- \documentclass[xcolor=svgnames]{beamer}
- \usepackage[utf8]{inputenc}
- \usepackage[english]{babel}
- \usepackage{polski}
- %\usepackage{amssymb,amsmath}
- %\usepackage[latin1]{inputenc}
- %\usepackage{amsmath}
- %\newcommand\abs[1]{\left|#1\right|}
- \usepackage{amsmath}
- \newcommand\abs[1]{\left|#1\right|}
- \usepackage{hepnicenames}
- \usepackage{hepunits}
- \usepackage{color}
-
-
-
-
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
- \definecolor{mygreen}{cmyk}{0.82,0.11,1,0.25}
-
-
- \usetheme{Sybila}
-
- \title[Status update o $\color{white}{\Lambda_c \rightarrow p \mu^- \mu^+}$]{Status update o $\color{white}{\Lambda_c \rightarrow p \mu^- \mu^+}$}
- \author{Marcin Chrz\k{a}szcz$^{1}$, Tadeusz Lesiak$^{2}$, Mariusz Witek$^{2}$,\\ Borys Nowak$^{2}$}
- \institute{$^1$~University of Zurich,\\ $^{2}$ Institute of nuclear Physics}
- \date{\today}
-
- \begin{document}
- % --------------------------- SLIDE --------------------------------------------
- \frame[plain]{\titlepage}
- \author{Marcin Chrz\k{a}szcz}
- \institute{~(UZH)}
-
- % ------------------------------------------------------------------------------
- % --------------------------- SLIDE --------------------------------------------
-
-
-
-
-
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- \section{Motivation}
- \begin{frame}\frametitle{Why to search for $\Lambda_c \to \Pproton \mu^{+} \mu^{-}$?}
-
-
- \begin{itemize}
- \item Decay of $\Lambda_c^+ \to \Pproton \mu^+ \mu^-$ is a FCNC.
- \item Extremely suppressed in SM due to GIM mechanism.
- \item We will use the experience from $\tau \to \Pproton \mu \mu$.
-
- \end{itemize}
-
- \begin{columns}
- \column{2.5in}
- \begin{center}
- \includegraphics[scale=0.18]{new/FCNC.png}
- \end{center}
- ~$\mathcal{B}( \Lambda_c^{+} \to p \mu^{-} \mu^{+} ) < 4.4 \times 10^{-5}$\\
- ~ \@ 90\% CL arXiv:1107.4465
-
- \column{3.5in}
- \includegraphics[scale=0.2]{babar.png}\\
- Yield: $11.1 \pm 5.0 \pm 2.5$
-
- \end{columns}
-
- We should easily beat Babar.
-
-
- \end{frame}
-
- \begin{frame}\frametitle{Preliminary selection }
-
- \begin{columns}
- \column{2.5in}
- ~Stripping:
- \begin{itemize}
- \item $\rm{PID}(\mu)>-5$, $\rm{PID}(\Pproton) >10$
- \item $\rm{IPCHi2}>9$, $\rm{PID}(\mu -K)>0$, $\rm{GHOST}<0.3$, $\rm{PID}(\Pproton)>10$, $Pt>300$
- \item $\Delta m<150MeV$
- \item $c\tau >100\mu m$
- \item $\rm{IPChi2} < 225$
- \end{itemize}
- ~Additional:
- \begin{itemize}
- \item Blind region $\vert m(p\mu\mu) - 2286.46 \vert <40 MeV$.
- \item $\phi$, $\omega$ veto.
- \end{itemize}
- \column{3.5in}
-
- \includegraphics[scale=0.18]{new/Lc_mass.png}\\
-
-
-
-
-
- \includegraphics[scale=0.2]{new/blind.png}\\
-
- \end{columns}
-
-
-
-
- \end{frame}
-
-
- \section{Strategy}
- \begin{frame}
-
- \frametitle{Strategy}
- {~}
- Follow the strategy of $\tau$ analysis:
- \begin{itemize}
- \item Take prompt $\Lambda_c$, separate approach to SL.
- \item Loose cut preselection.
- \item Train MVA on MC prompt signal and recalibrate on data.
- \item Calibrate on date.
- \item Normalize to $\Lambda_c^{+} \to \Pproton K^{-} \pi^{+}$, $\Lambda_c^{+} \to \Pproton \pi^{-} \pi^{+}$ or $\Lambda_c \to \Pproton \phi(\mu \mu)$.
- \item Optimise the binning in MVA.
- \item CLs method for limit.
- \end{itemize}
-
- \end{frame}
-
- \section{Normalization channel}
- \begin{frame}\frametitle{Normalization channel}
- \begin{itemize}
- \item We have 3 candidates for normalization channel.
- \begin{enumerate}
- \item $\Lambda_c \to \Pproton \phi(\mu \mu)$, $BR= (2.4 \pm 0.8) \times 10^{-7} $
- \item $\Lambda_c^{+} \to \Pproton K^{-} \pi^{+}$, $BR= (5.0 \pm 1.3) \times 10^{-2} $
- \item $\Lambda_c^{+} \to \Pproton \pi^{-} \pi^{+}$, $BR= (3.5 \pm 2.0) \times 10^{-3} $
- \end{enumerate}
- From above list $\Lambda_c \to \Pproton \phi(\mu \mu)$ is a perfect candidate for normalization.
- However Br is a bit low.
-
-
-
- \end{itemize}
-
-
-
-
- \end{frame}
-
-
-
-
- \begin{frame}\frametitle{Optimising the selection}
- \begin{columns}
- \column{2.5in}
- \begin{itemize}
- \item Last time for studies we used BDT that was trained on the fly.
- \item Now a student produced a new optimised BDT
- \item I include his thesis as attachment to this presentation.
- \end{itemize}
-
-
- \column{2.5in}
- \includegraphics[width=0.95\textwidth]{images/roc.png}\\
-
- \end{columns}
-
-
- \end{frame}
-
-
-
-
- \begin{frame}\frametitle{Comments about the BDT}
-
- \begin{itemize}
- \item From historical reasons we are training this classifier on MC vs MC
- \item Problematic part is that we have limited MC background sample.
- \item We have how ever the opposite sign (OS) channel: $\PLambdac \to \APproton \APmuon \APmuon$
- \item The obvious idea was to use this as an background extrapolation and use it for training and optimisation.
- \end{itemize}
-
-
- \end{frame}
-
- \begin{frame}\frametitle{Differences between SS and opposite sign data}
- \begin{columns}
- \column{2.5in}
- \includegraphics[width=0.95\textwidth]{borys/v_Lambda_cplus_FD_OWNPV_2011_MD.pdf}\\
- \includegraphics[width=0.95\textwidth]{borys/v_Lambda_cplus_PT_2011_MD.pdf}\\
- \column{2.5in}
- \includegraphics[width=0.95\textwidth]{borys/v_mu_two_PT_2011_MD.pdf}\\
- \includegraphics[width=0.95\textwidth]{borys/v_proton_PT_2011_MD.pdf}
-
- \end{columns}
-
-
- \end{frame}
-
- \begin{frame}\frametitle{Normalization channel}
- \begin{columns}
-
- \column{2.6in}
- \begin{itemize}
- \item $\mathcal{O}(500)$ events in pour dataset.
- \item Can be used for normalization!
- \item With the new BDT we also see small peak of $\Pomega$
- \item Will veto that.
- \end{itemize}
- \column{2.5in}
- \includegraphics[scale=0.17]{new/Lc_mass_b.png}\\
- \includegraphics[scale=0.17]{new/Lc_mass.png}
-
- \end{columns}
-
-
-
-
- \end{frame}
-
-
- \begin{frame}\frametitle{Possible background}
-
- \begin{center}
-
- \begin{tabular}{| c | c | c |}
- \hline
- \textbf{ Resonance} & $\mathcal{B} (\Lambda_c \to p X)$& $\mathcal{B} (X \to \mu \mu)$\\ \hline
-
- $\eta$ & UNKNOWN & $(5.8 \pm 0.6) \times 10^{-6}$ \\ \hline
- $\rho^0$ & UNKNOWN & $(4.55 \pm 0.28) \times 10^{-5}$ \\ \hline
- $\omega$ & UNKNOWN & $(9.1 \pm 3.0) \times 10^{-5}$ \\ \hline
- $f(980)$ & $(2.8 \pm 1.9) \times 10^{-3}$ & UNKNOWN \\ \hline
- $\phi$ & $(8.2 \pm 2.7) \times 10^{-4} $ & $(2.89 \pm 0.19) \times 10^{-4}$ \\ \hline \hline
-
- \textbf{ Resonance} & $\mathcal{B} (\Lambda_c \to p X)$ & $\mathcal{B} (X \to \mu \mu \gamma)$\\ \hline
- $\eta$ & UNKNOWN & $(3.1 \pm 0.4) \times 10^{-4}$ \\ \hline
- \end{tabular}
- \end{center}
-
-
-
-
-
- \end{frame}
-
-
-
- \section{Summary}
- \begin{frame}\frametitle{Summary}
-
- \begin{itemize}
- \item Looks like we will have limits $\mathcal{O}(10^{-8})$
- \item We already see a new $\Lambda_c \to \omega \Pproton$ decay, needs separate analysis
- \item Normalization channel is still open, but we are converging towards $\Lambda_c^{+} \to \Pproton \pi^{-} \pi^{+}$
- \item We have one tight cut on the stripping (flight distance), we are considering several solutions.
-
- \end{itemize}
-
-
-
- \end{frame}
-
-
- \end{document}