Newer
Older
Presentations / Tau2012 / SuperB_status / SuperB_status.tex
@mchrzasz mchrzasz on 9 Jan 2013 10 KB first commit
  1. \documentclass[]{beamer}
  2. \setbeamertemplate{navigation symbols}{}
  3. \usepackage{beamerthemesplit}
  4. \useoutertheme{infolines}
  5. \usecolortheme{dolphin}
  6. \usetheme{Warsaw}
  7. \usepackage{graphicx}
  8. \usepackage{amssymb,amsmath}
  9. \usepackage[latin1]{inputenc}
  10. \usepackage{amsmath}
  11. \usepackage{amsfonts}
  12. \usepackage{amssymb}
  13. \usepackage{latexsym}
  14. \usepackage{hyperref}
  15. \usepackage{enumerate}
  16. \usepackage[T1]{fontenc}
  17. \usepackage[polish]{babel}
  18. \usepackage{lmodern}
  19.  
  20. \usepackage{feynmp}
  21.  
  22. \logo{\includegraphics[height=1.0cm,keepaspectratio ]{pic/ifj.png}
  23. \includegraphics[height=1.0cm]{pic/SuperB_logo.png}
  24. }
  25. %\usetheme{Boadilla}
  26.  
  27. %\beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2->{15}}
  28. \title{The SuperB factory}
  29. \subtitle{physics prospects and project status}
  30. \author{Marcin Chrz\k{a}szcz}
  31. \date{$21^{st}$ September $2012$}
  32.  
  33. \begin{document}
  34.  
  35. {
  36. \institute{{\scriptsize on behave of SuperB Collaboration} {\small \newline \newline \newline Institute of Nuclear Physics PAN \newline Krakow, Poland}}
  37. \setbeamertemplate{footline}{}
  38. \begin{frame}
  39. \titlepage
  40. \end{frame}
  41. }
  42.  
  43. \institute{IFJ PAN}
  44.  
  45.  
  46.  
  47. %tutaj mamy pierwsza strone
  48.  
  49.  
  50. \section[Outline]{}
  51. \begin{frame}
  52. \tableofcontents
  53. \end{frame}
  54.  
  55. %normal slides
  56. \section{Introduction}
  57.  
  58.  
  59. \begin{frame}\frametitle{B factories}
  60.  
  61. B factories achived a great success over the dozen years. A natural continuation of this project are Super Flavor Factories.
  62. \begin{exampleblock}{Super Flavor Factories} \begin{enumerate}
  63. \item Data $75 ab^{-1}$.
  64. \item Luminosity $10^{36} cm^{-2} s^{-1} $.
  65. \item Flexibility to run on charm threshold with luminosity $10^{35} cm^{-2} s^{-1} $.
  66. \item Logitudanal polarization of electron beam $80 \% $.
  67. \item Upgradet Babar detector.
  68. \item Start of data taking: 2018.
  69. \item $10ab^{-1}$ peer year.
  70.  
  71. \end{enumerate}
  72. \end{exampleblock}
  73.  
  74. \end{frame}
  75.  
  76. \section{SuperB Infrasctructure}
  77.  
  78.  
  79. \subsection{Accelerator}
  80. \begin{frame}
  81.  
  82.  
  83. \includegraphics[scale=0.35]{pic/tor_veggata_site.png}
  84.  
  85.  
  86.  
  87. \end{frame}
  88.  
  89.  
  90. %\subsection{Accelerator}
  91. \begin{frame}
  92.  
  93.  
  94. \includegraphics[scale=0.35]{pic/acc.png}
  95.  
  96.  
  97.  
  98. \end{frame}
  99.  
  100. \subsection{Luminosity}
  101. \begin{frame}\frametitle{Quest for Luminosity}
  102.  
  103. \begin{columns}[c]
  104.  
  105. \column{3.0in}
  106. \includegraphics[scale=0.4]{pic/crab_off.png}
  107.  
  108. \column{1.5in}
  109. $L \propto \dfrac{1}{\sqrt{\beta}_{y}}$, $ \Phi \approx \dfrac{\sigma_{z}}{\sigma_{x}} \dfrac{\theta}{2}$
  110. \end{columns}
  111.  
  112. \end{frame}
  113. \begin{frame}
  114. \begin{columns}[c]
  115.  
  116. \column{3.0in}
  117. \includegraphics[scale=0.4]{pic/crab_on.png}
  118.  
  119. \column{1.5in}
  120. $L \propto \dfrac{1}{\sqrt{\beta}_{y}}$, $ \Phi \approx \dfrac{\sigma_{z}}{\sigma_{x}} \dfrac{\theta}{2}$
  121. \end{columns}
  122.  
  123. \end{frame}
  124.  
  125. \section{Detector}
  126. \begin{frame}\frametitle{Recycling}
  127.  
  128. SuperB detector is based on Babar.
  129.  
  130. \includegraphics[scale=7]{pic/det.jpg}
  131.  
  132.  
  133. \end{frame}
  134.  
  135.  
  136. \subsection{SVT}
  137.  
  138. \begin{frame}\frametitle{Silicon Vertex Tracker}
  139.  
  140. \begin{columns}[c]
  141. \column{3in}
  142. \includegraphics[scale=0.15]{pic/svt2.png}
  143.  
  144. \begin{itemize}
  145. \item Five layers(1-5) of double-sided silicon strip detectors.
  146. \item Radial span $3-15~{\rm cm}$.
  147. \item Upgrade the electronics for faster readout.
  148. \item Additional Layer 0:
  149. \begin{enumerate}
  150. \item Radius $\approx 1.5 cm$ .
  151. \item Low material budget: $X_{0}=0.5\%$.
  152. \item Two possible technologies: Hybrid Pixels, Double Sided Strip detectors(Striplts).
  153. \end{enumerate}
  154. \end{itemize}
  155.  
  156. %first column
  157. \column{2in}
  158. \newline \includegraphics[scale=0.23]{pic/svtb.png}
  159. %second column
  160. \end{columns}
  161.  
  162.  
  163. \end{frame}
  164.  
  165.  
  166.  
  167.  
  168.  
  169.  
  170.  
  171. \subsection{DCH}
  172. \begin{frame}\frametitle{Drift Chamber}
  173.  
  174.  
  175. \begin{columns}[c]
  176. \column{3in}
  177. \includegraphics[scale=0.15]{pic/dich.png}
  178.  
  179. \begin{itemize}
  180. \item 40 layers of $\approx 1 cm$ cells parralel to beam line.
  181. \item Provide momentum and $\dfrac{dE}{dx}$ for low momentum particles($p<700 MeV$).
  182. \item $\approx 10000$ channels
  183. \item Ocuupancy%($3.5 % - 5%$).
  184.  
  185. \end{itemize}
  186.  
  187. %first column
  188. \column{2in}
  189. R\& D:
  190. \begin{itemize}
  191. \item Geometry
  192. \item Gas mixture
  193. \item aaaa
  194. \end{itemize}
  195. %second column
  196. \end{columns}
  197.  
  198.  
  199. \end{frame}
  200.  
  201.  
  202. \subsection{DIRC}
  203. \begin{frame}\frametitle{Detector of Internally Reflected Cherenkov light}
  204.  
  205.  
  206. \begin{columns}[c]
  207. \column{2in}
  208. \includegraphics[scale=0.23]{pic/DIRC.png}
  209. \newline \includegraphics[scale=0.23]{pic/dirc2.png}
  210.  
  211. %first column
  212. \column{3in}
  213. \begin{itemize}
  214. \item Momentum range $ 0.7 - 4 GeV$
  215. \item Radiator: synthetic fused silica.
  216. \item Photon detectors outside field region.
  217. \item Radiatoin hard.
  218. \end{itemize}
  219. %second column
  220. \end{columns}
  221.  
  222.  
  223. \end{frame}
  224.  
  225.  
  226. \subsection{EMC and IFR}
  227. \begin{frame}\frametitle{Electromagnetic and hadronic calorimeter}
  228.  
  229.  
  230. \begin{columns}[c]
  231. \column{3in}
  232. \includegraphics[scale=0.23]{pic/ifr.png}
  233.  
  234.  
  235. %first column
  236. \column{2in}
  237. Electronamgnetic Calorimeter:
  238. \begin{itemize}
  239. \item Coverage $94\% of 4 \Pi$
  240. \item CsI or LYSO cristals
  241. \item Crystal lenght $16-17.5 X_{0}$
  242. \item Radiatoin hard.
  243. \end{itemize}
  244. Instrumented Flux Return:
  245. \begin{itemize}
  246. \item Upgrade form TDC to BIRO
  247. \item Scintilators
  248. \item Iron reused from Babar
  249. \item SiPM
  250. \end{itemize}
  251. %second column
  252. \end{columns}
  253.  
  254.  
  255. \end{frame}
  256.  
  257.  
  258. %%%%%%%%%%% uFFFFFFFFFFFFFFFFFfff detector finished
  259.  
  260.  
  261. \section{Physics}
  262.  
  263. \subsection{Rare B Physics}
  264. \begin{frame}\frametitle{$B \rightarrow \tau \nu$}
  265. \begin{columns}[c]
  266. \column{3.5in}
  267. Precise SM prediction:
  268. \small \newline $Br(B \rightarrow l \nu) = \dfrac{G^{2}_{F} m_{B}}{8\pi} m_{l}^{2} (1-\dfrac{m_{l}^{2}}{m_{B}^{2}})f_{B}^{2}\vert V_{ub}\vert^{2} \tau_{B}$
  269. \newline In SUSY:
  270. \small \newline $Br(B \rightarrow l \nu) = \dfrac{G^{2}_{F} m_{B}}{8\pi} m_{l}^{2} (1-\dfrac{m_{l}^{2}}{m_{B}^{2}})f_{B}^{2}\vert V_{ub}\vert^{2} \tau_{B}(1-\dfrac{tan^{2}\beta}{1+\overline{\epsilon} tan \beta}\dfrac{m_{B}^{2}}{m_{H}^{2}})$
  271.  
  272.  
  273. \column{1.5in}
  274. \includegraphics[scale=0.2]{pic/b2taunu.png}
  275. \newline \includegraphics[scale=0.2]{pic/higggs.png}
  276. \end{columns}
  277. \center \includegraphics[scale=0.16]{pic/excl.png}
  278.  
  279.  
  280. \end{frame}
  281.  
  282. \subsection{TDCP}
  283. \begin{frame}\frametitle{Time Depended CP}
  284.  
  285. Time Depended CP can be signs of new physics. One has to study set of modes:
  286. \newline $b \rightarrow s\overline{s}c$, $b \rightarrow s$
  287.  
  288. Curent experimental results(SM -observed):
  289. \newline $\Delta sin(2\beta)=2.7\sigma$, penguin
  290. \newline $\Delta sin(2\beta)=2.1\sigma$, tree
  291.  
  292. Golden modes in SuperB:
  293. $B \rightarrow J/\psi K^{0}$, $B \rightarrow \eta ' K^{0}$, $B \rightarrow f_{0}K_{s}^{0}$
  294. \begin{columns}[c]
  295. \column{3.0in}
  296. \includegraphics[scale=0.2]{pic/table.png}
  297. \column{2.0in}
  298. \includegraphics[scale=0.14]{pic/jpsi.png}
  299. \newline
  300. \newline \includegraphics[scale=0.14]{pic/jpsi2.png}
  301. \end{columns}
  302. \end{frame}
  303.  
  304. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  305.  
  306. \subsection{$B \rightarrow X_{s} \gamma$}
  307. \begin{frame}\frametitle{$B \rightarrow X_{s} \gamma$}
  308.  
  309. Very important probe of new physics! Current experimental result averaged out:
  310. $Br(B \rightarrow X_{s} \gamma ) = (3.52\pm0.23\pm0.09) 10^{-4} $
  311.  
  312. Theoretical calculations on NNLO:
  313.  
  314. $Br(B \rightarrow X_{s} \gamma ) = (3.15 \pm 0.23) 10^{-4}$
  315.  
  316. Experimently chalenging to measure the inclusive decays. THere are two ways of studing this decay:
  317. \begin{enumerate}
  318. \item Exlusive:
  319. \begin{itemize}
  320.  
  321. \item The earliest results were done suing a large number of exclusive decays, which are fully reconstructed.
  322. \item Erros rising from unseen modes.
  323. \item Obsolete for SuperB.
  324.  
  325. \end{itemize}
  326. \item Inclusive:
  327. \begin{itemize}
  328. \item Use tagging to tag the other B.
  329. \item No requirements on $X_{s}$.
  330. \item Disadvantage: Cut on photon energy.
  331. \item Effort to keep the cut as small as possible
  332.  
  333. \end{itemize}
  334. \end{enumerate}
  335.  
  336.  
  337. \end{frame}
  338.  
  339. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  340. \subsection{LFV}
  341. \begin{frame}\frametitle{LFV}
  342. \begin{itemize}
  343. \item LFV can occure in SM due to masses of the neutrinos.
  344. \item Any observation is evidence of new physics.
  345. \item Most promising channels: $\tau \rightarrow l \gamma $, $\tau \rightarrow l l l$.
  346. \newline
  347. \includegraphics[scale=0.33]{pic/tau3mu_SUSY_r_violating-eps-converted-to.pdf}
  348. \includegraphics[scale=0.33]{pic/tau3mu_littlest_higgs-eps-converted-to.pdf}
  349. \includegraphics[scale=0.33]{pic/tau3mu_SUSY_seesaw-eps-converted-to.pdf}
  350. \newline \includegraphics[scale=0.33]{pic/tau3mu_SUSY_seesaw-eps-converted-to.pdf}
  351. \includegraphics[scale=0.33]{pic/tau3mu_SM2-eps-converted-to.pdf}
  352. \includegraphics[scale=0.33]{pic/tau3mu_SM-eps-converted-to.pdf}
  353.  
  354. \end{itemize}
  355. \end{frame}
  356.  
  357. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  358.  
  359. \begin{frame}\frametitle{$\tau \rightarrow l \gamma$ sensitivity}
  360.  
  361.  
  362. \begin{columns}[c]
  363. \column{2.5in}
  364.  
  365. \begin{itemize}
  366. \item Better tracking resolution, increase $\Delta m - \Delta E $ box, by $65\%$.
  367. \item Higher photon efficiency.
  368. \item Increase of geometry acceprance.
  369. \item Thicker signal peak.
  370. \item Smaller boost improves performance of the fit.
  371. \end{itemize}
  372. \column{2.5in}
  373.  
  374. \includegraphics[scale=0.2]{pic/dm_de.png}
  375.  
  376. \end{columns}
  377.  
  378. \end{frame}
  379.  
  380.  
  381.  
  382.  
  383.  
  384. \begin{frame}\frametitle{Polarization}
  385.  
  386. \begin{columns}[c]
  387. \column{2.0in}
  388. SuperB will have polarized electron beam($80\%$).
  389. One can use this infromation
  390. \newline \newline
  391. Preliminary results:
  392. Upper limit at $90\%$: $2.44\times10^{-9}$
  393. $3 \sigma$ observation: $5.50\times 10^{-9}$
  394. \newline
  395.  
  396. \column{3.0in}
  397.  
  398. \includegraphics[scale=0.23]{pic/polar.png}
  399.  
  400. \end{columns}
  401.  
  402. \end{frame}
  403.  
  404.  
  405. \begin{frame}\frametitle{$\tau \rightarrow 3\mu$}
  406. \begin{columns}[c]
  407. \column{2.0in}
  408. Current analysis:
  409. \begin{itemize}
  410. \item Calculate the trust axis.
  411. \item Semi tag the second $ \tau $.
  412. \item Limit obtained($90\%$ Br($\tau \rightarrow 3\mu$) = $8.1 \times 10^{-10}$
  413. \end{itemize}
  414. \column{3.0in}
  415. \includegraphics[scale=0.23]{pic/dm_de23mu.png}
  416. \end{columns}
  417. \end{frame}
  418.  
  419.  
  420.  
  421. \begin{frame}\frametitle{LFV Summary}
  422. %!!!!!!!!!!!!!!!!!!!!!!
  423. \includegraphics[scale=0.4]{pic/lfv_superb.png}
  424.  
  425. \end{frame}
  426.  
  427.  
  428.  
  429.  
  430. \subsection{CP violation}
  431. \begin{frame}\frametitle{CP violation}
  432. \begin{itemize}
  433. \item CP violation was never observed in $\tau$ sector.
  434. \item SM prediction is neglible small $O(10^{-12})l$ in $\tau^{\pm} \rightarrow K^{pm} \pi^{0} \nu$.
  435. \item Any obserwation is clear identification of NP.
  436. \item Very fiew NP models can explain this:
  437. \begin{enumerate}
  438. \item RPV SUSY
  439. \item Multi Higgs models
  440. \end{enumerate}
  441. \item SuperB can improve sensitivety 75 times compared to CLEO.
  442. \end{itemize}
  443.  
  444. \end{frame}
  445.  
  446.  
  447. \subsection{EDM}
  448. \begin{frame}\frametitle{EDM}
  449.  
  450.  
  451. EDM can be measured with single angle differential cross section $e^{+}e^{-} \rightarrow \tau^{+} \tau^{-}$.
  452. \begin{itemize}
  453. \item Improvement using polarized beam.
  454. \item Achivable sensitivety: $10^{-19} ecm$
  455.  
  456. \end{itemize}
  457.  
  458.  
  459. \end{frame}
  460.  
  461.  
  462.  
  463.  
  464.  
  465.  
  466.  
  467.  
  468.  
  469.  
  470. \end{document}