Newer
Older
Presentations / SUSY_2015 / RD / mchrzasz.tex
\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}

\usepackage[english]{babel}
\usepackage{polski}


\usetheme[
	bullet=circle,		% Other option: square
	bigpagenumber,		% circled page number on lower right
	topline=true,			% colored bar at the top of the frame
	shadow=false,			% Shading for beamer blocks
	watermark=BG_lower,	% png file for the watermark
	]{Flip}

%\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}


\usepackage[lf]{berenis}
\usepackage[LY1]{fontenc}
\usepackage[utf8]{inputenc}

\usepackage{emerald}
\usefonttheme{professionalfonts}
\usepackage[no-math]{fontspec}
\defaultfontfeatures{Mapping=tex-text}	% This seems to be important for mapping glyphs properly

\setmainfont{Gillius ADF}			% Beamer ignores "main font" in favor of sans font
\setsansfont{Gillius ADF}			% This is the font that beamer will use by default
% \setmainfont{Gill Sans Light}		% Prettier, but harder to read

\setbeamerfont{title}{family=\fontspec{Gillius ADF}}

\input t1augie.fd

%\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
%\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
% \newcommand{\handwriting}{}	% If you prefer no special handwriting font or don't have augie

%% Gill Sans doesn't look very nice when boldfaced
%% This is a hack to use Helvetica instead
%% Usage: \textbf{\forbold some stuff}
%\newcommand{\forbold}{\fontspec{Arial}}

\usepackage{graphicx}
\usepackage[export]{adjustbox}

\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{colortbl}
\usepackage{mathrsfs} 			% For Weinberg-esque letters
\usepackage{cancel}				% For "SUSY-breaking" symbol
\usepackage{slashed}            % for slashed characters in math mode
\usepackage{bbm}                % for \mathbbm{1} (unit matrix)
\usepackage{amsthm}				% For theorem environment
\usepackage{multirow}			% For multi row cells in table
\usepackage{arydshln} 			% For dashed lines in arrays and tables
\usepackage{siunitx}
\usepackage{xhfill}
\usepackage{grffile}
\usepackage{textpos}
\usepackage{subfigure}
\usepackage{tikz}

%\usepackage{hepparticles}
\usepackage[italic]{hepparticles}

\usepackage{hepnicenames}

% Drawing a line
\tikzstyle{lw} = [line width=20pt]
\newcommand{\topline}{%
  \tikz[remember picture,overlay] {%
    \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
             -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}



% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\usepackage{tikzfeynman}		% For Feynman diagrams
\usetikzlibrary{arrows,shapes}
\usetikzlibrary{trees}
\usetikzlibrary{matrix,arrows} 				% For commutative diagram
% http://www.felixl.de/commu.pdf
\usetikzlibrary{positioning}				% For "above of=" commands
\usetikzlibrary{calc,through}				% For coordinates
\usetikzlibrary{decorations.pathreplacing}  % For curly braces
% http://www.math.ucla.edu/~getreuer/tikz.html
\usepackage{pgffor}							% For repeating patterns

\usetikzlibrary{decorations.pathmorphing}	% For Feynman Diagrams
\usetikzlibrary{decorations.markings}
\tikzset{
	% >=stealth', %%  Uncomment for more conventional arrows
	vector/.style={decorate, decoration={snake}, draw},
	provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
	antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
	fermion/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
	fermionbar/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
	fermionnoarrow/.style={draw=gray},
	gluon/.style={decorate, draw=black,
		decoration={coil,amplitude=4pt, segment length=5pt}},
	scalar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	scalarbar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
	scalarnoarrow/.style={dashed,draw=black},
	electron/.style={draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
}

% TIKZ - for block diagrams,
% from http://www.texample.net/tikz/examples/control-system-principles/
% \usetikzlibrary{shapes,arrows}
\tikzstyle{block} = [draw, rectangle,
minimum height=3em, minimum width=6em]




\usetikzlibrary{backgrounds}
\usetikzlibrary{mindmap,trees}	% For mind map
\newcommand{\degree}{\ensuremath{^\circ}}
\newcommand{\E}{\mathrm{E}}
\newcommand{\Var}{\mathrm{Var}}
\newcommand{\Cov}{\mathrm{Cov}}
\newcommand\Ts{\rule{0pt}{2.6ex}}       % Top strut
\newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut

\graphicspath{{images/}}	% Put all images in this directory. Avoids clutter.

% SOME COMMANDS THAT I FIND HANDY
% \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
\newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
\newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
\newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
\newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
\newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
%% "\alert" is already a beamer pre-defined
\newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%
\newcommand{\thetal}{\theta_l}
\newcommand{\thetak}{\theta_k}

\def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}

\usepackage{gmp}
\usepackage[final]{feynmp-auto}

\usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
\bibliography{bib}
\setbeamertemplate{bibliography item}[text]

\makeatletter\let\frametextheight\beamer@frametextheight\makeatother

% suppress frame numbering for backup slides
% you always need the appendix for this!
\newcommand{\backupbegin}{
	\newcounter{framenumberappendix}
	\setcounter{framenumberappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
	\addtocounter{framenumberappendix}{-\value{framenumber}}
	\addtocounter{framenumber}{\value{framenumberappendix}}
}


\definecolor{links}{HTML}{2A1B81}
%\hypersetup{colorlinks,linkcolor=,urlcolor=links}

% For shapo's formulas:
\def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\newcommand{\lsim}{\mathop{\lsi}}
\newcommand{\gsim}{\mathop{\gsi}}
\newcommand{\wt}{\widetilde}
%\newcommand{\ol}{\overline}
\newcommand{\Tr}{\rm{Tr}}
\newcommand{\tr}{\rm{tr}}
\newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
\newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
\newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
\newcommand{\eV}{\rm{eV}}
\newcommand{\keV}{\rm{keV}}
\newcommand{\GeV}{\rm{GeV}}
\newcommand{\im}{\rm{Im}}
\newcommand{\disp}{\displaystyle}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\ba{\begin{eqnarray}}
\def\ea{\end{eqnarray}}
\def\d{\partial}
\def\l{\left(}
\def\r{\right)}
\def\la{\langle}
\def\ra{\rangle}
\def\e{{\rm e}}
\def\Br{{\rm Br}}



\author{ {\fontspec{Trebuchet MS}Marcin Chrz\k{a}szcz} (Universit\"{a}t Z\"{u}rich)}
\institute{UZH}
\title[Electroweak penguin decays to leptons and Radiative decays at LHCb]{Electroweak penguin decays to leptons and Radiative decays at LHCb}
\date{25 September 2014}


\begin{document}
\tikzstyle{every picture}+=[remember picture]

{
\setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
\begin{frame}[c]%{\phantom{title page}}
\begin{center}
\begin{center}
	\begin{columns}
		\begin{column}{0.75\textwidth}
			\flushright\fontspec{Trebuchet MS}\bfseries \LARGE {Electroweak penguin decays to leptons and Radiative decays at LHCb}
		\end{column}
                \begin{column}{0.02\textwidth}
                  {~}
                  \end{column}
                \begin{column}{0.23\textwidth}
                 % \hspace*{-1.cm}
                  \vspace*{-3mm}
                  \includegraphics[width=0.6\textwidth]{lhcb-logo}
                  \end{column}

	\end{columns}
\end{center}
	\quad
	\vspace{3em}
\begin{columns}
\begin{column}{0.44\textwidth}
\flushright \vspace{-1.8em} {\fontspec{Trebuchet MS} \Large Marcin ChrzÄ…szcz\\\vspace{-0.1em}\small \href{mailto:mchrzasz@cern.ch}{mchrzasz@cern.ch}}

\end{column}
\begin{column}{0.53\textwidth}
\includegraphics[height=1.3cm]{uzh-transp}
\end{column}
\end{columns}

\vspace{1em}
%		\footnotesize\textcolor{gray}{With N. Serra, B. Storaci\\Thanks to the theory support from M. Shaposhnikov, D. Gorbunov}\normalsize\\
\vspace{0.5em}

	\textcolor{normal text.fg!50!Comment}{SUSY 2015, Tahoe City, 23-29 August, 2015}
\end{center}
\end{frame}
}


\section[Outline]{}
\begin{frame}
%\tableofcontents
%FIXME!
\begin{enumerate}
\item Rare $\PB$ decays:
\begin{itemize}
\item $\PB^+ \to \PK^+ \Ppi^- \Ppi^+ \Pphoton$
\item $\PBs/\PBzero \to \mu^- \mu^+$.
\item $\PBzero \to \PKstar \Pmuon \APmuon$.
\end{itemize}

\end{enumerate}

\end{frame}

%-------------------------------------------------------------------
%                          Introduction
%-------------------------------------------------------------------
%
% Set the background for the rest of the slides.
% Insert infoline
%\setbeamertemplate{background}
% {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}}
%\setbeamertemplate{footline}[bunsentheme]



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%\setbeamertemplate{background}
% {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}}
%\setbeamertemplate{footline}[bunsentheme]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\section{LHCb detector}

%\begin{frame}\frametitle{LHCb detector}
%\begin{columns}
%\column{3.in}
%\begin{center}
%\includegraphics[width=0.98\textwidth]{det.jpg}
%\end{center}

%\column{2.0in}
%\begin{footnotesize}


 %     LHCb is a forward spectrometer:
 %       	\begin{itemize}
 %       	\item Excellent vertex resolution.
 %       	\item Efficient trigger.
 %       	\item High acceptance for $\Ptau$ and $\PB$.
 %       	\item Great Particle ID
 %       	\end{itemize}



%\end{footnotesize}
%\end{columns}

%\end{frame}

\section{Introduction}

\begin{frame}\frametitle{Why rare decays?}
\begin{columns}
\column{4in}
\begin{itemize}
\item In SM allows only the charged interactions to change flavour.
\begin{itemize}
\item Other interactions are flavour conserving.
\end{itemize}
\item One can escape this constrain and produce $\Pbottom \to \Pstrange$ and $\Pbottom \to \Pdown$ at loop level.
\begin{itemize}
\item This kind of processes are suppressed in SM $\to$~Rare decays.
\item New Physics can enter in the loops.
\end{itemize}
\end{itemize}
\begin{center}
\includegraphics[scale=0.3]{susy/lupa.png}
\includegraphics[scale=0.3]{susy/example.png}
\end{center}
\column{1.5in}
\includegraphics[width=0.61\textwidth]{susy/couplings.png}
\end{columns}

\end{frame}

\begin{frame}\frametitle{Tools}
\begin{itemize}
\item \textbf{Operator Product Expansion and Effective Field Theory}
\end{itemize}
\begin{columns}
\column{0.1in}{~}
\column{3.2in}
\begin{align*}
H_{eff} = - \dfrac{4G_f}{\sqrt{2}} V V^{\prime \ast}\ \sum_i \left[\underbrace{C_i(\mu)O_i(\mu)}_\text{left-handed} +\underbrace{C'_i(\mu)O'_i(\mu)}_\text{right-handed}\right],
\end{align*}

\column{2in}
\begin{tiny}
\begin{description}
                \item[i=1,2] Tree
                \item[i=3-6,8] Gluon penguin
                \item[i=7] Photon penguin
				\item[i=9.10] EW penguin
				\item[i=S] Scalar penguin
				\item[i=P] Pseudoscalar penguin
              \end{description}

\end{tiny}
\end{columns}
where $C_i$ are the Wilson coefficients and $O_i$ are the corresponding effective operators.
\begin{center}
\includegraphics[width=0.85\textwidth,height=3cm]{susy/all.png}

\end{center}


\end{frame}



\begin{frame}\frametitle{Radiative decays}

\begin{columns}
\column{5in}

\begin{itemize}
\item $\PBzero \to \PKstar \Pphoton$ - first observed penguin!
\begin{itemize}
\item CLEO, [\href{http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.71.674}{\color{blue}PRL, 71 (1993) 674}]
\end{itemize}
\item B-factories probed NP measuring, inclusively/ semi-inclusively  $\mathcal{B}(\Pbeauty \to \Pstrange \Pphoton)$
\end{itemize}
\column{0.1in}{~}

\end{columns}



\begin{columns}
\column{3in}
\begin{itemize}
\item Is there any way LHCb can contribute?
\begin{itemize}
\item Measurements of $\mathcal{B}(\Pbeauty \to \Pstrange \Pphoton)$ very difficult.
\item Can probe the photon polarization!
\end{itemize}
\end{itemize}
\column{2in}
\includegraphics[width=0.85\textwidth]{susy/btosgamma.png}
\end{columns}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5


\begin{columns}
\column{5in}

\begin{itemize}
\item In SM, photons form $\Pbeauty \to \Pstrange \Pphoton$ decays are left handed.
\begin{itemize}
\item Charged current interactions: $C_7/C'_7\sim m_{\Pbeauty}/m_{\Pstrange}$
\end{itemize}
\item Can test $C_7/C'_7$ using:
\begin{itemize}
\item Mixing induced CP violation: \href{http://arxiv.org/abs/hep-ph/9704272}{\color{blue}Atwood et. al. PRL 79 (1997) 185-188}
\item $\PLambdab$ baryons: \href{http://arxiv.org/abs/hep-ph/0108074}{\color{blue}Hiller \& kagan PRD 65 (2002) 074038}
\end{itemize}
\end{itemize}
\column{0.1in}{~}

\end{columns}

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5

\begin{frame}\frametitle{Photon polarization from $\PB^+ \to \PK^{+} \Ppi^- \Ppi^+ \Pphoton$}


\begin{columns}
\column{3.5in}

\begin{itemize}
\item OR: Study $\PB \to \PK^{\ast \ast} \Pphoton$ decays like $\PBplus \to \PK_1(1270) \Pphoton$
\begin{itemize}
\item \href{http://arxiv.org/abs/hep-ph/0205065}{\color{blue}Gronau \& Pirjol PRD 66 (2002) 054008}
\end{itemize}
\item The trick is to get the photon polarization from the up-down asymmetry of photon direction in the $\PK \Ppi \Ppi$ rest frame.
\begin{itemize}
\item No asymmetry $\rightarrow$ Unpolarised photons.
\end{itemize}
\item Conceptionally this measurement is similar to the Wu experiment, which first observed parity violation.


\end{itemize}
\column{1.5in}

\includegraphics[width=0.95\textwidth]{susy/polarization.png}

\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{$\PB^+ \to \PK^{+} \Ppi^- \Ppi^+ \Pphoton$ at LHCb}


\begin{columns}
\column{3.in}

\begin{itemize}
\item LHCb looked at $\PBplus \to \PKplus \Ppiminus \Ppiplus \Pphoton$, using un-converted photons.
\item Got over 13.000 candidates in $3~fb^{-1}$!
\item \href{http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.161801}{\color{blue} Phys. Rev. Lett. 112, 161801 }
\item $\PKplus \Ppiminus \Ppiplus$ system has variety of resonances.
\begin{itemize}
\item $\PK \Ppi \Ppi$ system studied inclusively.
\item Bin the $m_{K\pi\pi}$ mass and look for polarization there.
\end{itemize}
\end{itemize}
\column{2in}
{~}
\includegraphics[width=0.95\textwidth]{susy/plotspolarization.png}

\end{columns}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}%\frametitle{$\color{white} B^+ \to K^{+} \pi^- \pi^+ \gamma$ at LHCb}
\begin{center}
{\color{red} Fit with $\color{red}(C_7'-C_7)/(C_7'+C_7)=0$}, {\color{blue} Best fit}
\includegraphics[width=0.93\textwidth]{susy/photonfit.png}
\end{center}


\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Up-down asymmetry}

\begin{columns}
\column{3.in}

\begin{itemize}
\item Combining the 4 bins, the hypothesis of non photon polarisation can be excluded with $5.2~\sigma$ significance.
\item Unfortunately without understanding the hadron system it is impossible to tell if the photon is left or right -handed.

\end{itemize}

\column{2in}
{~}
\includegraphics[width=0.95\textwidth]{susy/aud.png}

\end{columns}
\begin{center}
$\rightarrow$~ First observation of photon polarization in $\Pbeauty \to \Pstrange \Pphoton$!
\begin{itemize}
\item Ideal solution would be to leave photon polarization free in the fit.
\item No general description exist $\rightarrow$ input from theory community needed.
\end{itemize}


\end{center}



\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{$\PB_{(s)} \rightarrow \Pmu^+ \Pmu^-$}
\begin{columns}
\column{3.2in}

\begin{itemize}
\item Clean theoretical prediction, GIM and helicity suppressed in the SM:
\begin{itemize}
\item $\mathcal{B}(\PBs \to \Pmuon \APmuon) = (3.66 \pm 0.23)\times 10^{-9}$
\item $\mathcal{B}(\PBzero \to \Pmuon \APmuon) = (1.06 \pm 0.09)\times 10^{-10}$
\end{itemize}
\item $50\%$ of the error comes from lattice.
\item SM predictions from \href{http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.101801}{\color{blue}{Phys. Rev. Lett. 112, 101801 (2014)}}.
\item Sensitive to contributions from scalar and pesudoscalar couplings.
\item Probing: MSSM, higgs sector, etc.
\item In MSSM: $\mathcal{B}(\PBs \to \Pmuon \APmuon) \sim \tan^6 \beta /m_A^4$
\end{itemize}

\column{1.5in}
{~}
\includegraphics[width=0.95\textwidth]{susy/bs2mumu1.png}\\
\includegraphics[width=0.95\textwidth]{susy/bs2mumu2.png}\\
\includegraphics[width=0.6\textwidth]{susy/higgspen.png}
\end{columns}


\end{frame}
\iffalse
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{$\PB_{(s)} \rightarrow \Pmu^+ \Pmu^-$ searches}


\begin{columns}
\column{5in}

\begin{itemize}
\item Background rejection power is a key feature of rare decays $\rightarrow$ use multivariate classifiers (BDT) and strong PID.
\end{itemize}
\column{0.1in}{~}

\end{columns}
\begin{columns}
\column{2.5in}
\includegraphics[width=0.95\textwidth]{susy/BDT.png}

\column{2.5in}

\includegraphics[width=0.95\textwidth]{susy/mass.png}

\end{columns}

\begin{itemize}
\item Normalize the BF to $\PBplus \to \PJpsi(\mu\mu) \PKplus$ and $\PBzero \to \PK \Ppi$.
\end{itemize}
\end{frame}

\fi
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{$\PB_{(s)} \rightarrow \Pmu^+ \Pmu^-$ Results}



\begin{columns}
\column{2.in}
\begin{itemize}
\item Nov. 2012:
\begin{itemize}
\item First evidence $3.5\sigma$ for $\PB_s \rightarrow \mu^+ \mu^-$. with $2.1~fb^{-1}$.
\end{itemize}
\item Summer 2013:
\begin{itemize}
\item Full data sample: $3~fb^{-1}$.
\end{itemize}
\end{itemize}
\column{3.0in}

\includegraphics[width=0.95\textwidth]{susy/mass2.png}

\end{columns}
\begin{itemize}
\item Measured BF:\\ $\mathcal{B}(\PBs \to \Pmuon \APmuon) =(2.9^{+1.1}_{-1.0}(stat.)^{+0.3}_{-0.1}(syst.))\times 10^{-9}$
\item $4.0 \sigma$ significance!
\item $\mathcal{B}(\PBzero \to \Pmuon \APmuon) < 7 \times 10^{-10}$ at $95\%$ CL
\item \href{http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.021801}{\color{blue} PRL 110 (2013) 021801 }
\item \href{http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.101805}{\color{blue} CMS result: PRL 111 (2013) 101805}
\end{itemize}


\end{frame}





%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{LHCb+CMS combined analysis}
\begin{Large}


\begin{center}
$\mathcal{B}(\PBs \to \Pmuon \APmuon) =(2.8^{+0.7}_{-0.6} )\times 10^{-9}$\\
$\mathcal{B}(\PBzero \to \Pmuon \APmuon) =(3.9^{+1.6}_{-1.4} )\times 10^{-10}$
\end{center}
\end{Large}

\includegraphics[width=0.95\textwidth]{susy/bs2mumu_comb.png}

\begin{itemize}
\item \href{http://arxiv.org/pdf/1411.4413v1.pdf}{\color{blue}Nature 522, 7554}
%\item See Daniele Fasanella talk for CMS side.
\end{itemize}

\end{frame}





%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ angular distributions}
\begin{columns}
\column{2.5in}{~}
\begin{itemize}
\item $\Pbeauty \to \Pstrange \Plepton \Plepton$ decays poses large spectrum of observables.
\item LHCb favourite: $\PBzero \to \PKstar \Pmuon \APmuon$.
\item Sensitive to lot of new physics models.
\item Decay described by three angles $\theta_l, \theta_K, \phi$ and dimuon invariant mass $q^2$.
\item Analysis is performed in bins of $q^2$.
\end{itemize}
\column{2.5in}
\includegraphics[width=0.95\textwidth]{susy/angles.png}

\end{columns}
\end{frame}
\begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ selection}
\begin{center}
\includegraphics[width=0.65\textwidth]{images/Fig1.pdf}
\end{center}
\begin{itemize}
\item BDT to suppress combinatorial background.\\ Input variables: PID, kinematics and geometric quantities, isolations.
\item Veto the $\PJpsi$ and $\Psi(2S)$ resonances.
\item \href{http://lhcb.web.cern.ch/lhcb/Physics-Results/LHCb-CONF-2015-002.pdf}{\color{blue}{CONF-2015-002}}
\end{itemize}


\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ mass modeling}
\only<1>{
\begin{columns}
\column{0.05in}
{~}
\column{2.5in}
Control Channel: $\PBzero \to \PJpsi \PKstar$
\includegraphics[angle=-90,width=0.85\textwidth]{images/Fig3a.pdf}
\column{2.5in}   
Signal Channel: $\PBzero \to \Pmuon \APmuon \PKstar$  
\includegraphics[angle=-90,width=0.85\textwidth]{images/Fig3b.pdf}
\end{columns}
\begin{itemize}
\item Signal mass model from high statistics $\PBzero \to \PJpsi \PKstar$.
\item Correction factor from simulation to account for $q^2$ dep. resolution.
\end{itemize}
}
\only<2>{
\begin{center}
\includegraphics[angle=-90,width=0.25\textwidth]{susy/m0.pdf}
\includegraphics[angle=-90,width=0.25\textwidth]{susy/m1.pdf}
\includegraphics[angle=-90,width=0.25\textwidth]{susy/m2.pdf}
\includegraphics[angle=-90,width=0.25\textwidth]{susy/m3.pdf}\\
\includegraphics[angle=-90,width=0.25\textwidth]{susy/m4.pdf}    
\includegraphics[angle=-90,width=0.25\textwidth]{susy/m5.pdf}    
\includegraphics[angle=-90,width=0.25\textwidth]{susy/m6.pdf}    
\includegraphics[angle=-90,width=0.25\textwidth]{susy/m7.pdf}    
\end{center}
}
\begin{itemize}
\item Finer $q^2$ binning allow more flexible usage for theoriets.  
\item Significant signal yield in all bins!                         
\item Integrated over all bins we have $2398\pm57$ candidates.      
\end{itemize}

\end{frame}



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ angular distributions}
\begin{itemize}
\item Angular distributions depends on 11 angular terms:
%\includegraphics[width=0.95\textwidth]{susy/eq.png}
\tiny{
\begin{align*}
\left.\frac{1}{{\rm d}(\Gamma+\bar{\Gamma})/{\rm d}q^2}\frac{{\rm d}(\Gamma+\bar{\Gamma})}{{\rm dcos}\thetal\,{\rm dcos}\thetak\,{\rm d}\phi}   \right|_{\rm P} =
\tfrac{9}{32\pi}\bigl[
&\tfrac{3}{4} (1-{F_{\rm L}})\sin^2\thetak \\[-0.75em]
&+ {F_{\rm L}}\cos^2\thetak + \tfrac{1}{4}(1-{F_{\rm L}})\sin^2\thetak\cos 2\thetal\nonumber\\
&- {F_{\rm L}} \cos^2\thetak\cos 2\thetal + {S_3}\sin^2\thetak \sin^2\thetal \cos 2\phi\nonumber\\
&+ {S_4} \sin 2\thetak \sin 2\thetal \cos\phi + {S_5}\sin 2\thetak \sin \thetal \cos \phi\nonumber\\
&+ \tfrac{4}{3} {A_{\rm FB}} \sin^2\thetak \cos\thetal + {S_7} \sin 2\thetak \sin\thetal \sin\phi\nonumber\\
&+ {S_8} \sin 2\thetak \sin 2\thetal \sin\phi + {S_9}\sin^2\thetak \sin^2\thetal \sin 2\phi \nonumber
\bigr].
%\end{split}
%\bigr],
\end{align*}
}
\end{itemize}
where the $S_i$ are bilinear combinations of helicity amplitudes.
\begin{itemize}
\item We assume no scalar and tensor contribution and massless leptons.
\end{itemize}

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{S-wave pollution}
\begin{itemize}
\item S-wave: $\PK^+ \Ppi^-$ in spin $0$ configuration
\item Introduced by additional two decay amplitudes $\rightarrow$ six observables.
\end{itemize}
{\tiny{
\begin{align*}
\left.\frac{1}{{\rm d}(\Gamma+\bar{\Gamma})/{\rm d}q^2}\frac{{\rm d}(\Gamma+\bar{\Gamma})}{{\rm dcos}\thetal\,{\rm dcos}\thetak\,{\rm d}\phi}\right|_{{\rm S}+{\rm P}} =
(1-F_S)&\left.\frac{1}{{\rm d}(\Gamma+\bar{\Gamma})/{\rm d}q^2}\frac{{\rm d}(\Gamma+\bar{\Gamma})}{{\rm dcos}\thetal\,{\rm dcos}\thetak\,{\rm d}\phi}\right|_{\rm P}\label{eq:pdfswave}\\
+\tfrac{3}{16\pi} &\bigl[F_S \sin^2\thetal + S-P~\rm{interefence} \bigr].\nonumber
\end{align*}
}}
\begin{columns}
\column{2.5in}
\begin{itemize}
\item $F_S$ dilutes the P-wave observables by a factor $1-F_S$.
\item Needs to be taken into account \\ $\rightarrow$ fit the $m_{K\pi}$.
\item Rel. BW for P-wave.
\item LASS model for S-wave\\{~}\\{~}\\{~}
\end{itemize}
\column{2in}
\includegraphics[angle=-90,width=0.85\textwidth]{images/mkpi4sig.pdf}

\end{columns}


\end{frame}




%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$  results}
\begin{columns}
\column{2.5in}
\includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5a.pdf}\\
\includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5c.pdf}
\column{2.5in}
\includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5b.pdf}\\
\includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5d.pdf}
\end{columns}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$  results}
\begin{center}
\includegraphics[angle=-90,width=0.65\textwidth]{images/Fig17.pdf}\\
\end{center}
\begin{itemize}
\item Tension in $P_5^{\prime}$ confirmed!
\item $[4.0,6.0]$ and $[6.0, 8.0]~\GeV^2/c^4$ show $2.9 \sigma$ deviation each.
\item Naive combination shows $3.7\sigma$ discrepancy.
\item Result compatible with previous result.
\end{itemize}


\end{frame}



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Understanding the $\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ anomaly}
\begin{columns}
\column{3.in}
\begin{itemize}
\item Matias, Decotes-Genon \& Virto performed a fit to our preliminary result.s
\item Found $\sim 4 \sigma$ discrepancy from SM.
\item Fit favours $C_9^{NP}=-1.1$
\item \href{https://indico.in2p3.fr/event/10819/session/10/contribution/14/material/slides/0.pdf}{\color{Blue}{Moriond 2015 slides}}
\end{itemize}
\begin{itemize}
\item Straub performed  the same analysis as Matias et. al.
\item Found the same solution:\\ $\rightarrow$ $C_9$ modification.
\item Data can be explained by introducing a flavour changing $\PZprime$ boson, with mass $\mathcal{O}(10~TeV)$
\item \href{https://indico.in2p3.fr/event/10819/session/10/contribution/87/material/slides/0.pdf}{\color{blue}{Moriond 2015 slides}}
\end{itemize}

\column{2.in}
\includegraphics[width=0.95\textwidth]{images/quim.png}\\
\includegraphics[width=0.95\textwidth]{images/straub.png}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\begin{frame}\frametitle{Understanding the $\color{white}B^{0} \rightarrow K^{\ast} \mu \mu$ anomaly 2/2}
%\begin{columns}
%\column{3in}

%\includegraphics[width=0.99\textwidth]{susy/c9.png}
%\column{2in}
%\begin{itemize}
%\item High $q^2$ differential BF suggests are all below SM.
%\item Better consistency with $C_9^{NP}=-1.5$
%\end{itemize}

%\end{columns}


%\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Lepton universality}
\begin{columns}
\column{3.0in}
\begin{itemize}
\item If $\PZprime$ is responsible for the $P'_5$ anomaly, does it couple equally to all flavours?
\includegraphics[width=0.9\textwidth]{susy/uni2.png}
\item Challenging analysis due to bremsstrahlung.
\item Migration of events modeled by MC.
\item Correct bremsstrahlung.
\item Take double ratio with $\PBplus \to \PJpsi \PKplus$ to cancel systematics.
\item In $3fb^{-1}$, LHCb measures $R_K=0.745^{+0.090}_{-0.074}(stat.)^{+0.036}_{-0.036}(syst.)$
\item Consistent with SM at $2.6\sigma$.

\end{itemize}
\column{2.0in}
\includegraphics[width=0.99\textwidth]{images/RK.png}\\
\begin{itemize}
\item \href{http://arxiv.org/abs/1406.6482}{Phys. Rev. Lett. 113, 151601 (2014)}
\end{itemize}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Lepton universality with $\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ anomaly}
\begin{columns}
\column{3in}
\begin{itemize}
\item Lepton flavour universality cannot be explained by any QCD effect!
\item This effect is consistent with anomaly (non universal $\PZ'$)
\item Global fit to $\Pbeauty \rightarrow  \Pstrange \Pmuon \APmuon$ and $\Pbeauty \rightarrow  \Pstrange \Pelectron \APelectron$ seems to favour $\PZ'$ with non lepton universal couplings.
\end{itemize}


\column{2in}
\includegraphics[width=0.9\textwidth]{images/LU.png}
\end{columns}
\href{http://arxiv.org/pdf/1408.4097v3.pdf}{\color{blue}{JHEP (2014) 131}}
\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Conclusions}
\begin{columns}
\column{3.3in}
\begin{itemize}
\item Rare decays play important role in hutting NP.
\item Can access NP scales beyond reach of GPD.
\item Tension in $\Pbeauty \to \Pstrange \Plepton \Plepton$, theory correct?
\item List of decays presented in this talk is just a tip of iceberg:
\begin{itemize}
\item Please look at ours: isospin, $A_{CP}$.
\item More results are on their way.
\end{itemize}
\item Many results really on SM prediction, QCD improved calculations would be highly appreciated.

\end{itemize}
\column{2in}
\includegraphics[width=0.9\textwidth]{susy/higgs_boring.png}
\end{columns}

\end{frame}



\backupbegin

\begin{frame}\frametitle{Backup}
\topline

\end{frame}

\backupend

\end{document}