- \documentclass[xcolor=svgnames]{beamer}
- \usepackage[utf8]{inputenc}
- \usepackage[english]{babel}
- \usepackage{polski}
- %\usepackage{amssymb,amsmath}
- %\usepackage[latin1]{inputenc}
- %\usepackage{amsmath}
- %\newcommand\abs[1]{\left|#1\right|}
- \usepackage{amsmath}
- \newcommand\abs[1]{\left|#1\right|}
- \usepackage{hepnicenames}
- \usepackage{hepunits}
- \usepackage{color}
- \usepackage{feynmp}
- \usepackage{pst-pdf}
- \usepackage{hyperref}
- \usepackage{xcolor}
-
- \setbeamertemplate{footline}{\insertframenumber/\inserttotalframenumber}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
- \definecolor{mygreen}{cmyk}{0.82,0.11,1,0.25}
-
-
- \usetheme{Sybila}
- \title[ $\color{white} \tau \to \mu \mu \mu$ approval presentation ]{$\color{white} \tau \to \mu \mu \mu$ approval presentation}
-
- \author[Marcin Chrzaszcz]{
- Johannes Albrecht\inst{1}, Marta Calvi\inst{2,3}, \underline{Marcin Chrzaszcz}\inst{4,5}, \\Laura Gavardi\inst{1}, Jon Harrison\inst{6}, Basem Khanji\inst{3},\\ George Lafferty\inst{6}, Tatiana Likhomanenko\inst{7}, Eduardo Rodrigues\inst{6}, \\Nicola Serra\inst{4}, Paul Seyfert\inst{7}\\
- \textbf{Referees}:\\ Benoit Viaud (Chair) , Matteo Rama, Frederic Machefert (EB) }
- \institute[UZH, IFJ]{\begin{tiny}
-
- $ ^1$ Fakult\"at Physik, Technische Universit\"at Dortmund, Germany\\
- $ ^2$ The University of Milano Bicocca, Milano, Italy\\
- $ ^3$ INFN Milano Bicocca, Milano, Italy\\
- $ ^4$ Physik-Institut der Universit\"{a}t Z\"{u}rich, Switzerland\\
- $ ^5$ Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Cracow, Poland\\
- $ ^6$ The University of Manchester, UK\\
- $ ^7$ Yandex, Moscow, Russia \\
- $ ^8$ Physikalisches Institut Heidelberg, Germany\\
- \end{tiny}
- }
- \date{\today}
- \begin{document}
- % --------------------------- SLIDE --------------------------------------------
- \frame[plain]{\titlepage}
- \author{Marcin Chrz\k{a}szcz}
- % ------------------------------------------------------------------------------
- % --------------------------- SLIDE --------------------------------------------
-
- \institute{~(UZH, IFJ)}
-
-
- % \begin{frame}\frametitle{Outline}
- % \begin{enumerate}
- % \item introduction\vspace{.5em}
- % \item multivariate technique\vspace{.5em}
- % \item normalisation\vspace{.5em}
- % % \item backgrounds\vspace{.5em}
- % \item expected sensitivity\vspace{.5em}
- % \item model dependence\vspace{.5em} data from Reco14Stripping20(r1)
- % \end{enumerate}
- % Major news wrt.\ the $1~fb^{-1}$ analysis are highlighted in \textcolor{mygreen}{green}
- % \end{frame}
-
- \begin{frame}\frametitle{Outline}
- \tableofcontents
- \end{frame}
-
-
-
-
- \begin{frame}
- \frametitle{Yellow pages}
- \begin{itemize}
- \item TWiki: \href{https://twiki.cern.ch/twiki/bin/viewauth/LHCbPhysics/Tau_LFV_3fb}{\url{https://twiki.cern.ch/twiki/bin/viewauth/LHCbPhysics/Tau_LFV_3fb}}.
- \item ANA note: \href{https://twiki.cern.ch/twiki/pub/LHCbPhysics/Tau_LFV_3fb/v8.pdf}{LHCb-ANA-2014-005}.
- \item Paper draft: \href{https://twiki.cern.ch/twiki/pub/LHCbPhysics/Tau_LFV_3fb/paper_v1.pdf}{LHCb-PAPER-2014-X}.
- \item Target journal: JHEP.
- \item Conference: Tau 2014.
- \end{itemize}
-
- \end{frame}
-
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section{Introduction}
-
- \begin{frame}
- \frametitle{Status of $\color{white} \tau \to \mu \mu \mu$}
- \begin{columns}
- \begin{column}{.62\textwidth}
-
- \includegraphics[width=.95\textwidth]{feymn.png}
-
- {{
- \begin{itemize}
- \item Charged Lepton Flavour Violation process.
- \item Possible as penguin with neutrino oscillation.
- \item SM prediction is beyond experimental reach~$O(10^{-40})$.
-
- \end{itemize}
- }}
- \end{column}
- \begin{column}{.45\textwidth}
- \begin{alertblock}{current limits ($ \color{white} 90\,\%$ CL)}
-
- \begin{description}
- \item[BaBar] $3.3\times 10^{-8}$
- \item[Belle] $2.1\times 10^{-8}$
- \item[LHCb] $8.0\times 10^{-8}$
- \end{description}
- \end{alertblock}
- \begin{alertblock}{BSM predictions}
- \begin{description}
- \item[var.\ SUSY] $10^{-10}$
- \item[non universal $\PZprime$] $10^{-8}$
- \item[mSUGRA+seesaw] $10^{-9}$
- \item[and many more...]
- \end{description}
- \end{alertblock}
- \end{column}
- \end{columns}
- \end{frame}
- %%%%%%%%%%%%%%%%%
- \begin{frame}
- \frametitle{Strategy}
- \begin{itemize}
- \item Following same approach as other RD searches.
- \item Loose stripping selection.
- \item Multivariate classification in: mass, PID, ``geometry/topology''.
- \item Binning optimisation.
- \item Relative normalisation ($\PDs\to\Pphi(\Pmu\Pmu)\Ppi$).
- \item Invariant mass fit for expected background in each likelihood bin: fit in $\left| m-m_{\Ptau} \right| >\unit{30}{\MeV}$.
- \item ``middle sidebands'' for classifier evaluation and tests.($\unit{20}{\MeV}<\left| m-m_{\Ptau}\right| <\unit{30}{\MeV}$).
- \item CLs for limit calculation.
- \end{itemize}
-
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}
- \frametitle{$\color{white} \tau$ {\scriptsize production\begin{footnotesize}
- {\small •}
- \end{footnotesize}}}
- \begin{itemize}
- \item $\Ptau$'s in LHCb come from five main sources:
- \end{itemize}
- \begin{center}
-
-
- \begin{tabular}{| c | c | c | }
- \hline
- Mode & $7~\TeV$ & $8~\TeV$ \\ \hline
- Prompt $\PDs\to\Ptau$ & $71.1\pm3.0\,\%$ & $72.4\pm2.7\,\%$ \\
- Prompt $\PDplus\to\Ptau$ & $4.1\pm0.8\,\%$ & $4.2\pm0.7\,\%$ \\
- Non-prompt $\PDs\to\Ptau$ & $9.0\pm2.0\,\%$ & $8.5\pm1.7\,\%$ \\
- Non-prompt $\PDplus\to\Ptau$ & $0.18\pm0.04\,\%$ & $0.17\pm0.04\,\%$ \\
- $X_{\Pbottom}\to\Ptau$ & $15.5\pm2.7\,\%$ & $14.7\pm2.3\,\%$ \\ \hline
-
- \end{tabular}
- \end{center}
-
-
- \begin{columns}
- \column{0.8\textwidth}
- \begin{exampleblock}{$\mathcal{B}(\PDplus\to\Ptau)$}
- \begin{itemize}
- \item There is no measurement of $\mathcal{B}(\PDplus\to\Ptau)$.
- \item One can calculate it from: $\mathcal{B}(\PDplus\to\Pmu\Pnum)$ + helicity suppression + phase space.
- \item \texttt{hep-ex:0604043}.
- \item $\mathcal{B}(\PDplus\to\Ptau\Pnut)=(1.0\pm0.1) \times10^{-3}$.
- \end{itemize}
- \end{exampleblock}
- \column{0.2\textwidth}
- {~}
- \end{columns}
-
- \end{frame}
- \begin{frame}
- \frametitle{Datasets}
- \begin{itemize}
- \item Data from Reco14Stripping20(r1).
- \item Large MC samples:
- \begin{itemize}
- \item 24M Inclusive background events ($\Pbottom\APbottom$ and $\Pcharm\APcharm$).
- \item 10M Exclusive background events ($\PDs\to\Peta(\Pmu\Pmu\Pphoton)\Pmu\Pnum$).
- \item 2M Signal events (split over 5 production channels).
- \item 12M $\PD \to \PK \Ppi \Ppi$ (missID studies).
- \item 10M $\PDstar \to \PD(\PK \Pmu \Pnum) \Ppi$ (missID studies).
-
- \end{itemize}
- \item[$\Rightarrow$] Generator level cuts for improved use of computing resources.
- \begin{itemize}
- \item $\sim 14$ times more signal statistics after stripping.
- \item $\sim 2$ times more background statistics.
- \end{itemize}
- \item Mix $\Ptau$ production on ntuple level instead of reweighting.
- \newline$\Rightarrow$ Ease up ntuple usage (no forgotten weighting, no double weighting, \dots).
- \end{itemize}
- \end{frame}
- \section{Selection}
- \begin{frame}
- \frametitle{Stripping and selection}
- {\footnotesize{
- \begin{tabular}{|c|cc|}
- \hline
- &$\Ptau\to\Pmu\Pmu\Pmu$&$\PDs\to\Pphi\Ppi$\\
- \hline
- $\mu^\pm$ , $ \pi^\pm$ &\multicolumn{2}{c|}{} \\
- $p_T$ &\multicolumn{2}{c|}{$>300\MeV$} \\
- Track $\chi^2$/ndf &\multicolumn{2}{c|}{$<3 $} \\
- IP $\chi^2$/ndf &\multicolumn{2}{c|}{$>9 $} \\
- track ghost probability &\multicolumn{2}{c|}{$<0.3 $} \\
- \hline
- $\mu$ pairs &\multicolumn{2}{c|}{} \\
- $m_{\mu^+\mu^-} - m_{\phi}$ & $>20\MeV$ & $<20\MeV$\\
- $m_{\mu^+\mu^-}$ & $> 450\MeV$ & - \\
- $m_{\mu^+\mu^+}$ & $> 250\MeV$ & - \\
- \hline
- $\tau^\pm$ and \PDs &\multicolumn{2}{c|}{} \\
- $\Delta m$ & $<400\MeV$ & $<50\MeV$\\
- Vertex $\chi^2$ &\multicolumn{2}{c|}{$<15$} \\
- IP $\chi^2$ &\multicolumn{2}{c|}{$<225 $} \\
- $\cos\alpha$ &\multicolumn{2}{c|}{$>0.99$} \\
- $c\tau$ (stripping) &\multicolumn{2}{c|}{$>\unit{100}{\mu m}$} \\
- &\multicolumn{2}{c|}{no PV refitting}\\
- decay time (offline) &\multicolumn{2}{c|}{$> -0.01$ ns \& $< 0.025$ ns}\\
- &\multicolumn{2}{c|}{PV refitting}\\
- \hline
- \end{tabular}
- }}
-
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-
- \begin{frame}
- \frametitle{Triggers}
- {\footnotesize{
- \begin{tabular}{l|c|c}
- & signal & normalisation \\\hline\hline
- L0$^1$ & \multicolumn{2}{c}{L0Muon TOS}\\\hline
- Hlt1$^1$ & \multicolumn{2}{c}{Hlt1TrackMuon TOS}\\\hline
- Hlt2 2011 & Hlt2CharmSemilepD2HMuMu TOS & Hlt2DiMuonDetached$^2$ TOS \\
- & $||$ Hlt2TriMuonTau TOS & \\\hline
- Hlt2 2012 & Hlt2TriMuonTau$^1$ TOS & Hlt2DiMuonDetached$^2$ TOS\\\hline
- \end{tabular}
- }
- }
- \only<1>{
- \begin{block}{Triggers in 2012}
- \begin{itemize}
- \item Cuts changed through 2012.
- \item[$\rightarrow$]emulated two different TCKs for 2012.
- \item[$\rightarrow$] Found negligible differences in ratio of signal/normalisation channels.
- \item Choice of triggers was optimised based on $\dfrac{s}{\sqrt{b}}$ FOM.
- \end{itemize}
- \end{block}}
- % \only<2>{
- % \begin{block}{$^2$ word on Hlt2DiMuonDetached}
- % \begin{itemize}
- % \item keep it simple here
- % \item line unchanged in 2012
- % \item[$\rightarrow$] choice keeps Hlt2 trigger efficiency stable
- % \item $\PDs\to\Pphi\Ppi$ anyhow doesn't behave like $\Ptau\to\Pmu\Pmu\Pmu$ in the TriMuon trigger (requires misidentification)
- % \end{itemize}
- % \end{block}}
-
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section{Multivariate technique}
-
- \begin{frame}
- \frametitle{Geometric likelihood}
- Much work has been put into improving our geometric and kinematic classifier:
- \begin{itemize}
- \item Classify the displaced 3-body decay properties of a signal candidate.
- \item Revisit variable choice.
- \item Revisit classification technique.
- \item More toolkits tried: MatrixNet, NeuroBayes, TMVA.
- \item Retune input variables\newline($\PBs\to\Pmu\Pmu$ isolation $\rightarrow$ BDT isolation: CERN-THESIS-2013-259).
- \item Apply Blending technique.
- \end{itemize}
-
- \end{frame}
-
- \begin{frame}
- \frametitle{Basic Setup - Step I}
- \begin{itemize}
- \item Train $1/3$ signal MC against $1/2$ background MC.
- \item Input variables: \begin{itemize}
- \item DOCA
- \item Vertex $\chi^2$
- \item $\tau$ decay time
- \item $\tau$ IP$\chi^2$
- \item min.\ $\mu$ IP$\chi^2$
- \item $\Ptau$ pointing angle
- \item $\tau$ $p_T$
- \item max.\ track $\chi^2$
- \item $\PBs\to\Pmu\Pmu$ track isolation
- \item Cone isolation
- \item BDT isolation
- \end{itemize}
- \item Using these variables, train several classifiers (''Base'') \\for each of the $\Ptau$ source.
- \end{itemize}
- \end{frame}
-
-
- \begin{frame}
- \frametitle{Step II}
- \begin{itemize}
- \item Train using second $1/3$ signal MC against second $1/2$ background MC.
- \item Introduce Blending technique.
- \end{itemize}
- \begin{exampleblock}{Blending technique}
- \begin{itemize}
- \item For each signal channel we train: one BDT, three Fisher classifier, four MLPs, one FDA, one LD classifier and MatrixNet classifier.
- \item One final MatrixNet classifier using the 13 base variables and the base classifiers as input.
-
- \end{itemize}
- \end{exampleblock}
- \begin{itemize}
- \item All evaluation is done on $3rd$ $1/3$ signal sample and middle side-bands.
- \item Splitting into independent samples makes the procedure insensitive to
- overtraining.
- \end{itemize}
-
-
- \end{frame}
-
-
-
- \begin{frame}
- \frametitle{Performance of Blend classifier}
- \begin{itemize}
- \item Classifier prefers $\Ptau$'s from prompt $\PDs$, the dominant channel.
- \end{itemize}
- \begin{columns}
- \begin{column}{.49\textwidth}
- \begin{exampleblock}{MC response for different\newline $\color{white} \tau$ production channels}
- \includegraphics[width=.98\textwidth]{./mixing.pdf}
- \end{exampleblock}
- \end{column}
- \begin{column}{.49\textwidth}
- \begin{exampleblock}{Response for $\color{white} D_s \rightarrow \phi\pi$\newline data and MC}
- \includegraphics[width=.98\textwidth]{./dataMC.pdf}
- \end{exampleblock}
- \end{column}
- \end{columns}
- \end{frame}
-
- \begin{frame}
- \frametitle{Calibration}
- \begin{itemize}
- \item Assume all differences between $\Ptau\to\Pmu\Pmu\Pmu$ and $\PDs\to\Pphi\Ppi$ come from kinematics (mass, resonance, decay time), which is correct in MC.
- \item Get correction $\PDs\leadsto\Ptau$ from MC.
- \item Apply corrections to $\PDs\to\Pphi\Ppi$ on data.
- \end{itemize}
- \begin{block}{validation}
- \begin{itemize}
- \item done for 2011 analysis, treating smeared MC as data
- \end{itemize}
- \end{block}
- \begin{columns}
-
- \begin{column}{.45\textwidth}
- \includegraphics[width=.95\textwidth]{m3body_2012.pdf}
- \end{column}
- \begin{column}{.45\textwidth}
- \begin{itemize}
- \item $\PDs\to\Pphi\Ppi$ well modelled in MC.
- % \item[$\rightarrow$] i.e.\ also badly pointing non-prompt $\PDs$
- \end{itemize}
- \end{column}
-
- \end{columns}
- \end{frame}
-
- \begin{frame}
- \frametitle{PID}
- \begin{itemize}
- \item We used ProbNNmu already in the previous round of the analysis.
- \item Now use MC12TuneV2.
- \item Two-fold reason:\begin{itemize}
- \item Expect better performance than CombDLL variables.
- \item ``one variable for everything'':\newline with CombDLL we needed both CombDLL($\mu-\pi$) and CombDLL($\mu-K$).
- \end{itemize}
- \end{itemize}
- \begin{columns}
-
- \end{columns}
- \begin{itemize}
- \item We tested if PIDCalib samples~($\PJpsi$) are suited for us.
- \item $\PDs \to \Pphi \Ppi$ better representing $\tau \to 3\mu$ than $\PJpsi \to \mu \mu$.
- \item Many thanks to Barbara Sciascia for help understanding the details: \href{https://indico.cern.ch/event/250103/contribution/3/material/slides/0.pdf}{LINK}
- \end{itemize}
-
- \end{frame}
-
- \begin{frame}
- \frametitle{PID calibration }
-
- \begin{exampleblock}{Phenomenological treatment}
- \begin{itemize}
- \item correlations are small in $\PDs\to\Pphi\Ppi$ data and MC:
- \newline $\varepsilon(\text{cut on one muon})^2 = \varepsilon(\text{cut on two muons})$
- \item[$\Rightarrow$] use $c^3=(\varepsilon(\text{cut and fit})/\varepsilon(\text{PIDCalib}))^3$ as correction to PIDCalib for $\Ptau\to\Pmu\Pmu\Pmu$
- \item assign error of $0.02$ for $c$.
- \end{itemize}
- \end{exampleblock}
- \begin{itemize}
- \item Many cross-checks done.
- \item Everything works fine.
- \end{itemize}
- \begin{columns}
- \begin{column}{.45\textwidth}
- \includegraphics[width=.95\textwidth]{mPID_2012.pdf}
- \end{column}
- \end{columns}
- \end{frame}
-
-
-
- \begin{frame}
- \frametitle{Binning optimisation}
- \begin{itemize}
- \item How to optimise the binning in two classifiers?
- \item $\unit{1}{\reciprocal\femtobarn}$ CONF note: two one-dimensional optimisations as in $\PBs\to\Pmu\Pmu$.
- \item $\unit{1}{\reciprocal\femtobarn}$ PAPER: iterative loop of one-dimensional optimisations\newline optimising one classifier on the sensitive range of the other classifier.
- \item Now: optimise two-dimensions (optimise bin boundaries in both dimensions simultaneously).
- \item Unchanged: don't use lowest likelihood bins\newline(reflection backgrounds, no sensitivity gain).
- \end{itemize}
- \end{frame}
- \begin{frame}
- \frametitle{Impact of new binning optimisation}
- \begin{itemize}
- \item Removal of tiny bins which contribute negligible sensitivity.
- \item Colour: limit obtained, using only this particular bin.
- \item Number: rank of that bin (1=best sensitivity bin).
- \end{itemize}
-
-
- \begin{columns}
-
- \begin{column}{.8\textwidth}
- \begin{center}
- Bin sensitivity
- (2011 data)
- \end{center}
- \includegraphics[width=.95\textwidth]{./rank.pdf}
- \end{column}
- \begin{column}{.2\textwidth}
- {~}
- \end{column}
- \end{columns}
- \end{frame}
-
- \begin{frame}
- \frametitle{Mass shape}
- \begin{itemize}
- \item Double-Gaussian with fixed fraction ($70\,\%$ inner Gaussian).
- \item Fix fraction to ease calibration.
- \item Correct mass by MC:\newline
- $\sigma_{data}^{\Ptau} = \frac{\sigma_{MC}^{\Ptau}}{\sigma_{MC}^{\PDs}}\times\sigma_{data}^{\PDs}$
- \end{itemize}
- \includegraphics[width=.44\textwidth]{./Ds_data_2011.pdf}
- \includegraphics[width=.44\textwidth]{./Ds_data_2012.pdf}
-
- {\footnotesize{
- \begin{tabular}{|c|c|c|}
- \hline
- Calibrated $\Ptau$ Mass shape & 7~TeV & 8~TeV\\
- \hline
- Mean ($\MeV$) & $1779.1 \pm 0.1$ & $1779.0 \pm 0.1$\\
- \hline
- $\sigma_1$ ($\MeV$) & $7.7 \pm 0.1$ & $7.6 \pm 0.1$\\
- \hline
- $\sigma_2$ ($\MeV$) & $12.0 \pm 0.8$ & $11.5 \pm 0.5$\\
- \hline
- \end{tabular}
- }
- }
- \end{frame}
-
-
-
- \section{Normalisation}
-
- \begin{frame}
- \frametitle{Relative normalisation}
- $\mathcal{B}(\Ptau\to\Pmu\Pmu\Pmu) = \frac{\mathcal{B}(\PDs\to\Pphi\Ppi)}{\mathcal{B}(\PDs\to\Ptau\Pnut)} \times f_{\PDs}^{\Ptau} \times \frac{\varepsilon_\text{norm} }{\varepsilon_\text{sig} } \times \frac{N_\text{sig}}{N_\text{norm}} = \alpha\times N_\text{sig}$
- \begin{itemize}
- \item where $\varepsilon$ stands for trigger, reconstruction, selection,
- \item $f_{\PDs}^{\Ptau}$ is the fraction of $\Ptau$ coming from $\PDs$,
- \item $\text{norm}$ = normalisation channel $\PDs\to\Pphi\Ppi$
- \newline i.e.\ $(83\pm3)\,\%$ for 2012.
- \end{itemize}
- \includegraphics[width=.47\textwidth]{./Ds_data_2011.pdf}
- \includegraphics[width=.47\textwidth]{./Ds_data_2012.pdf}
- \end{frame}
-
- \begin{frame}[allowframebreaks]
- \frametitle{Normalisation in numbers}
- {\footnotesize{
- $\begin{array}{c|c|c}
- & \rm{7~TeV} & \rm{8~TeV}\\
- \hline
- \rm{\epsilon\mathstrut_{sig}}^{GEN} (\%) & 8.989 \pm 0.40 & 9.21 \pm 0.35\\
- \hline
- \rm{\epsilon_{cal}}^{GEN} (\%) & 11.19 \pm 0.34 & 11.53 \pm 0.32\\
- \hline
- \rm{\epsilon_{sig}}^{REC,isMuon,SEL} (\%) & 9.927 \pm 0.028 & 9.261 \pm 0.023 \\
- \hline
- \rm{\epsilon_{cal}}^{REC,isMuon,SEL} (\%) & 7.187 \pm 0.022 & 6.690 \pm 0.022 \\
- \hline
- \frac{\rm{c_{cal}}^{track}}{\rm{c_{sig}}^{track}} & 0.997 \pm 0.009 \pm 0.026 & 0.996 \pm 0.009 \pm 0.026 \\
- \hline
- \frac{\rm{c_{cal}}^{\mu ID}}{\rm{c_{sig}}^{\mu ID}} & 0.9731 \pm 0.0031 \pm 0.0264 & 1.0071 \pm 0.0022 \pm 0.0204 \\
- \hline
- \rm{c}^{\phi} & \multicolumn{2}{c}{0.98 \pm 0.01} \\
- \hline
- \rm{c}^{\tau} & 1.032 \pm 0.006 & 1.026 \pm 0.006\\
- \hline
- \rm{c}^{trash} & 1.89 \pm 0.12 & 1.96 \pm 0.12\\
- \hline
- \rm{\epsilon\mathstrut_{sig}}^{TRIG} (\%) & 35.52 \pm 0.14 \pm 0.14 & 39.3 \pm 1.7 \pm 2.0 \\
- \hline
- \rm{\epsilon\mathstrut_{cal}}^{TRIG} (\%) & 23.42 \pm 0.14 \pm 0.09 & 20.62 \pm 0.76 \pm 1.07 \\
- \end{array}$
- }}
-
- \framebreak
-
- {\footnotesize{
- $\begin{array}{c|c|c}
- & \rm{7~TeV} & \rm{8~TeV}\\
- \hline
- \mathcal{B}(\PDs \to \Pphi \Ppi) & \multicolumn{2}{c}{(1.317 \pm 0.099) \times 10^{-5}}\\
- \hline
- f^{\tau}_{D_{s}} & 0.78 \pm 0.04 & 0.80 \pm 0.03 \\
- \hline
- \mathcal{B} (\PDs \to \Ptau \Pnut) & \multicolumn{2}{c}{0.0561 \pm 0.0024}\\
- \hline
- \rm{\epsilon\mathstrut_{cal}}^{REC\&SEL}/
- \rm{\epsilon\mathstrut_{sig}}^{REC\&SEL}
- & 0.898 \pm 0.060 & 0.912 \pm 0.054 \\
- \hline
- \rm{\epsilon\mathstrut_{cal}}^{TRIG}/
- \rm{\epsilon\mathstrut_{sig}}^{TRIG}
- & 0.6593 \pm 0.0058 & 0.525 \pm 0.040\\
- \hline
- N_{cal} & 28,207 \pm 440 & 52,131 \pm 695\\
- \hline & \\[-0.8em]\hline
- \alpha & (3.81 \pm 0.46) \times 10^{-9} & (1.72 \pm 0.23) \times 10^{-9}\\
- \alpha^{trash} & (7.20 \pm 0.98) \times 10^{-9} & (3.37 \pm 0.50) \times 10^{-9}\\
- \end{array}$
- }}
- \end{frame}
-
-
- \section{Backgrounds}
-
- \begin{frame}
- \frametitle{Misidentification 1}
- \begin{columns}
- \column{3in}
- \begin{itemize}
- \item Most dominant: $\PDplus\to\PK\Ppi\Ppi$.
- \item Also seen $\PDplus\to\Ppi\Ppi\Ppi$ and $\PDs\to\Ppi\Ppi\Ppi$.
- \item Looked in all mass hypothesis combinations.
- % \item Experience from last round: cut away \\low ProbNNmu range
- % \item Check remaining data under \\$\PK\Ppi\Ppi$ hypothesis for $\PDplus$ peak
- % \item[$\Rightarrow$] misid safely contained in ``trash'' bin
- \end{itemize}
- \column{2in}
- \includegraphics[width=.95\textwidth]{./WMH.pdf}
- \end{columns}
- \includegraphics[width=.45\textwidth]{./Dp2Kpipi_all_2012_senseBins.pdf}
- \includegraphics[width=.45\textwidth]{./FittoD23pi_2012.pdf}
- \end{frame}
-
- \begin{frame}
- \frametitle{Misidentification 2}
- \begin{itemize}
- \item Many tests were performed to be sure we are safe from $\PD_x \to 3h$.
- \item Tested both on MC and data.
- \item Referees also suggest looking into semileptonic decays.
- \item Our background is safely contained in ''trash''\footnote{\begin{tiny} Lowest $ProbNNmu$ and $M_{blend}$ bins, not taken for limit calculation. \end{tiny}} bins.
- \end{itemize}
-
- \includegraphics[width=.7\textwidth]{./c_2dHisto_2012.pdf}
-
- \end{frame}
-
- \begin{frame}
- \frametitle{Dangerous backgrounds}
- \begin{columns}
- \column{3in}
- \begin{itemize}
- \item $\Pphi\to\Pmu\Pmu + X$: narrow veto on dimuon mass.
- \item $\PDs\to\Peta(\Pmu\Pmu\Pphoton)\Pmu\Pnum$: not so easy:
- \begin{itemize}
- \item Modelled in CONF note.
- \item Optimised veto in PAPER.
- \item Both versions in the ANA note.
- \end{itemize}
- \item Baseline: veto $m_{\APmuon\Pmuon} < \unit{450}{\MeV}$:
- \begin{itemize}
- \item Fits better understood.
- \item Sensitivity unchanged when removing veto.
- \item Smaller uncertainty on expected background.
- \end{itemize}
- \end{itemize}
- \column{2in}
- \includegraphics[width=.95\textwidth]{./etaMass.pdf}\\
- \includegraphics[width=.95\textwidth]{./etaDalitz.pdf}
-
- \end{columns}
-
- \end{frame}
-
- \begin{frame}
- \frametitle{Remaining backgrounds}
- \begin{itemize}
- \item Fit exponential to invariant mass spectrum in each likelihood bin.
- \item Don't use blinded region ( $\pm \unit{30}{\MeV}$ ).
- \item[$\rightarrow$] Compatible results blinding only $\pm \unit{20}{\MeV}$\footnote{partially used in classifier development}
- \end{itemize}
- {\begin{center}
- Example of most sensitive regions in 2011 and 2012
- \includegraphics[width=0.9\textwidth]{./fits.png}
-
- \end{center}}
- \end{frame}
-
- \section{Expected limit}
-
- \begin{frame}
- \frametitle{Expected limit}
- \begin{itemize}
- \item Consider nuisance parameters from background fit, signal pdf calibration, normalisation.
- \item Nuisance parameters due to $\Ptau$ production, normalization.
- \item Limit for combined 2011+2012 analysis.
- \end{itemize}
- \end{frame}
-
- \begin{frame}
- \frametitle{Sensitivity}
- $\mathcal{B}(\Ptau\to\Pmu\Pmu\Pmu)<5.0 \times 10^{-8}$ at 90\% CL
-
- \includegraphics[width=.8\textwidth]{limit_blind.png}
- \end{frame}
-
-
-
- \section{Model dependence}
-
- \begin{frame}
- \frametitle{Model dependence}
- \begin{itemize}
- \item $\Peta$ veto $\Rightarrow$ our limit not constraining to New Physics with small $m_{\APmuon\Pmuon}$.
- \item Model description in \texttt{arXiv:0707.0988}.
- \item 5 relevant Dalitz distributions: 2 four-point operators, 1 radiative operator, 2 interference terms.
- \end{itemize}
- \only<2->{
- \begin{itemize}
- \item With radiative distribution limit gets worse by a factor of $1.5$ (dominantly from the $\Peta$ veto).
- \item The other four Dalitz distributions behave nicely (within $7\,\%$).
- \end{itemize}
- }
- \only<1>{
- \includegraphics[width=.331\textwidth]{./gammallll.pdf}
- \includegraphics[width=.331\textwidth]{./gammallrr.pdf}
- \includegraphics[width=.331\textwidth]{./gammarad.pdf}
-
- \includegraphics[width=.331\textwidth]{./gammarad-llll.pdf}
- \includegraphics[width=.331\textwidth]{./gammarad-llrr.pdf}
- }
-
- \end{frame}
-
-
- % \begin{frame}
- % \frametitle{Conclusion}
- % \begin{columns}
- % \begin{column}{.55\textwidth}
- % \begin{itemize}
- % \item finally all pieces put together
- % \item model (in)dependence of $\Peta$ veto investigated
- % \item expected sensitivity computed\newline $5.6\times 10^{-8}$
- % \end{itemize}
- % \end{column}
- % \begin{column}{.45\textwidth}
- % \includegraphics[width=\textwidth]{party-music-hd-wallpaper-1920x1200-3850.jpg}
- % \end{column}
- % \end{columns}
-
- % \end{frame}
-
-
- \section{Unblinded results}
-
- \begin{frame}
- \frametitle{Unblinding 1}
- \begin{columns}
- \column{1in}{~}
- \column{3in}
- ''
- THERE came a day at summer’s full \\
- Entirely for us \\
- I thought that such were for the saints, \\
- Where revelations be. ''\footnote{E.Dickinson} \\
- \column{1in}{~}
- \end{columns}
- {~}\\
- {~}\\
- \begin{Large}
- On Monday $4^{th}$ of August we were given the permission to unblind.
- \end{Large}
-
-
- \end{frame}
-
-
-
- \begin{frame}
- \frametitle{Unblinding 2}
- \begin{itemize}
- \item Unfortunately no big ''revelations'' were there.
- \item 2011 numbers:
- \end{itemize}
- \includegraphics[width=1.\textwidth]{2011.png}
-
- \end{frame}
-
- \begin{frame}
- \frametitle{Unblinding 3}
- \begin{itemize}
- \item Unfortunately no big ''revelations'' were either in 2012 data:
-
- \end{itemize}
- \includegraphics[width=1.1\textwidth]{2012.png}
-
- \end{frame}
-
-
-
- \begin{frame}
- \frametitle{Unblinding 4}
-
- \begin{center}
- \includegraphics[width=0.7\textwidth]{banana_line.pdf}
- \end{center}
- \begin{columns}
-
- \column{0.2in}{~}
- \column{2in}
- Limits(PHSP):\\
- Observed(Expected)\\
- $4.6~(5.0)\times 10^{-8}$ at $90\%$ CL\\
- $5.6~(6.1)\times 10^{-8}$ at $95\%$ CL\\
-
- \column{3in}
- \includegraphics[width=0.5\textwidth]{model.png}
- \end{columns}
- \end{frame}
-
- \begin{frame}
- \frametitle{Conclusions}
- \begin{columns}
- \column{2.5in}
- \begin{itemize}
- \item We didn't find NP (yet).
- \item Limits set with full LHCb dataset.
- \item We wait for the Run 2 dataset!
- \end{itemize}
- \column{2.5in}
-
- \includegraphics[width=1\textwidth]{TauLFV_UL_2013001.pdf}
-
-
-
- \end{columns}
- \begin{itemize}
- \item We would like to thank our referees for very friendly,thorough and fruitful review.
- \item With this presentation we ask collaboration for approval.
- \end{itemize}
-
-
- \end{frame}
-
-
-
- \end{document}