- \documentclass[]{beamer}
- \setbeamertemplate{navigation symbols}{}
- \usepackage{beamerthemesplit}
- \useoutertheme{infolines}
- \usecolortheme{dolphin}
- \usetheme{Warsaw}
- \usepackage{graphicx}
- \usepackage{amssymb,amsmath}
- \usepackage[latin1]{inputenc}
- \usepackage{amsmath}
- \usepackage{amsfonts}
- \usepackage{amssymb}
- \usepackage{latexsym}
- \usepackage{hyperref}
- \usepackage{enumerate}
- \usepackage[T1]{fontenc}
- \usepackage[polish]{babel}
- \usepackage{lmodern}
-
- \usepackage{feynmp}
-
- \logo{\includegraphics[height=1.0cm,keepaspectratio ]{pic/ifj.png}
- \includegraphics[height=1.0cm]{pic/SuperB_logo.png}
- }
- %\usetheme{Boadilla}
-
- %\beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2->{15}}
- \title{The SuperB factory}
- \subtitle{physics prospects and project status}
- \author{Marcin Chrz\k{a}szcz}
- \date{$21^{st}$ September $2012$}
-
- \begin{document}
-
- {
- \institute{{\scriptsize on behave of SuperB Collaboration} {\small \newline \newline \newline Institute of Nuclear Physics PAN \newline Krakow, Poland}}
- \setbeamertemplate{footline}{}
- \begin{frame}
- \titlepage
- \end{frame}
- }
-
- \institute{IFJ PAN}
-
-
-
- %tutaj mamy pierwsza strone
-
-
- \section[Outline]{}
- \begin{frame}
- \tableofcontents
- \end{frame}
-
- %normal slides
- \section{Introduction}
-
-
- \begin{frame}\frametitle{B factories}
-
- B factories achived a great success over the dozen years. A natural continuation of this project are Super Flavor Factories.
- \begin{exampleblock}{Super Flavor Factories} \begin{enumerate}
- \item Data $75 ab^{-1}$.
- \item Luminosity $10^{36} cm^{-2} s^{-1} $.
- \item Flexibility to run on charm threshold with luminosity $10^{35} cm^{-2} s^{-1} $.
- \item Logitudanal polarization of electron beam $80 \% $.
- \item Upgradet Babar detector.
- \item Start of data taking: 2018.
- \item $10ab^{-1}$ peer year.
-
- \end{enumerate}
- \end{exampleblock}
-
- \end{frame}
-
- \section{SuperB Infrasctructure}
-
-
- \subsection{Accelerator}
- \begin{frame}
-
-
- \includegraphics[scale=0.35]{pic/tor_veggata_site.png}
-
-
-
- \end{frame}
-
-
- %\subsection{Accelerator}
- \begin{frame}
-
-
- \includegraphics[scale=0.35]{pic/acc.png}
-
-
-
- \end{frame}
-
- \subsection{Luminosity}
- \begin{frame}\frametitle{Quest for Luminosity}
-
- \begin{columns}[c]
-
- \column{3.0in}
- \includegraphics[scale=0.4]{pic/crab_off.png}
-
- \column{1.5in}
-
- $L \propto \dfrac{1}{\sqrt{\beta}_{y}}$, $ \Phi \approx \dfrac{\sigma_{z}}{\sigma_{x}} \dfrac{\theta}{2}$
-
-
- \end{columns}
-
-
-
-
- \end{frame}
- \begin{frame}
- \begin{columns}[c]
-
- \column{3.0in}
- \includegraphics[scale=0.4]{pic/crab_on.png}
-
- \column{1.5in}
-
- $L \propto \dfrac{1}{\sqrt{\beta}_{y}}$, $ \Phi \approx \dfrac{\sigma_{z}}{\sigma_{x}} \dfrac{\theta}{2}$
-
- \end{columns}
-
-
-
-
- \end{frame}
-
- \section{Detector}
- \begin{frame}\frametitle{Recycling}
-
- SuperB detector is based on Babar.
-
- \includegraphics[scale=7]{pic/det.jpg}
-
-
- \end{frame}
-
-
- \subsection{SVT}
-
- \begin{frame}\frametitle{Silicon Vertex Tracker}
-
- \begin{columns}[c]
- \column{3in}
- \includegraphics[scale=0.15]{pic/svt2.png}
-
- \begin{itemize}
- \item Five layers(1-5) of double-sided silicon strip detectors.
- \item Radial span $3-15~{\rm cm}$.
- \item Upgrade the electronics for faster readout.
- \item Additional Layer 0:
- \begin{enumerate}
- \item Radius $\approx 1.5 cm$ .
- \item Low material budget: $X_{0}=0.5\%$.
- \item Two possible technologies: Hybrid Pixels, Double Sided Strip detectors(Striplts).
-
- \end{enumerate}
- \end{itemize}
-
-
- %first column
- \column{2in}
- \newline \includegraphics[scale=0.23]{pic/svtb.png}
-
- %second column
- \end{columns}
-
-
- \end{frame}
-
-
-
-
-
-
-
- \subsection{DCH}
- \begin{frame}\frametitle{Drift Chamber}
-
-
- \begin{columns}[c]
- \column{3in}
- \includegraphics[scale=0.15]{pic/dich.png}
-
- \begin{itemize}
- \item 40 layers of $\approx 1 cm$ cells parralel to beam line.
- \item Provide momentum and $\dfrac{dE}{dx}$ for low momentum particles($p<700 MeV$).
- \item $\approx 10000$ channels
- \item Ocuupancy%($3.5 % - 5%$).
-
- \end{itemize}
-
-
- %first column
- \column{2in}
- R\& D:
- \begin{itemize}
- \item Geometry
- \item Gas mixture
- \item aaaa
- \end{itemize}
-
- %second column
- \end{columns}
-
-
- \end{frame}
-
-
- \subsection{DIRC}
- \begin{frame}\frametitle{Detector of Internally Reflected Cherenkov light}
-
-
- \begin{columns}[c]
- \column{2in}
- \includegraphics[scale=0.23]{pic/DIRC.png}
- \newline \includegraphics[scale=0.23]{pic/dirc2.png}
-
-
- %first column
- \column{3in}
-
- \begin{itemize}
- \item Momentum range $ 0.7 - 4 GeV$
- \item Radiator: synthetic fused silica.
- \item Photon detectors outside field region.
- \item Radiatoin hard.
-
- \end{itemize}
-
- %second column
- \end{columns}
-
-
- \end{frame}
-
-
- \subsection{EMC and IFR}
- \begin{frame}\frametitle{Electromagnetic and hadronic calorimeter}
-
-
- \begin{columns}[c]
- \column{3in}
- \includegraphics[scale=0.23]{pic/ifr.png}
-
-
-
- %first column
- \column{2in}
- Electronamgnetic Calorimeter:
- \begin{itemize}
- \item Coverage $94\% of 4 \Pi$
- \item CsI or LYSO cristals
- \item Crystal lenght $16-17.5 X_{0}$
- \item Radiatoin hard.
- \end{itemize}
- Instrumented Flux Return:
- \begin{itemize}
- \item Upgrade form TDC to BIRO
- \item Scintilators
- \item Iron reused from Babar
- \item SiPM
- \end{itemize}
- %second column
- \end{columns}
-
-
- \end{frame}
-
-
- %%%%%%%%%%% uFFFFFFFFFFFFFFFFFfff detector finished
-
-
- \section{Physics}
-
- \subsection{Rare B Physics}
- \begin{frame}\frametitle{$B \rightarrow \tau \nu$}
- \begin{columns}[c]
- \column{3.5in}
- Precise SM prediction:
- \small \newline $Br(B \rightarrow l \nu) = \dfrac{G^{2}_{F} m_{B}}{8\pi} m_{l}^{2} (1-\dfrac{m_{l}^{2}}{m_{B}^{2}})f_{B}^{2}\vert V_{ub}\vert^{2} \tau_{B}$
- \newline In SUSY:
- \small \newline $Br(B \rightarrow l \nu) = \dfrac{G^{2}_{F} m_{B}}{8\pi} m_{l}^{2} (1-\dfrac{m_{l}^{2}}{m_{B}^{2}})f_{B}^{2}\vert V_{ub}\vert^{2} \tau_{B}(1-\dfrac{tan^{2}\beta}{1+\overline{\epsilon} tan \beta}\dfrac{m_{B}^{2}}{m_{H}^{2}})$
-
-
- \column{1.5in}
- \includegraphics[scale=0.2]{pic/b2taunu.png}
- \newline \includegraphics[scale=0.2]{pic/higggs.png}
- \end{columns}
- \center \includegraphics[scale=0.16]{pic/excl.png}
-
-
- \end{frame}
-
- \subsection{TDCP}
- \begin{frame}\frametitle{Time Depended CP}
-
- Time Depended CP can be signs of new physics. One has to study set of modes:
- \newline $b \rightarrow s\overline{s}c$, $b \rightarrow s$
-
- Curent experimental results(SM -observed):
- \newline $\Delta sin(2\beta)=2.7\sigma$, penguin
- \newline $\Delta sin(2\beta)=2.1\sigma$, tree
-
- Golden modes in SuperB:
- $B \rightarrow J/\psi K^{0}$, $B \rightarrow \eta ' K^{0}$, $B \rightarrow f_{0}K_{s}^{0}$
- \begin{columns}[c]
- \column{3.0in}
- \includegraphics[scale=0.2]{pic/table.png}
- \column{2.0in}
- \includegraphics[scale=0.14]{pic/jpsi.png}
- \newline
- \newline \includegraphics[scale=0.14]{pic/jpsi2.png}
- \end{columns}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- \subsection{$B \rightarrow X_{s} \gamma$}
- \begin{frame}\frametitle{$B \rightarrow X_{s} \gamma$}
-
- Very important probe of new physics! Current experimental result averaged out:
- $Br(B \rightarrow X_{s} \gamma ) = (3.52\pm0.23\pm0.09) 10^{-4} $
-
- Theoretical calculations on NNLO:
-
- $Br(B \rightarrow X_{s} \gamma ) = (3.15 \pm 0.23) 10^{-4}$
-
- Experimently chalenging to measure the inclusive decays. THere are two ways of studing this decay:
- \begin{enumerate}
- \item Exlusive:
- \begin{itemize}
-
- \item The earliest results were done suing a large number of exclusive decays, which are fully reconstructed.
- \item Erros rising from unseen modes.
- \item Obsolete for SuperB.
-
- \end{itemize}
- \item Inclusive:
- \begin{itemize}
- \item Use tagging to tag the other B.
- \item No requirements on $X_{s}$.
- \item Disadvantage: Cut on photon energy.
- \item Effort to keep the cut as small as possible
-
- \end{itemize}
- \end{enumerate}
-
-
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \subsection{LFV}
- \begin{frame}\frametitle{LFV}
- \begin{itemize}
- \item LFV can occure in SM due to masses of the neutrinos.
- \item Any observation is evidence of new physics.
- \item Most promising channels: $\tau \rightarrow l \gamma $, $\tau \rightarrow l l l$.
- \newline
- \includegraphics[scale=0.33]{pic/tau3mu_SUSY_r_violating-eps-converted-to.pdf}
- \includegraphics[scale=0.33]{pic/tau3mu_littlest_higgs-eps-converted-to.pdf}
- \includegraphics[scale=0.33]{pic/tau3mu_SUSY_seesaw-eps-converted-to.pdf}
- \newline \includegraphics[scale=0.33]{pic/tau3mu_SUSY_seesaw-eps-converted-to.pdf}
- \includegraphics[scale=0.33]{pic/tau3mu_SM2-eps-converted-to.pdf}
- \includegraphics[scale=0.33]{pic/tau3mu_SM-eps-converted-to.pdf}
-
- \end{itemize}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- \begin{frame}\frametitle{$\tau \rightarrow l \gamma$ sensitivity}
-
-
- \begin{columns}[c]
- \column{2.5in}
-
- \begin{itemize}
- \item Better tracking resolution, increase $\Delta m - \Delta E $ box, by $65\%$.
- \item Higher photon efficiency.
- \item Increase of geometry acceprance.
- \item Thicker signal peak.
- \item Smaller boost improves performance of the fit.
- \end{itemize}
- \column{2.5in}
-
- \includegraphics[scale=0.2]{pic/dm_de.png}
-
- \end{columns}
-
- \end{frame}
-
-
-
-
-
- \begin{frame}\frametitle{Polarization}
-
- \begin{columns}[c]
- \column{2.0in}
- SuperB will have polarized electron beam($80\%$).
- One can use this infromation
- \newline \newline
- Preliminary results:
- Upper limit at $90\%$: $2.44\times10^{-9}$
- $3 \sigma$ observation: $5.50\times 10^{-9}$
- \newline
-
- \column{3.0in}
-
- \includegraphics[scale=0.23]{pic/polar.png}
-
- \end{columns}
-
- \end{frame}
-
-
- \begin{frame}\frametitle{$\tau \rightarrow 3\mu$}
- \begin{columns}[c]
- \column{2.0in}
- Current analysis:
- \begin{itemize}
- \item Calculate the trust axis.
- \item Semi tag the second $ \tau $.
- \item Limit obtained($90\%$ Br($\tau \rightarrow 3\mu$) = $8.1 \times 10^{-10}$
- \end{itemize}
- \column{3.0in}
- \includegraphics[scale=0.23]{pic/dm_de23mu.png}
- \end{columns}
- \end{frame}
-
-
-
- \begin{frame}\frametitle{LFV Summary}
- %!!!!!!!!!!!!!!!!!!!!!!
- \includegraphics[scale=0.4]{pic/lfv_superb.png}
-
- \end{frame}
-
-
-
-
- \subsection{CP violation}
- \begin{frame}\frametitle{CP violation}
- \begin{itemize}
- \item CP violation was never observed in $\tau$ sector.
- \item SM prediction is neglible small $O(10^{-12})l$ in $\tau^{\pm} \rightarrow K^{pm} \pi^{0} \nu$.
- \item Any obserwation is clear identification of NP.
- \item Very fiew NP models can explain this:
- \begin{enumerate}
- \item RPV SUSY
- \item Multi Higgs models
- \end{enumerate}
- \item SuperB can improve sensitivety 75 times compared to CLEO.
- \end{itemize}
-
- \end{frame}
-
-
- \subsection{EDM}
- \begin{frame}\frametitle{EDM}
-
-
- EDM can be measured with single angle differential cross section $e^{+}e^{-} \rightarrow \tau^{+} \tau^{-}$.
- \begin{itemize}
- \item Improvement using polarized beam.
- \item Achivable sensitivety: $10^{-19} ecm$
-
- \end{itemize}
-
-
- \end{frame}
-
-
-
-
-
-
-
-
-
-
- \end{document}