\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer} \usepackage[english]{babel} \usepackage{polski} \usetheme[ bullet=circle, % Other option: square bigpagenumber, % circled page number on lower right topline=true, % colored bar at the top of the frame shadow=false, % Shading for beamer blocks watermark=BG_lower, % png file for the watermark ]{Flip} %\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}} \usepackage[lf]{berenis} \usepackage[LY1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{emerald} \usefonttheme{professionalfonts} \usepackage[no-math]{fontspec} \defaultfontfeatures{Mapping=tex-text} % This seems to be important for mapping glyphs properly \setmainfont{Gillius ADF} % Beamer ignores "main font" in favor of sans font \setsansfont{Gillius ADF} % This is the font that beamer will use by default % \setmainfont{Gill Sans Light} % Prettier, but harder to read \setbeamerfont{title}{family=\fontspec{Gillius ADF}} \input t1augie.fd %\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font %\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font % \newcommand{\handwriting}{} % If you prefer no special handwriting font or don't have augie %% Gill Sans doesn't look very nice when boldfaced %% This is a hack to use Helvetica instead %% Usage: \textbf{\forbold some stuff} %\newcommand{\forbold}{\fontspec{Arial}} \usepackage{graphicx} \usepackage[export]{adjustbox} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{colortbl} \usepackage{mathrsfs} % For Weinberg-esque letters \usepackage{cancel} % For "SUSY-breaking" symbol \usepackage{slashed} % for slashed characters in math mode \usepackage{bbm} % for \mathbbm{1} (unit matrix) \usepackage{amsthm} % For theorem environment \usepackage{multirow} % For multi row cells in table \usepackage{arydshln} % For dashed lines in arrays and tables \usepackage{siunitx} \usepackage{xhfill} \usepackage{grffile} \usepackage{textpos} \usepackage{subfigure} \usepackage{tikz} %\usepackage{hepparticles} \usepackage[italic]{hepparticles} \usepackage{hepnicenames} % Drawing a line \tikzstyle{lw} = [line width=20pt] \newcommand{\topline}{% \tikz[remember picture,overlay] {% \draw[crimsonred] ([yshift=-23.5pt]current page.north west) -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}} % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % \usepackage{tikzfeynman} % For Feynman diagrams \usetikzlibrary{arrows,shapes} \usetikzlibrary{trees} \usetikzlibrary{matrix,arrows} % For commutative diagram % http://www.felixl.de/commu.pdf \usetikzlibrary{positioning} % For "above of=" commands \usetikzlibrary{calc,through} % For coordinates \usetikzlibrary{decorations.pathreplacing} % For curly braces % http://www.math.ucla.edu/~getreuer/tikz.html \usepackage{pgffor} % For repeating patterns \usetikzlibrary{decorations.pathmorphing} % For Feynman Diagrams \usetikzlibrary{decorations.markings} \tikzset{ % >=stealth', %% Uncomment for more conventional arrows vector/.style={decorate, decoration={snake}, draw}, provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw}, antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw}, fermion/.style={draw=gray, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}}, fermionbar/.style={draw=gray, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}}, fermionnoarrow/.style={draw=gray}, gluon/.style={decorate, draw=black, decoration={coil,amplitude=4pt, segment length=5pt}}, scalar/.style={dashed,draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}}, scalarbar/.style={dashed,draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}}, scalarnoarrow/.style={dashed,draw=black}, electron/.style={draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}}, bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw}, } % TIKZ - for block diagrams, % from http://www.texample.net/tikz/examples/control-system-principles/ % \usetikzlibrary{shapes,arrows} \tikzstyle{block} = [draw, rectangle, minimum height=3em, minimum width=6em] \usetikzlibrary{backgrounds} \usetikzlibrary{mindmap,trees} % For mind map \newcommand{\degree}{\ensuremath{^\circ}} \newcommand{\E}{\mathrm{E}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\Cov}{\mathrm{Cov}} \newcommand\Ts{\rule{0pt}{2.6ex}} % Top strut \newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut \graphicspath{{images/}} % Put all images in this directory. Avoids clutter. % SOME COMMANDS THAT I FIND HANDY % \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec \newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild \newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold \newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold \newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert \newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert %% "\alert" is already a beamer pre-defined \newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}% \def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}} \usepackage{gmp} \usepackage[final]{feynmp-auto} \usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex} \bibliography{bib} \setbeamertemplate{bibliography item}[text] \makeatletter\let\frametextheight\beamer@frametextheight\makeatother % suppress frame numbering for backup slides % you always need the appendix for this! \newcommand{\backupbegin}{ \newcounter{framenumberappendix} \setcounter{framenumberappendix}{\value{framenumber}} } \newcommand{\backupend}{ \addtocounter{framenumberappendix}{-\value{framenumber}} \addtocounter{framenumber}{\value{framenumberappendix}} } \definecolor{links}{HTML}{2A1B81} %\hypersetup{colorlinks,linkcolor=,urlcolor=links} % For shapo's formulas: \def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}} \def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}} \newcommand{\lsim}{\mathop{\lsi}} \newcommand{\gsim}{\mathop{\gsi}} \newcommand{\wt}{\widetilde} %\newcommand{\ol}{\overline} \newcommand{\Tr}{\rm{Tr}} \newcommand{\tr}{\rm{tr}} \newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&} \newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}} \newcommand{\abs}[1]{\rm{$\left| #1 \right|$}} \newcommand{\eV}{\rm{eV}} \newcommand{\keV}{\rm{keV}} \newcommand{\MeV}{\rm{MeV}} \newcommand{\GeV}{\rm{GeV}} \newcommand{\TeV}{\rm{TeV}} \newcommand{\im}{\rm{Im}} \newcommand{\disp}{\displaystyle} \def\be{\begin{equation}} \def\ee{\end{equation}} \def\ba{\begin{eqnarray}} \def\ea{\end{eqnarray}} \def\d{\partial} \def\l{\left(} \def\r{\right)} \def\la{\langle} \def\ra{\rangle} \def\e{{\rm e}} \def\Br{{\rm Br}} \author{ {\fontspec{Trebuchet MS}Marcin Chrz\k{a}szcz} (Universit\"{a}t Z\"{u}rich)} \institute{UZH} \title[$\tau \to \mu\mu\mu$ in LHCb]{$\tau \to \mu\mu\mu$ in LHCb} \date{25 September 2014} \begin{document} \tikzstyle{every picture}+=[remember picture] { \setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}} \begin{frame}[c]%{\phantom{title page}} \begin{center} \begin{center} \begin{columns} \begin{column}{0.9\textwidth} \flushright\fontspec{Trebuchet MS}\bfseries \Huge {$\tau \to \mu\mu\mu$ in LHCb} \end{column} \begin{column}{0.2\textwidth} %\includegraphics[width=\textwidth]{SHiP-2} \end{column} \end{columns} \end{center} \quad \vspace{3em} \begin{columns} \begin{column}{0.44\textwidth} \flushright \vspace{-1.8em} {\fontspec{Trebuchet MS} \Large Marcin ChrzÄ…szcz\\\vspace{-0.1em}\small \href{mailto:mchrzasz@cern.ch}{mchrzasz@cern.ch}} \end{column} \begin{column}{0.53\textwidth} \includegraphics[height=1.3cm]{uzh-transp} \end{column} \end{columns} \vspace{1em} % \footnotesize\textcolor{gray}{With N. Serra, B. Storaci\\Thanks to the theory support from M. Shaposhnikov, D. Gorbunov}\normalsize\\ \vspace{0.5em} \textcolor{normal text.fg!50!Comment}{Kaggle Seminar, San Francisco\\August 21, 2015} \end{center} \end{frame} } \usebackgroundtemplate{\includegraphics[width=\paperwidth, height=0.97\paperheight]{s1.png}} \begin{frame} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%555 \usebackgroundtemplate{\includegraphics[width=\paperwidth, height=0.97\paperheight]{s2.png}} \begin{frame} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%555 \usebackgroundtemplate{\includegraphics[width=\paperwidth, height=0.97\paperheight]{s3.png}} \begin{frame} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%555 \usebackgroundtemplate{\includegraphics[width=\paperwidth, height=0.97\paperheight]{s4.png}} \begin{frame} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%555 \usebackgroundtemplate{\includegraphics[width=\paperwidth, height=0.97\paperheight]{s5.png}} \begin{frame} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%555 \usebackgroundtemplate{\includegraphics[width=\paperwidth, height=0.97\paperheight]{s6.png}} \begin{frame} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%555 \usebackgroundtemplate{\includegraphics[width=\paperwidth, height=0.97\paperheight]{s7.png}} \begin{frame} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%555 \usebackgroundtemplate{\includegraphics[width=\paperwidth, height=0.97\paperheight]{s8.png}} \begin{frame} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%555 \usebackgroundtemplate{\includegraphics[width=\paperwidth, height=0.97\paperheight]{s9.png}} \begin{frame} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%555 \usebackgroundtemplate{\includegraphics[width=\paperwidth, height=0.97\paperheight]{s10.png}} \begin{frame} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%555 \usebackgroundtemplate{\includegraphics[width=\paperwidth, height=0.97\paperheight]{s11.png}} \begin{frame} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%555 \usebackgroundtemplate{\includegraphics[width=\paperwidth, height=0.96\paperheight]{s12.png}} \begin{frame} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%555 \usebackgroundtemplate{\includegraphics[width=\paperwidth, height=0.96\paperheight]{s13.png}} \begin{frame} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%555 \usebackgroundtemplate{\includegraphics[width=\paperwidth, height=0.96\paperheight]{s14.png}} \begin{frame} \end{frame} \usebackgroundtemplate{} \begin{frame}\frametitle{Lepton Flavour/Number Violation} \begin{small} Lepton Flavour Violation(LFV): \end{small} \begin{footnotesize} After $\Pmuon$ was discovered (1936) it was natural to think of it as an excited $\Pelectron$. \begin{columns} \column{3in} \begin{itemize} \item Expected: $B(\mu\to\Pe\gamma) \approx 10^{-4}$ \item Unless there is a nother $\Pnu$. \end{itemize} \column{2in} {~}\includegraphics[width=0.98\textwidth]{rabi.png} \end{columns} \begin{columns} \column{0.5in} {~} \column{3in} \begin{block}{I.I.Rabi:} "Who ordered that?" \end{block} \column{0.3in}{~} \column{2in} {~}\includegraphics[scale=0.08]{II_Rabi.jpg} \end{columns} \begin{itemize} \item Up to this day charged LFV is being searched for in various decay modes. \item LFV was already found in neutrino sector (oscillations). \end{itemize} \end{footnotesize} \begin{footnotesize} \begin{columns} \column{3.5in} \begin{small} Lepton Number Violation (LNV) %(see J. Harrison \href{https://indico.cern.ch/event/300387/session/17/contribution/74}{\color{blue}talk}) \end{small} \begin{itemize} \item Even with LFV, lepton number can be a conserved quantity. \item Many NP models predict LNV (Majorana neutrinos) \item LNV searched in s-called neutrinoless double $\beta$ decays. \end{itemize} \column{1.5in} \includegraphics[width=0.73\textwidth]{Double_beta_decay_feynman.png} \end{columns} \end{footnotesize} %Double_beta_decay_feynman.png % \textref{M.Chrz\k{a}szcz 2014} \end{frame} \begin{frame} \frametitle{Status of searches for $\color{white} \tau \to \mu \mu \mu$} \begin{columns} \begin{column}{.62\textwidth} \includegraphics[width=.95\textwidth]{feymn.png} {{ \begin{itemize} \item Charged Lepton Flavour Violation process. \item The Standard Model contribution: penguin diagram with neutrino oscillation % \item SM prediction is beyond experimental reach~$O(10^{-40})$. \end{itemize} }} \end{column} \begin{column}{.45\textwidth} \begin{alertblock}{Current limits ($ \color{white} 90\,\%$ CL)} \begin{description} \item[BaBar] $3.3\times 10^{-8}$ \item[Belle] $2.1\times 10^{-8}$ \end{description} \end{alertblock} \begin{alertblock}{Predictions} \begin{description} \item[SM] $ O(10^{-40})$ \item[var.\ SUSY] $10^{-10}$ \item[non universal $\PZprime$] $10^{-8}$ \item[mSUGRA+seesaw] $10^{-9}$ \item[and many more...] \end{description} \end{alertblock} \end{column} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{$\tau$ production} \begin{itemize} \item $\Ptau$'s in LHCb come from five main sources: \end{itemize} \begin{center} \begin{footnotesize} \begin{tabular}{| c | c | c | } \hline Mode & $7~\TeV$ & $8~\TeV$ \\ \hline Prompt $\PDs\to\Ptau$ & $71.1\pm3.0\,\%$ & $72.4\pm2.7\,\%$ \\ Prompt $\PDplus\to\Ptau$ & $4.1\pm0.8\,\%$ & $4.2\pm0.7\,\%$ \\ Non-prompt $\PDs\to\Ptau$ & $9.0\pm2.0\,\%$ & $8.5\pm1.7\,\%$ \\ Non-prompt $\PDplus\to\Ptau$ & $0.18\pm0.04\,\%$ & $0.17\pm0.04\,\%$ \\ $X_{\Pbottom}\to\Ptau$ & $15.5\pm2.7\,\%$ & $14.7\pm2.3\,\%$ \\ \hline \end{tabular} \end{footnotesize} \begin{itemize} \item Pythia produces them in wrong propotions \item Channels were produced seperatly and added in the given proporitons. \end{itemize} \end{center} \begin{columns} \column{0.05\textwidth} {~} \column{0.9\textwidth} \begin{exampleblock}{$\mathcal{B}(\PDplus\to\Ptau)$} \begin{itemize} \item There is no measurement of $\mathcal{B}(\PDplus\to\Ptau)$. \item One can calculate it from: $\mathcal{B}(\PDplus\to\Pmu\Pnum)$ + helicity suppression + phase space, \texttt{hep-ex:0604043}. \item $\mathcal{B}(\PDplus\to\Ptau\Pnut)=(1.0\pm0.1) \times10^{-3}$. \end{itemize} \end{exampleblock} {~} \column{0.2\textwidth} {~} \end{columns} \end{frame} \begin{frame} \frametitle{Signal and background discrimination} \begin{itemize} \item Two multivariate classifiers, $\mathcal{M}_{3body}$ and $\mathcal{M_{PID}}$. \end{itemize} \begin{columns} \column{3in} \begin{itemize} \item $\mathcal{M}_{3body}$ trained using vertex and track fit quality, vertex displacement, vertex pointing, vertex isolation and $\Ptau$ $p_T$. \item Used Blending Technique (see the next slide). \end{itemize} \column{2in} \includegraphics[width=.98\textwidth]{ver.png} \end{columns} \begin{columns} \column{0.1in} {~} \column{2in} % \includegraphics[width=.95\textwidth]{m3body_2012.pdf} \includegraphics[angle=-90,width=.98\textwidth]{images/mixing.pdf} \column{3in} \begin{itemize} \item Trained on signal and background MC. \item Calibrated on $\PDs \to \Pphi(\mu\mu) \Ppi$ sample. \end{itemize} \end{columns} \end{frame} \begin{frame} \frametitle{Blending technique} \begin{columns} \column{3.2in} \includegraphics[width=.99\textwidth]{diagram.png} \column{1.8in} \begin{itemize} \item Each of the $\Ptau$ lepton production channel have a different signature in terms of kinematic distributions. \item Signal blending technique improved the discriminating power by $6~\%$ \end{itemize} \end{columns} \end{frame} \begin{frame} \frametitle{Calibration} \begin{itemize} \item Assume all differences between $\Ptau\to\Pmu\Pmu\Pmu$ and $\PDs\to\Pphi\Ppi$ come from kinematics (mass, resonance, decay time), which is correct in MC. \item Get correction $\PDs \Longrightarrow \Ptau$ from MC. \item Apply corrections to $\PDs\to\Pphi\Ppi$ on data. \item Publication in preparation. \end{itemize} \begin{columns} \begin{column}{.45\textwidth} \includegraphics[angle=-90,width=.95\textwidth]{images/m3body_2012.pdf} \end{column} \begin{column}{.45\textwidth} \begin{itemize} \item $\PDs\to\Pphi\Ppi$ decay well modelled in MC.\\ \includegraphics[angle=-90,width=.9\textwidth]{images/dataMC.pdf} % \item[$\rightarrow$] i.e.\ also badly pointing non-prompt $\PDs$ \end{itemize} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Relative normalisation} $\boxed{\mathcal{B}(\Ptau\to\Pmu\Pmu\Pmu) = \frac{\mathcal{B}(\PDs\to\Pphi\Ppi)}{\mathcal{B}(\PDs\to\Ptau\Pnut)} \times f_{\PDs}^{\Ptau} \times \frac{\varepsilon_\text{norm} }{\varepsilon_\text{sig} } \times \frac{N_\text{sig}}{N_\text{norm}} = \alpha\times N_\text{sig}}$ \begin{itemize} \item where $\varepsilon$ stands for trigger, reconstruction, selection efficiency. \item $f_{\PDs}^{\Ptau}$ is the fraction of $\Ptau$ coming from $\PDs$. \item $\text{norm}$ = normalisation channel $\PDs\to\Pphi\Ppi$ \newline i.e.\ $(83\pm3)\,\%$ for 2012 data. \end{itemize} \begin{columns} \column{2.3in} \center{2011}\\ \includegraphics[angle=-90,width=.97\textwidth]{images/Ds_data_2011.pdf} \column{2.3in} \center{2012}\\ \includegraphics[angle=-90,width=.97\textwidth]{images/Ds_data_2012.pdf} \end{columns} \end{frame} \begin{frame} \frametitle{Remaining backgrounds} \begin{itemize} \item Fit exponential to invariant mass spectrum in each likelihood bin. \item Don't use the $\pm 30~\MeV$ region. % \item[$\rightarrow$] Compatible results blinding only $\pm \unit{20}{\MeV}$\footnote{partially used in classifier development} \end{itemize} {\begin{center} Example of most sensitive regions in 2011 and 2012 \includegraphics[width=0.9\textwidth]{./fits.png} \end{center}} \end{frame} \begin{frame} \frametitle{Results} \begin{center} \includegraphics[angle=-90,width=0.7\textwidth]{images/banana_line.pdf} \end{center} \begin{columns} \column{0.2in}{~} \column{2in} Limits(PHSP):\\ Observed(Expected)\\ $\color{red}4.6~(5.0)\times 10^{-8}$ at $90\%$ CL\\ $\color{pink}5.6~(6.1)\times 10^{-8}$ at $95\%$ CL\\ \column{3in} \includegraphics[width=0.45\textwidth]{model.png} \end{columns} \end{frame} \begin{frame} \frametitle{Why are we not putting the mass in the classifier?} $\Rrightarrow$ Why don't we put mass in the classifier?\\ $\rightrightarrows$ Many reasons:\\ \begin{itemize} \item Our normalization channel is in different mass range! \item Mass resolution is wrongly modelled in MC. \item Easily to interpret: \end{itemize} \begin{columns} \column{0.05\textwidth} \column{0.45\textwidth} \includegraphics[width=0.95\textwidth]{mass2.png} \column{0.45\textwidth} \includegraphics[angle=-90, width=0.95\textwidth]{{images/10500_11000_y_bin_2_4.5}.pdf} \column{0.05\textwidth} \end{columns} \end{frame} \begin{frame} \frametitle{Data agreement check, why do we bother?} $\Rrightarrow$ It all boils down to our equation: $\boxed{\mathcal{B}(\Ptau\to\Pmu\Pmu\Pmu) = \frac{\mathcal{B}(\PDs\to\Pphi\Ppi)}{\mathcal{B}(\PDs\to\Ptau\Pnut)} \times f_{\PDs}^{\Ptau} \times \frac{\varepsilon_\text{norm} }{\varepsilon_\text{sig} } \times \frac{N_\text{sig}}{N_\text{norm}} = \alpha\times N_\text{sig}}$\\{~}\\ There are 3 variables that we need to terminate: $\varepsilon_\text{sig}$, $\varepsilon_\text{norm}$ and $N_\text{norm}$. \begin{itemize} \item $\varepsilon_\text{norm}$; determine from data, by a cut and count method. \item $N_\text{norm}$; determined from data by a simple fit. \item $\varepsilon_\text{sig}$; calibrated on data: \end{itemize} \begin{align*} \varepsilon_\text{sig}=\varepsilon_\text{sig}^\text{MC} \frac{\varepsilon_\text{norm}^\text{DATA}}{\varepsilon_\text{norm}^\text{MC}} \end{align*} The hack that is used here is: $\varepsilon_\text{sig}$ is ok, but $N_\text{norm}$ is smaller, so alpha is bigger $\Rightarrow$ worse sensitivity. \end{frame} \begin{frame}\frametitle{Wrap up} \begin{enumerate} \item Physics has a different application of ML than computer science. \item There are physics consequance of what you use! \item Blindly taking all varaibles is the bad solution. \end{enumerate} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%555 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%555 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%555 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%555 \backupbegin \begin{frame}\frametitle{Backup} \end{frame} \backupend \end{document}