\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer} \usepackage[english]{babel} \usepackage{polski} \usetheme[ bullet=circle, % Other option: square bigpagenumber, % circled page number on lower right topline=true, % colored bar at the top of the frame shadow=false, % Shading for beamer blocks watermark=BG_lower, % png file for the watermark ]{Flip} %\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}} \usepackage[lf]{berenis} \usepackage[LY1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{emerald} \usefonttheme{professionalfonts} \usepackage[no-math]{fontspec} \defaultfontfeatures{Mapping=tex-text} % This seems to be important for mapping glyphs properly \setmainfont{Gillius ADF} % Beamer ignores "main font" in favor of sans font \setsansfont{Gillius ADF} % This is the font that beamer will use by default % \setmainfont{Gill Sans Light} % Prettier, but harder to read \setbeamerfont{title}{family=\fontspec{Gillius ADF}} \input t1augie.fd %\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font %\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font % \newcommand{\handwriting}{} % If you prefer no special handwriting font or don't have augie %% Gill Sans doesn't look very nice when boldfaced %% This is a hack to use Helvetica instead %% Usage: \textbf{\forbold some stuff} %\newcommand{\forbold}{\fontspec{Arial}} \usepackage{graphicx} \usepackage[export]{adjustbox} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{colortbl} \usepackage{mathrsfs} % For Weinberg-esque letters \usepackage{cancel} % For "SUSY-breaking" symbol \usepackage{slashed} % for slashed characters in math mode \usepackage{bbm} % for \mathbbm{1} (unit matrix) \usepackage{amsthm} % For theorem environment \usepackage{multirow} % For multi row cells in table \usepackage{arydshln} % For dashed lines in arrays and tables \usepackage{siunitx} \usepackage{xhfill} \usepackage{grffile} \usepackage{textpos} \usepackage{subfigure} \usepackage{tikz} %\usepackage{hepparticles} \usepackage[italic]{hepparticles} \usepackage{hepnicenames} % Drawing a line \tikzstyle{lw} = [line width=20pt] \newcommand{\topline}{% \tikz[remember picture,overlay] {% \draw[crimsonred] ([yshift=-23.5pt]current page.north west) -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}} % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % \usepackage{tikzfeynman} % For Feynman diagrams \usetikzlibrary{arrows,shapes} \usetikzlibrary{trees} \usetikzlibrary{matrix,arrows} % For commutative diagram % http://www.felixl.de/commu.pdf \usetikzlibrary{positioning} % For "above of=" commands \usetikzlibrary{calc,through} % For coordinates \usetikzlibrary{decorations.pathreplacing} % For curly braces % http://www.math.ucla.edu/~getreuer/tikz.html \usepackage{pgffor} % For repeating patterns \usetikzlibrary{decorations.pathmorphing} % For Feynman Diagrams \usetikzlibrary{decorations.markings} \tikzset{ % >=stealth', %% Uncomment for more conventional arrows vector/.style={decorate, decoration={snake}, draw}, provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw}, antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw}, fermion/.style={draw=gray, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}}, fermionbar/.style={draw=gray, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}}, fermionnoarrow/.style={draw=gray}, gluon/.style={decorate, draw=black, decoration={coil,amplitude=4pt, segment length=5pt}}, scalar/.style={dashed,draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}}, scalarbar/.style={dashed,draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}}, scalarnoarrow/.style={dashed,draw=black}, electron/.style={draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}}, bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw}, } % TIKZ - for block diagrams, % from http://www.texample.net/tikz/examples/control-system-principles/ % \usetikzlibrary{shapes,arrows} \tikzstyle{block} = [draw, rectangle, minimum height=3em, minimum width=6em] \usetikzlibrary{backgrounds} \usetikzlibrary{mindmap,trees} % For mind map \newcommand{\degree}{\ensuremath{^\circ}} \newcommand{\E}{\mathrm{E}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\Cov}{\mathrm{Cov}} \newcommand\Ts{\rule{0pt}{2.6ex}} % Top strut \newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut \graphicspath{{images/}} % Put all images in this directory. Avoids clutter. % SOME COMMANDS THAT I FIND HANDY % \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec \newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild \newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold \newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold \newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert \newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert %% "\alert" is already a beamer pre-defined \newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}% \newcommand{\thetal}{\theta_l} \newcommand{\thetak}{\theta_k} \def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}} \usepackage{gmp} \usepackage[final]{feynmp-auto} \usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex} \bibliography{bib} \setbeamertemplate{bibliography item}[text] \makeatletter\let\frametextheight\beamer@frametextheight\makeatother % suppress frame numbering for backup slides % you always need the appendix for this! \newcommand{\backupbegin}{ \newcounter{framenumberappendix} \setcounter{framenumberappendix}{\value{framenumber}} } \newcommand{\backupend}{ \addtocounter{framenumberappendix}{-\value{framenumber}} \addtocounter{framenumber}{\value{framenumberappendix}} } \definecolor{links}{HTML}{2A1B81} %\hypersetup{colorlinks,linkcolor=,urlcolor=links} % For shapo's formulas: \def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}} \def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}} \newcommand{\lsim}{\mathop{\lsi}} \newcommand{\gsim}{\mathop{\gsi}} \newcommand{\wt}{\widetilde} %\newcommand{\ol}{\overline} \newcommand{\Tr}{\rm{Tr}} \newcommand{\tr}{\rm{tr}} \newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&} \newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}} \newcommand{\abs}[1]{\rm{$\left| #1 \right|$}} \newcommand{\eV}{\rm{eV}} \newcommand{\keV}{\rm{keV}} \newcommand{\GeV}{\rm{GeV}} \newcommand{\im}{\rm{Im}} \newcommand{\disp}{\displaystyle} \def\be{\begin{equation}} \def\ee{\end{equation}} \def\ba{\begin{eqnarray}} \def\ea{\end{eqnarray}} \def\d{\partial} \def\l{\left(} \def\r{\right)} \def\la{\langle} \def\ra{\rangle} \def\e{{\rm e}} \def\Br{{\rm Br}} \author{ {\fontspec{Trebuchet MS}Marcin Chrz\k{a}szcz} (Universit\"{a}t Z\"{u}rich)} \institute{UZH} \title[Electroweak penguin decays to leptons and Radiative decays at LHCb]{Electroweak penguin decays to leptons and Radiative decays at LHCb} \date{25 September 2014} \begin{document} \tikzstyle{every picture}+=[remember picture] { \setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}} \begin{frame}[c]%{\phantom{title page}} \begin{center} \begin{center} \begin{columns} \begin{column}{0.75\textwidth} \flushright\fontspec{Trebuchet MS}\bfseries \LARGE {Electroweak penguin decays to leptons and Radiative decays at LHCb} \end{column} \begin{column}{0.02\textwidth} {~} \end{column} \begin{column}{0.23\textwidth} % \hspace*{-1.cm} \vspace*{-3mm} \includegraphics[width=0.6\textwidth]{lhcb-logo} \end{column} \end{columns} \end{center} \quad \vspace{3em} \begin{columns} \begin{column}{0.44\textwidth} \flushright \vspace{-1.8em} {\fontspec{Trebuchet MS} \Large Marcin ChrzÄ…szcz\\\vspace{-0.1em}\small \href{mailto:mchrzasz@cern.ch}{mchrzasz@cern.ch}} \end{column} \begin{column}{0.53\textwidth} \includegraphics[height=1.3cm]{uzh-transp} \end{column} \end{columns} \vspace{1em} % \footnotesize\textcolor{gray}{With N. Serra, B. Storaci\\Thanks to the theory support from M. Shaposhnikov, D. Gorbunov}\normalsize\\ \vspace{0.5em} \textcolor{normal text.fg!50!Comment}{SUSY 2015, Tahoe City, 23-29 August, 2015} \end{center} \end{frame} } \section[Outline]{} \begin{frame} %\tableofcontents %FIXME! \begin{enumerate} \item Rare $\PB$ decays: \begin{itemize} \item $\PB^+ \to \PK^+ \Ppi^- \Ppi^+ \Pphoton$ \item $\PBs/\PBzero \to \mu^- \mu^+$. \item $\PBzero \to \PKstar \Pmuon \APmuon$. \end{itemize} \end{enumerate} \end{frame} %------------------------------------------------------------------- % Introduction %------------------------------------------------------------------- % % Set the background for the rest of the slides. % Insert infoline %\setbeamertemplate{background} % {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}} %\setbeamertemplate{footline}[bunsentheme] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\setbeamertemplate{background} % {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}} %\setbeamertemplate{footline}[bunsentheme] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\section{LHCb detector} %\begin{frame}\frametitle{LHCb detector} %\begin{columns} %\column{3.in} %\begin{center} %\includegraphics[width=0.98\textwidth]{det.jpg} %\end{center} %\column{2.0in} %\begin{footnotesize} % LHCb is a forward spectrometer: % \begin{itemize} % \item Excellent vertex resolution. % \item Efficient trigger. % \item High acceptance for $\Ptau$ and $\PB$. % \item Great Particle ID % \end{itemize} %\end{footnotesize} %\end{columns} %\end{frame} \section{Introduction} \begin{frame}\frametitle{Why rare decays?} \begin{columns} \column{4in} \begin{itemize} \item In SM allows only the charged interactions to change flavour. \begin{itemize} \item Other interactions are flavour conserving. \end{itemize} \item One can escape this constrain and produce $\Pbottom \to \Pstrange$ and $\Pbottom \to \Pdown$ at loop level. \begin{itemize} \item This kind of processes are suppressed in SM $\to$~Rare decays. \item New Physics can enter in the loops. \end{itemize} \end{itemize} \begin{center} \includegraphics[scale=0.3]{susy/lupa.png} \includegraphics[scale=0.3]{susy/example.png} \end{center} \column{1.5in} \includegraphics[width=0.61\textwidth]{susy/couplings.png} \end{columns} \end{frame} \begin{frame}\frametitle{Tools} \begin{itemize} \item \textbf{Operator Product Expansion and Effective Field Theory} \end{itemize} \begin{columns} \column{0.1in}{~} \column{3.2in} \begin{align*} H_{eff} = - \dfrac{4G_f}{\sqrt{2}} V V^{\prime \ast}\ \sum_i \left[\underbrace{C_i(\mu)O_i(\mu)}_\text{left-handed} +\underbrace{C'_i(\mu)O'_i(\mu)}_\text{right-handed}\right], \end{align*} \column{2in} \begin{tiny} \begin{description} \item[i=1,2] Tree \item[i=3-6,8] Gluon penguin \item[i=7] Photon penguin \item[i=9.10] EW penguin \item[i=S] Scalar penguin \item[i=P] Pseudoscalar penguin \end{description} \end{tiny} \end{columns} where $C_i$ are the Wilson coefficients and $O_i$ are the corresponding effective operators. \begin{center} \includegraphics[width=0.85\textwidth,height=3cm]{susy/all.png} \end{center} \end{frame} \begin{frame}\frametitle{Radiative decays} \begin{columns} \column{5in} \begin{itemize} \item $\PBzero \to \PKstar \Pphoton$ - first observed penguin! \begin{itemize} \item CLEO, [\href{http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.71.674}{\color{blue}PRL, 71 (1993) 674}] \end{itemize} \item B-factories probed NP measuring, inclusively/ semi-inclusively $\mathcal{B}(\Pbeauty \to \Pstrange \Pphoton)$ \end{itemize} \column{0.1in}{~} \end{columns} \begin{columns} \column{3in} \begin{itemize} \item Is there any way LHCb can contribute? \begin{itemize} \item Measurements of $\mathcal{B}(\Pbeauty \to \Pstrange \Pphoton)$ very difficult. \item Can probe the photon polarization! \end{itemize} \end{itemize} \column{2in} \includegraphics[width=0.85\textwidth]{susy/btosgamma.png} \end{columns} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{columns} \column{5in} \begin{itemize} \item In SM, photons form $\Pbeauty \to \Pstrange \Pphoton$ decays are left handed. \begin{itemize} \item Charged current interactions: $C_7/C'_7\sim m_{\Pbeauty}/m_{\Pstrange}$ \end{itemize} \item Can test $C_7/C'_7$ using: \begin{itemize} \item Mixing induced CP violation: \href{http://arxiv.org/abs/hep-ph/9704272}{\color{blue}Atwood et. al. PRL 79 (1997) 185-188} \item $\PLambdab$ baryons: \href{http://arxiv.org/abs/hep-ph/0108074}{\color{blue}Hiller \& kagan PRD 65 (2002) 074038} \end{itemize} \end{itemize} \column{0.1in}{~} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{Photon polarization from $\PB^+ \to \PK^{+} \Ppi^- \Ppi^+ \Pphoton$} \begin{columns} \column{3.5in} \begin{itemize} \item OR: Study $\PB \to \PK^{\ast \ast} \Pphoton$ decays like $\PBplus \to \PK_1(1270) \Pphoton$ \begin{itemize} \item \href{http://arxiv.org/abs/hep-ph/0205065}{\color{blue}Gronau \& Pirjol PRD 66 (2002) 054008} \end{itemize} \item The trick is to get the photon polarization from the up-down asymmetry of photon direction in the $\PK \Ppi \Ppi$ rest frame. \begin{itemize} \item No asymmetry $\rightarrow$ Unpolarised photons. \end{itemize} \item Conceptionally this measurement is similar to the Wu experiment, which first observed parity violation. \end{itemize} \column{1.5in} \includegraphics[width=0.95\textwidth]{susy/polarization.png} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{$\PB^+ \to \PK^{+} \Ppi^- \Ppi^+ \Pphoton$ at LHCb} \begin{columns} \column{3.in} \begin{itemize} \item LHCb looked at $\PBplus \to \PKplus \Ppiminus \Ppiplus \Pphoton$, using un-converted photons. \item Got over 13.000 candidates in $3~fb^{-1}$! \item \href{http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.161801}{\color{blue} Phys. Rev. Lett. 112, 161801 } \item $\PKplus \Ppiminus \Ppiplus$ system has variety of resonances. \begin{itemize} \item $\PK \Ppi \Ppi$ system studied inclusively. \item Bin the $m_{K\pi\pi}$ mass and look for polarization there. \end{itemize} \end{itemize} \column{2in} {~} \includegraphics[width=0.95\textwidth]{susy/plotspolarization.png} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}%\frametitle{$\color{white} B^+ \to K^{+} \pi^- \pi^+ \gamma$ at LHCb} \begin{center} {\color{red} Fit with $\color{red}(C_7'-C_7)/(C_7'+C_7)=0$}, {\color{blue} Best fit} \includegraphics[width=0.93\textwidth]{susy/photonfit.png} \end{center} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Up-down asymmetry} \begin{columns} \column{3.in} \begin{itemize} \item Combining the 4 bins, the hypothesis of non photon polarisation can be excluded with $5.2~\sigma$ significance. \item Unfortunately without understanding the hadron system it is impossible to tell if the photon is left or right -handed. \end{itemize} \column{2in} {~} \includegraphics[width=0.95\textwidth]{susy/aud.png} \end{columns} \begin{center} $\rightarrow$~ First observation of photon polarization in $\Pbeauty \to \Pstrange \Pphoton$! \begin{itemize} \item Ideal solution would be to leave photon polarization free in the fit. \item No general description exist $\rightarrow$ input from theory community needed. \end{itemize} \end{center} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{$\PB_{(s)} \rightarrow \Pmu^+ \Pmu^-$} \begin{columns} \column{3.2in} \begin{itemize} \item Clean theoretical prediction, GIM and helicity suppressed in the SM: \begin{itemize} \item $\mathcal{B}(\PBs \to \Pmuon \APmuon) = (3.66 \pm 0.23)\times 10^{-9}$ \item $\mathcal{B}(\PBzero \to \Pmuon \APmuon) = (1.06 \pm 0.09)\times 10^{-10}$ \end{itemize} \item $50\%$ of the error comes from lattice. \item SM predictions from \href{http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.101801}{\color{blue}{Phys. Rev. Lett. 112, 101801 (2014)}}. \item Sensitive to contributions from scalar and pesudoscalar couplings. \item Probing: MSSM, higgs sector, etc. \item In MSSM: $\mathcal{B}(\PBs \to \Pmuon \APmuon) \sim \tan^6 \beta /m_A^4$ \end{itemize} \column{1.5in} {~} \includegraphics[width=0.95\textwidth]{susy/bs2mumu1.png}\\ \includegraphics[width=0.95\textwidth]{susy/bs2mumu2.png}\\ \includegraphics[width=0.6\textwidth]{susy/higgspen.png} \end{columns} \end{frame} \iffalse %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{$\PB_{(s)} \rightarrow \Pmu^+ \Pmu^-$ searches} \begin{columns} \column{5in} \begin{itemize} \item Background rejection power is a key feature of rare decays $\rightarrow$ use multivariate classifiers (BDT) and strong PID. \end{itemize} \column{0.1in}{~} \end{columns} \begin{columns} \column{2.5in} \includegraphics[width=0.95\textwidth]{susy/BDT.png} \column{2.5in} \includegraphics[width=0.95\textwidth]{susy/mass.png} \end{columns} \begin{itemize} \item Normalize the BF to $\PBplus \to \PJpsi(\mu\mu) \PKplus$ and $\PBzero \to \PK \Ppi$. \end{itemize} \end{frame} \fi %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{$\PB_{(s)} \rightarrow \Pmu^+ \Pmu^-$ Results} \begin{columns} \column{2.in} \begin{itemize} \item Nov. 2012: \begin{itemize} \item First evidence $3.5\sigma$ for $\PB_s \rightarrow \mu^+ \mu^-$. with $2.1~fb^{-1}$. \end{itemize} \item Summer 2013: \begin{itemize} \item Full data sample: $3~fb^{-1}$. \end{itemize} \end{itemize} \column{3.0in} \includegraphics[width=0.95\textwidth]{susy/mass2.png} \end{columns} \begin{itemize} \item Measured BF:\\ $\mathcal{B}(\PBs \to \Pmuon \APmuon) =(2.9^{+1.1}_{-1.0}(stat.)^{+0.3}_{-0.1}(syst.))\times 10^{-9}$ \item $4.0 \sigma$ significance! \item $\mathcal{B}(\PBzero \to \Pmuon \APmuon) < 7 \times 10^{-10}$ at $95\%$ CL \item \href{http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.021801}{\color{blue} PRL 110 (2013) 021801 } \item \href{http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.101805}{\color{blue} CMS result: PRL 111 (2013) 101805} \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{LHCb+CMS combined analysis} \begin{Large} \begin{center} $\mathcal{B}(\PBs \to \Pmuon \APmuon) =(2.8^{+0.7}_{-0.6} )\times 10^{-9}$\\ $\mathcal{B}(\PBzero \to \Pmuon \APmuon) =(3.9^{+1.6}_{-1.4} )\times 10^{-10}$ \end{center} \end{Large} \includegraphics[width=0.95\textwidth]{susy/bs2mumu_comb.png} \begin{itemize} \item \href{http://arxiv.org/pdf/1411.4413v1.pdf}{\color{blue}Nature 522, 7554} %\item See Daniele Fasanella talk for CMS side. \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ angular distributions} \begin{columns} \column{2.5in}{~} \begin{itemize} \item $\Pbeauty \to \Pstrange \Plepton \Plepton$ decays poses large spectrum of observables. \item LHCb favourite: $\PBzero \to \PKstar \Pmuon \APmuon$. \item Sensitive to lot of new physics models. \item Decay described by three angles $\theta_l, \theta_K, \phi$ and dimuon invariant mass $q^2$. \item Analysis is performed in bins of $q^2$. \end{itemize} \column{2.5in} \includegraphics[width=0.95\textwidth]{susy/angles.png} \end{columns} \end{frame} \begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ selection} \begin{center} \includegraphics[width=0.65\textwidth]{images/Fig1.pdf} \end{center} \begin{itemize} \item BDT to suppress combinatorial background.\\ Input variables: PID, kinematics and geometric quantities, isolations. \item Veto the $\PJpsi$ and $\Psi(2S)$ resonances. \item \href{http://lhcb.web.cern.ch/lhcb/Physics-Results/LHCb-CONF-2015-002.pdf}{\color{blue}{CONF-2015-002}} \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ mass modeling} \only<1>{ \begin{columns} \column{0.05in} {~} \column{2.5in} Control Channel: $\PBzero \to \PJpsi \PKstar$ \includegraphics[angle=-90,width=0.85\textwidth]{images/Fig3a.pdf} \column{2.5in} Signal Channel: $\PBzero \to \Pmuon \APmuon \PKstar$ \includegraphics[angle=-90,width=0.85\textwidth]{images/Fig3b.pdf} \end{columns} \begin{itemize} \item Signal mass model from high statistics $\PBzero \to \PJpsi \PKstar$. \item Correction factor from simulation to account for $q^2$ dep. resolution. \end{itemize} } \only<2>{ \begin{center} \includegraphics[angle=-90,width=0.25\textwidth]{susy/m0.pdf} \includegraphics[angle=-90,width=0.25\textwidth]{susy/m1.pdf} \includegraphics[angle=-90,width=0.25\textwidth]{susy/m2.pdf} \includegraphics[angle=-90,width=0.25\textwidth]{susy/m3.pdf}\\ \includegraphics[angle=-90,width=0.25\textwidth]{susy/m4.pdf} \includegraphics[angle=-90,width=0.25\textwidth]{susy/m5.pdf} \includegraphics[angle=-90,width=0.25\textwidth]{susy/m6.pdf} \includegraphics[angle=-90,width=0.25\textwidth]{susy/m7.pdf} \end{center} } \begin{itemize} \item Finer $q^2$ binning allow more flexible usage for theoriets. \item Significant signal yield in all bins! \item Integrated over all bins we have $2398\pm57$ candidates. \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ angular distributions} \begin{itemize} \item Angular distributions depends on 11 angular terms: %\includegraphics[width=0.95\textwidth]{susy/eq.png} \tiny{ \begin{align*} \left.\frac{1}{{\rm d}(\Gamma+\bar{\Gamma})/{\rm d}q^2}\frac{{\rm d}(\Gamma+\bar{\Gamma})}{{\rm dcos}\thetal\,{\rm dcos}\thetak\,{\rm d}\phi} \right|_{\rm P} = \tfrac{9}{32\pi}\bigl[ &\tfrac{3}{4} (1-{F_{\rm L}})\sin^2\thetak \\[-0.75em] &+ {F_{\rm L}}\cos^2\thetak + \tfrac{1}{4}(1-{F_{\rm L}})\sin^2\thetak\cos 2\thetal\nonumber\\ &- {F_{\rm L}} \cos^2\thetak\cos 2\thetal + {S_3}\sin^2\thetak \sin^2\thetal \cos 2\phi\nonumber\\ &+ {S_4} \sin 2\thetak \sin 2\thetal \cos\phi + {S_5}\sin 2\thetak \sin \thetal \cos \phi\nonumber\\ &+ \tfrac{4}{3} {A_{\rm FB}} \sin^2\thetak \cos\thetal + {S_7} \sin 2\thetak \sin\thetal \sin\phi\nonumber\\ &+ {S_8} \sin 2\thetak \sin 2\thetal \sin\phi + {S_9}\sin^2\thetak \sin^2\thetal \sin 2\phi \nonumber \bigr]. %\end{split} %\bigr], \end{align*} } \end{itemize} where the $S_i$ are bilinear combinations of helicity amplitudes. \begin{itemize} \item We assume no scalar and tensor contribution and massless leptons. \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{S-wave pollution} \begin{itemize} \item S-wave: $\PK^+ \Ppi^-$ in spin $0$ configuration \item Introduced by additional two decay amplitudes $\rightarrow$ six observables. \end{itemize} {\tiny{ \begin{align*} \left.\frac{1}{{\rm d}(\Gamma+\bar{\Gamma})/{\rm d}q^2}\frac{{\rm d}(\Gamma+\bar{\Gamma})}{{\rm dcos}\thetal\,{\rm dcos}\thetak\,{\rm d}\phi}\right|_{{\rm S}+{\rm P}} = (1-F_S)&\left.\frac{1}{{\rm d}(\Gamma+\bar{\Gamma})/{\rm d}q^2}\frac{{\rm d}(\Gamma+\bar{\Gamma})}{{\rm dcos}\thetal\,{\rm dcos}\thetak\,{\rm d}\phi}\right|_{\rm P}\label{eq:pdfswave}\\ +\tfrac{3}{16\pi} &\bigl[F_S \sin^2\thetal + S-P~\rm{interefence} \bigr].\nonumber \end{align*} }} \begin{columns} \column{2.5in} \begin{itemize} \item $F_S$ dilutes the P-wave observables by a factor $1-F_S$. \item Needs to be taken into account \\ $\rightarrow$ fit the $m_{K\pi}$. \item Rel. BW for P-wave. \item LASS model for S-wave\\{~}\\{~}\\{~} \end{itemize} \column{2in} \includegraphics[angle=-90,width=0.85\textwidth]{images/mkpi4sig.pdf} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ results} \begin{columns} \column{2.5in} \includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5a.pdf}\\ \includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5c.pdf} \column{2.5in} \includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5b.pdf}\\ \includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5d.pdf} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ results} \begin{center} \includegraphics[angle=-90,width=0.65\textwidth]{images/Fig17.pdf}\\ \end{center} \begin{itemize} \item Tension in $P_5^{\prime}$ confirmed! \item $[4.0,6.0]$ and $[6.0, 8.0]~\GeV^2/c^4$ show $2.9 \sigma$ deviation each. \item Naive combination shows $3.7\sigma$ discrepancy. \item Result compatible with previous result. \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Understanding the $\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ anomaly} \begin{columns} \column{3.in} \begin{itemize} \item Matias, Decotes-Genon \& Virto performed a fit to our preliminary result.s \item Found $\sim 4 \sigma$ discrepancy from SM. \item Fit favours $C_9^{NP}=-1.1$ \item \href{https://indico.in2p3.fr/event/10819/session/10/contribution/14/material/slides/0.pdf}{\color{Blue}{Moriond 2015 slides}} \end{itemize} \begin{itemize} \item Straub performed the same analysis as Matias et. al. \item Found the same solution:\\ $\rightarrow$ $C_9$ modification. \item Data can be explained by introducing a flavour changing $\PZprime$ boson, with mass $\mathcal{O}(10~TeV)$ \item \href{https://indico.in2p3.fr/event/10819/session/10/contribution/87/material/slides/0.pdf}{\color{blue}{Moriond 2015 slides}} \end{itemize} \column{2.in} \includegraphics[width=0.95\textwidth]{images/quim.png}\\ \includegraphics[width=0.95\textwidth]{images/straub.png} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\begin{frame}\frametitle{Understanding the $\color{white}B^{0} \rightarrow K^{\ast} \mu \mu$ anomaly 2/2} %\begin{columns} %\column{3in} %\includegraphics[width=0.99\textwidth]{susy/c9.png} %\column{2in} %\begin{itemize} %\item High $q^2$ differential BF suggests are all below SM. %\item Better consistency with $C_9^{NP}=-1.5$ %\end{itemize} %\end{columns} %\end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Lepton universality} \begin{columns} \column{3.0in} \begin{itemize} \item If $\PZprime$ is responsible for the $P'_5$ anomaly, does it couple equally to all flavours? \includegraphics[width=0.9\textwidth]{susy/uni2.png} \item Challenging analysis due to bremsstrahlung. \item Migration of events modeled by MC. \item Correct bremsstrahlung. \item Take double ratio with $\PBplus \to \PJpsi \PKplus$ to cancel systematics. \item In $3fb^{-1}$, LHCb measures $R_K=0.745^{+0.090}_{-0.074}(stat.)^{+0.036}_{-0.036}(syst.)$ \item Consistent with SM at $2.6\sigma$. \end{itemize} \column{2.0in} \includegraphics[width=0.99\textwidth]{images/RK.png}\\ \begin{itemize} \item \href{http://arxiv.org/abs/1406.6482}{Phys. Rev. Lett. 113, 151601 (2014)} \end{itemize} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Lepton universality with $\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ anomaly} \begin{columns} \column{3in} \begin{itemize} \item Lepton flavour universality cannot be explained by any QCD effect! \item This effect is consistent with anomaly (non universal $\PZ'$) \item Global fit to $\Pbeauty \rightarrow \Pstrange \Pmuon \APmuon$ and $\Pbeauty \rightarrow \Pstrange \Pelectron \APelectron$ seems to favour $\PZ'$ with non lepton universal couplings. \end{itemize} \column{2in} \includegraphics[width=0.9\textwidth]{images/LU.png} \end{columns} \href{http://arxiv.org/pdf/1408.4097v3.pdf}{\color{blue}{JHEP (2014) 131}} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Conclusions} \begin{columns} \column{3.3in} \begin{itemize} \item Rare decays play important role in hutting NP. \item Can access NP scales beyond reach of GPD. \item Tension in $\Pbeauty \to \Pstrange \Plepton \Plepton$, theory correct? \item List of decays presented in this talk is just a tip of iceberg: \begin{itemize} \item Please look at ours: isospin, $A_{CP}$. \item More results are on their way. \end{itemize} \item Many results really on SM prediction, QCD improved calculations would be highly appreciated. \end{itemize} \column{2in} \includegraphics[width=0.9\textwidth]{susy/higgs_boring.png} \end{columns} \end{frame} \backupbegin \begin{frame}\frametitle{Backup} \topline \end{frame} \backupend \end{document}