to first clean up the sample. \item BDT2 to further increase the sensitivity. \end{itemize} \ARROW Final 3D optimization: $\rm (BDT2, ProbNNp, ProbNNmu)$.\\ \ARROW Calculate the UL with $\rm CL_s$. \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{Trigger} \ARROW We decided to based the analysis on muon triggers: \begin{itemize} \item L0 \begin{itemize} \item Lambda\_cplus\_L0MuonDecision\_TOS \item Lambda\_cplus\_L0DiMuonDecision\_TOS \end{itemize} \item HLT1 \begin{itemize} \item Lambda\_cplus\_Hlt1TrackMuonDecision\_TOS \item Lambda\_cplus\_Hlt1DiMuonLowMassDecision\_TOS \item Lambda\_cplus\_Hlt1TrackAllL0Decision\_TOS \end{itemize} \item HLT2 \begin{itemize} %%%% \item Lambda\_cplus\_Hlt2CharmSemilepD02HMuNu\_D02KMuNuDecision\_TOS"; \item Lambda\_cplus\_Hlt2CharmHadD2HHHDecision\_TOS; \item Lambda\_cplus\_Hlt2DiMuonDetachedDecision\_TOS; \item Lambda\_cplus\_Hlt2CharmSemilep3bodyD2KMuMuDecision\_TOS; \item Lambda\_cplus\_Hlt2CharmSemilepD2HMuMuDecision\_TOS; % \item Lambda\_cplus\_Hlt2TopoMu2BodyBBDTDecision\_TOS; \end{itemize} \end{itemize} \end{frame} \begin{frame}\frametitle{Stripping} \begin{center} \begin{tabular}{|c|c|} \hline \multicolumn{2}{|c|}{StrippingTau23MuTau2PMuMuLine}\\ \hline Condition & ~~$\Lambda_c^+ \to \Pproton \Pmu \Pmu$~~\\ \hline $\mu^\pm$ and $\Pproton$ & \\ $P_T$ & {$>300~\rm MeV/c$} \\ Track $\chi^2$/ndf & {$<3 $} \\ IP $\chi^2$/ndf & {$>9 $} \\ PID $\mu^\pm$ & PIDmu$ >$ -5 and (PIDmu - PIDK) $>$ 0 \\ PID $\Pproton$ & PIDp$>$10 \\ \hline $\PLambdac$ & \\ $\Delta m$ & $<150\rm MeV/c^2$ \\ Vertex $\chi^2$ & {$<15$} \\ IP $\chi^2$ & {$<225 $} \\ $c\tau$ & {$>100\mu m$} \\ Lifetime fit $\chi^2$ & {$<225 $} \\ %\hline %$m_{\mu^+\mu^-}$ & $> 450\mevcc$ \\ %$m_{\mu^+\mu^+}$ & $> 250\mevcc$ \\ \hline \end{tabular} \end{center} \ARROW In Run2 we have a dedicated stripping/HLT2 lines for $\mu, e$ lepton flavours. \end{frame} \begin{frame}\frametitle{Futher preselection} \begin{center}\begin{tabular}{|c|} \hline Common cuts \\ \hline $m_{\mu\mu}$ $> 250~\rm MeV/c^2$ \\ proton $ProbNNp > 0.1 $ \\ % Podzielic te ciecia i op $\mu^+,\mu^-$ $ ProbNNmu > 0.1 $ \\ $ 10~\rm GeV/c < p_{proton} < 100~\rm GeV/c $ \\ \hline Signal channel \\ \hline $\vert m_{\mu\mu}-m_{\omega} \vert$ $> 40~\rm MeV/c^2$ \\ $\vert m_{\mu\mu}-m_{\phi} \vert$ $> 40~\rm MeV/c^2$ \\ \hline Normalization channel \\ \hline $\vert m_{\mu\mu}-m_{\phi}\vert$ $< 35~\rm MeV/c^2$ \\ \hline \end{tabular}\end{center} \end{frame} \begin{frame}\frametitle{MVA Selection 1/2} \ARROW The BDT1 uses a small set of available variables related to $\PLambdac$ candidate: \begin{itemize} \item $\rm Lambda\_cplus\_IP\_OWNPV$ \item $\rm Lambda\_cplus\_IPCHI2\_OWNPV$ \item $\rm TMath::Exp(-1000*Lambda\_cplus\_TAU)$ \item $\rm Lambda\_cplus\_ENDVERTEX\_CHI2$ \item $\rm Lambda\_cplus\_PT$ \item $\rm Lambda\_cplus\_FD\_OWNPV$ \item $\rm Lambda\_cplus\_FDCHI2\_OWNPV$ \end{itemize} \begin{center} \includegraphics[angle=-90,width=0.45\textwidth]{{images/TMVA_2011_0_overtrain_BDT}.pdf} %\includegraphics[angle=-90,width=0.45\textwidth]{{images/BDT_pre_bkg}.pdf} \end{center} \end{frame} \begin{frame}\frametitle{MVA Selection 2/2} \begin{center} \begin{columns} \column{0.5\textwidth} \includegraphics[angle=-90,width=0.9\textwidth]{{images/BDT_pre_history}.pdf} \column{0.5\textwidth} \includegraphics[width=0.7\textwidth]{images/foldBDT1.png} \end{columns} \end{center} \ARROW We choose a loose cut ($\rm BDT1>-0.1$) to clean up the sample: \begin{center} \includegraphics[width=0.8\textwidth]{images/BDT1norm1.png}\\ $\PLambda_c \to \Pproton \Pphi(\mu\mu)$%~~~~~~~~~~Blinded data. \end{center} \end{frame} \begin{frame}\frametitle{Normalization} \begin{columns} \column{0.5\textwidth} \ARROW $\PLambda_c \to \Pproton \Pphi(\mu\mu)$: \begin{itemize} \item Same final state! \item Most of the systematics cancel in the ratio. \item Kinematics difference will only remain. \item Low Br: $Br(\PLambda_c \to \Pproton \Pphi(\mu\mu)) = (2.98 \pm 0.63) \times 10^{-7}$ \end{itemize} \column{0.5\textwidth} \ARROW $\PLambda_c \to \Pproton \pi \pi$: \begin{itemize} \item Different final state! \item The systematics will not cancel in the ratio. \item Need to understand the $\pi \pi$ spectrum. \item High branching fraction: $Br(\PLambda_c \to \Pproton \pi \pi) = (4.3 \pm 2.3) \times 10^{-3}$ \end{itemize} \end{columns} \begin{exampleblock}{} We have chosen the $\PLambda_c \to \Pproton \Pphi(\mu\mu)$ as normalization channel. \end{exampleblock} \end{frame} \begin{frame}\frametitle{MVA Selection II} \begin{itemize} \item Added variables related to the daughter tracks. \end{itemize} \begin{center} \begin{columns} \column{0.5\textwidth} \includegraphics[angle=-90,width=0.8\textwidth]{{images/Comparison_BDT_data_mc}.pdf} \column{0.5\textwidth} \includegraphics[width=0.7\textwidth]{images/BDT2folds.png} \end{columns} \end{center} \begin{center} \begin{columns} \column{0.5\textwidth} \includegraphics[angle=-90,width=0.8\textwidth]{{images/BDT_check_3mu_bkg_3}.pdf} \column{0.5\textwidth} \ARROW The BDT was checked against the correlation with mass on MC background.\\ \ARROW All cross-checks passed. \end{columns} \end{center} \end{frame} \begin{frame}\frametitle{PID} \ARROW The PID in this analysis is done using re sampling the PID distributions. \begin{columns} \column{0.5\textwidth} \begin{footnotesize} \begin{itemize} \item PIDCalib for muons does not cover the low $p_T$ muons $(10~\%)$ of the sample. \item We used the $\PDs \to \pi \Pphi(\mu\mu)$. \item The same procedure was used in the different analysis with this problem. \item The sample is currently being included to the standard sample from the PID WG. \end{itemize} \end{footnotesize} \column{0.5\textwidth} \includegraphics[width=0.95\textwidth]{images/PID.png} \end{columns} \includegraphics[width=0.9\textwidth]{images/splot.png} \end{frame} \begin{frame}\frametitle{Optimization} \begin{columns} \column{0.6\textwidth} \ARROW Optimization was performed on a TOY MC sample.\\ \ARROW The toys were generated using PDF from signal MC and sideband sample.\\ \ARROW Optimization was done on grid of points, using 100 TOYs peer point.\\ \ARROW $\rm CL_s$ was used as FOM.\\ \vspace{0.4em} %\includegraphics[width=0.95\textwidth]{images/opt2.png}\\ \includegraphics[angle=-90,width=0.45\textwidth]{{images/Lc2pPhi5}.pdf} \includegraphics[angle=-90,width=0.45\textwidth]{{images/expected_bck5}.pdf} \begin{center} \begin{tabular}{|c|c|} \hline Variable & Cut \\ \hline BDT2 & $>0.0$\\ ProbNNp & $>0.68$\\ ProbNNmu & $>0.38$\\ \hline \end{tabular} \end{center} \column{0.4\textwidth} \includegraphics[width=0.95\textwidth]{{images/scan_ul}.pdf} \end{columns} \end{frame} \begin{frame}\frametitle{Peaking backgrounds 1/2} \ARROW There are several sources of peaking background: \begin{footnotesize} \begin{center}\begin{tabular}{|l|c|c|c|} \hline \hline Resonance & BF$(\PLambdac \to \Pproton X)$ & BF$(X \to \mu\mu)$ & Total BF \\ \hline \hline $\eta$ & - & $(5.8 \pm 0.8)\times 10^{-6}$ & - \\ \hline $\rho$ & - & $(4.55 \pm 0.28) \times 10^{-5}$ & - \\ \hline $\omega$ & - & $(9.0 \pm 3.1) \times 10^{-5}$ & - \\ % \hline % $f_{0}(980)$ & $ (3.8 \pm 2.5) \times 10^{-3}$ & - & - \\ \hline $\phi$ & $(1.04 \pm 0.21)\times10^{-3}$ & $(2.87 \pm 0.19)\times 10^{-4}$ & $(2.98 \pm 0.63)\times 10^{-7}$ \\ % & & & \\ \hline \hline Resonance & BF$(\PLambdac \to \Pproton X)$ & BF$(X \to \mu\mu\gamma)$ & Total BF \\ \hline \hline $\eta$ & - & $(3.1 \pm 0.4)\times 10^{-4} $ & - \\ \hline $\eta^{,}$ & - & $ (1.08 \pm 0.27)\times 10^{-4}$ & - \\ \hline \hline \end{tabular} \end{center} \end{footnotesize} \ARROW Unfortunately not all of the BF are known...\\ \ARROW We took the adequate decay of $\PD$ mesons. We ended up with BF $\mathcal{O}(10^{-9})$ for not vetoed decays, which is much below our sensitivity (see further slides). \\ \end{frame} \begin{frame}\frametitle{Peaking backgrounds 2/2} \ARROW The other peaking background is a harmonic decay $\PLambdac \to \Pproton \pi \pi$.\\ \begin{columns} \column{0.6\textwidth} \ARROW Estimated from MC sample\\ \ARROW Used the resampled PID response.\\ \ARROW Observed number of events in the signal window. \includegraphics[angle=-90,width=0.9\textwidth]{{images/mass_bkg_p2pi}.pdf} \column{0.4\textwidth} \includegraphics[width=0.9\textwidth]{images/ppipi.png} \end{columns} \vspace{0.4em} \ARROW Estimated: $N_{\PLambdac \to \Pproton \pi \pi}=1.96 \pm 1.13$\\ \ARROW Took into account in background estimation. \end{frame} \begin{frame}\frametitle{Normalization} \ARROW Master equation: \begin{equation} {\frac{Br(\PLambda_c \to \Pproton \mu\mu)}{Br(\PLambda_c \to \Pproton \Pphi(\mu\mu))} = \frac{\rm {\epsilon\mathstrut_{norm}}^{TOT} }{\rm {\epsilon\mathstrut_{sig}}^{TOT} } \times\frac{N_{\rm sig}}{N_{\rm norm}}, } \nonumber \label{eq:normalization} \end{equation} where \begin{equation} {\frac{\rm {\epsilon\mathstrut_{norm}}^{TOT} }{\rm {\epsilon\mathstrut_{sig}}^{TOT}}} = {\frac{\rm {\epsilon\mathstrut_{norm}}^{STRIP}}{\rm {\epsilon\mathstrut_{sig}}^{STRIP}}} \times {\frac{\rm {\epsilon\mathstrut_{norm}}^{COMM}}{\rm {\epsilon\mathstrut_{sig}}^{COMM}}} \times {\frac{\rm {\epsilon\mathstrut_{norm}}^{SPEC}}{\rm {\epsilon\mathstrut_{sig}}^{SPEC}}}\nonumber \end{equation} \begin{columns} \column{0.8\textwidth} \ARROW Signal window divided in 6 equal bins ($7~\rm MeV/c^2$)\\ \ARROW Many of the ratios close to one: \column{0.2\textwidth} \includegraphics[width=0.95\textwidth]{images/bins.png} \end{columns} \end{frame} \begin{frame}\frametitle{Systematics} %\ARROW The analysis is statistically dominated: \begin{center}\begin{tabular}{lc} \hline Uncertainty source & Value \\ \hline Efficiency ratio $R_{strip}$ (statistical) & 0.2 \% \\ Efficiency ratio $R_{comm}$ (statistical) & 3.37 \% \\ Efficiency ratio $R_{comm}$ (BDT2 cut) & 0.4 \% \\ Efficiency ratio $R_{comm}$ (PIDCalib samples) & 0.71 \% \\ Width of the signal peak & 0.55 \% \\ Yield of normalization channel & 11.8 \% \\ Dedicated PID resampling & 0.26 \% \\ ${\PLambda_c \to \Pproton \Pphi(\mu\mu)}$ & 21.5 \% \\ Variation of signal decay model & 15.3 \% \\ \hline \end{tabular}\end{center} \end{frame} \begin{frame}\frametitle{Expected limits} \ARROW Putting all together one gets: \begin{center} \includegraphics[angle=-90,width=0.45\textwidth]{images/br90rel.pdf} \includegraphics[angle=-90,width=0.45\textwidth]{images/br90abs.pdf}\\ \begin{exampleblock}{The expected limits:} $Br(\PLambda_c \to \Pproton \mu\mu) < 5.9 \times 10^{-8}$ at $90\%$ CL \end{exampleblock} \ARROW The RC started looking at the ANA note. \end{center} \end{frame} \begin{frame}\frametitle{Run 2 plans} \begin{columns} \column{0.6\textwidth} \ARROW We already started working on Run2 analysis.\\ \ARROW The program is expanding: \begin{itemize} \item $Br(\PLambdac \to \Pproton \Pphi)$ \item $Br(\PLambdac \to \Pproton \mu \mu)$ \item $R(\PLambdac)=\frac{Br(\PLambdac \to \Pproton \mu \mu)}{Br(\PLambdac \to \Pproton e e)}$ \item LFV: $\PLambda_c \to \Pproton \mu e$ \item and maybe more ideas? \end{itemize} \column{0.4\textwidth} \includegraphics[angle=-90,width=0.9\textwidth]{images/EPFL1.pdf}\\ \includegraphics[angle=-90,width=0.9\textwidth]{images/EPFL2.pdf} \end{columns} \begin{exampleblock}{} \ARROWR $\PLambdac$ is a exciting system that is not fully explored!\\ \ARROWR We have a rich physics program to be studied with Run2 data. \end{exampleblock} \end{frame} \backupbegin \begin{frame}\frametitle{Backup} \topline \end{frame} \backupend \end{document}