- \documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}
-
- \usepackage[english]{babel}
- \usepackage{polski}
-
-
- \usetheme[
- bullet=circle, % Other option: square
- bigpagenumber, % circled page number on lower right
- topline=true, % colored bar at the top of the frame
- shadow=false, % Shading for beamer blocks
- watermark=BG_lower, % png file for the watermark
- ]{Flip}
-
- %\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}
-
-
- \usepackage[lf]{berenis}
- \usepackage[LY1]{fontenc}
- \usepackage[utf8]{inputenc}
-
- \usepackage{emerald}
- \usefonttheme{professionalfonts}
- \usepackage[no-math]{fontspec}
- \defaultfontfeatures{Mapping=tex-text} % This seems to be important for mapping glyphs properly
-
- \setmainfont{Gillius ADF} % Beamer ignores "main font" in favor of sans font
- \setsansfont{Gillius ADF} % This is the font that beamer will use by default
- % \setmainfont{Gill Sans Light} % Prettier, but harder to read
-
- \setbeamerfont{title}{family=\fontspec{Gillius ADF}}
-
- \input t1augie.fd
-
- %\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
- %\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
- % \newcommand{\handwriting}{} % If you prefer no special handwriting font or don't have augie
-
- %% Gill Sans doesn't look very nice when boldfaced
- %% This is a hack to use Helvetica instead
- %% Usage: \textbf{\forbold some stuff}
- %\newcommand{\forbold}{\fontspec{Arial}}
-
- \usepackage{graphicx}
- \usepackage[export]{adjustbox}
-
- \usepackage{amsmath}
- \usepackage{amsfonts}
- \usepackage{amssymb}
- \usepackage{bm}
- \usepackage{colortbl}
- \usepackage{mathrsfs} % For Weinberg-esque letters
- \usepackage{cancel} % For "SUSY-breaking" symbol
- \usepackage{slashed} % for slashed characters in math mode
- \usepackage{bbm} % for \mathbbm{1} (unit matrix)
- \usepackage{amsthm} % For theorem environment
- \usepackage{multirow} % For multi row cells in table
- \usepackage{arydshln} % For dashed lines in arrays and tables
- \usepackage{siunitx}
- \usepackage{xhfill}
- \usepackage{grffile}
- \usepackage{textpos}
- \usepackage{subfigure}
- \usepackage{tikz}
-
- %\usepackage{hepparticles}
- \usepackage[italic]{hepparticles}
-
- \usepackage{hepnicenames}
-
- % Drawing a line
- \tikzstyle{lw} = [line width=20pt]
- \newcommand{\topline}{%
- \tikz[remember picture,overlay] {%
- \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
- -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}
-
-
-
- % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
- \usepackage{tikzfeynman} % For Feynman diagrams
- \usetikzlibrary{arrows,shapes}
- \usetikzlibrary{trees}
- \usetikzlibrary{matrix,arrows} % For commutative diagram
- % http://www.felixl.de/commu.pdf
- \usetikzlibrary{positioning} % For "above of=" commands
- \usetikzlibrary{calc,through} % For coordinates
- \usetikzlibrary{decorations.pathreplacing} % For curly braces
- % http://www.math.ucla.edu/~getreuer/tikz.html
- \usepackage{pgffor} % For repeating patterns
-
- \usetikzlibrary{decorations.pathmorphing} % For Feynman Diagrams
- \usetikzlibrary{decorations.markings}
- \tikzset{
- % >=stealth', %% Uncomment for more conventional arrows
- vector/.style={decorate, decoration={snake}, draw},
- provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
- antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
- fermion/.style={draw=gray, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
- fermionbar/.style={draw=gray, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
- fermionnoarrow/.style={draw=gray},
- gluon/.style={decorate, draw=black,
- decoration={coil,amplitude=4pt, segment length=5pt}},
- scalar/.style={dashed,draw=black, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
- scalarbar/.style={dashed,draw=black, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
- scalarnoarrow/.style={dashed,draw=black},
- electron/.style={draw=black, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
- bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
- }
-
- % TIKZ - for block diagrams,
- % from http://www.texample.net/tikz/examples/control-system-principles/
- % \usetikzlibrary{shapes,arrows}
- \tikzstyle{block} = [draw, rectangle,
- minimum height=3em, minimum width=6em]
-
-
-
-
- \usetikzlibrary{backgrounds}
- \usetikzlibrary{mindmap,trees} % For mind map
- \newcommand{\degree}{\ensuremath{^\circ}}
- \newcommand{\E}{\mathrm{E}}
- \newcommand{\Var}{\mathrm{Var}}
- \newcommand{\Cov}{\mathrm{Cov}}
- \newcommand\Ts{\rule{0pt}{2.6ex}} % Top strut
- \newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut
-
- \graphicspath{{images/}} % Put all images in this directory. Avoids clutter.
-
- % SOME COMMANDS THAT I FIND HANDY
- % \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
- \newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
- \newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
- \newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
- \newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
- \newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
- %% "\alert" is already a beamer pre-defined
- \newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%
-
- \def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}
-
- \usepackage{gmp}
- \usepackage[final]{feynmp-auto}
-
- \usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
- \bibliography{bib}
- \setbeamertemplate{bibliography item}[text]
-
- \makeatletter\let\frametextheight\beamer@frametextheight\makeatother
-
- % suppress frame numbering for backup slides
- % you always need the appendix for this!
- \newcommand{\backupbegin}{
- \newcounter{framenumberappendix}
- \setcounter{framenumberappendix}{\value{framenumber}}
- }
- \newcommand{\backupend}{
- \addtocounter{framenumberappendix}{-\value{framenumber}}
- \addtocounter{framenumber}{\value{framenumberappendix}}
- }
-
-
- \definecolor{links}{HTML}{2A1B81}
- %\hypersetup{colorlinks,linkcolor=,urlcolor=links}
-
- % For shapo's formulas:
- \def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
- \def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
- \newcommand{\lsim}{\mathop{\lsi}}
- \newcommand{\gsim}{\mathop{\gsi}}
- \newcommand{\wt}{\widetilde}
- %\newcommand{\ol}{\overline}
- \newcommand{\Tr}{\rm{Tr}}
- \newcommand{\tr}{\rm{tr}}
- \newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
- \newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
- \newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
- \newcommand{\eV}{\rm{eV}}
- \newcommand{\keV}{\rm{keV}}
- \newcommand{\GeV}{\rm{GeV}}
- \newcommand{\TeV}{\rm{TeV}}
-
- \newcommand{\im}{\rm{Im}}
- \newcommand{\disp}{\displaystyle}
- \def\be{\begin{equation}}
- \def\ee{\end{equation}}
- \def\ba{\begin{eqnarray}}
- \def\ea{\end{eqnarray}}
- \def\d{\partial}
- \def\l{\left(}
- \def\r{\right)}
- \def\la{\langle}
- \def\ra{\rangle}
- \def\e{{\rm e}}
- \def\Br{{\rm Br}}
-
-
-
- \author{ {\fontspec{Trebuchet MS}Marcin Chrz\k{a}szcz} (Universit\"{a}t Z\"{u}rich)}
- \institute{UZH}
- \title[Drell-Yan status update]{Drell-Yan status update}
-
-
- \begin{document}
- \tikzstyle{every picture}+=[remember picture]
-
- {
- \setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
- \begin{frame}[c]%{\phantom{title page}}
- \begin{center}
- \begin{center}
- \begin{columns}
- \begin{column}{0.75\textwidth}
- \flushright\fontspec{Trebuchet MS}\bfseries \Huge {Low Mass Drell-Yan Status Report }
- \end{column}
- \begin{column}{0.02\textwidth}
- {~}
- \end{column}
- \begin{column}{0.23\textwidth}
- % \hspace*{-1.cm}
- \vspace*{-3mm}
- \includegraphics[width=0.6\textwidth]{lhcb-logo}
- \end{column}
-
- \end{columns}
- \end{center}
- \quad
- \vspace{3em}
- \begin{columns}
- \begin{column}{0.44\textwidth}
- \flushright \vspace{-1.8em} {\fontspec{Trebuchet MS} \Large Marcin Chrząszcz\\\vspace{-0.1em} Katharina M\"{u}eller Nicola Chiapolini}
-
- \end{column}
- \begin{column}{0.53\textwidth}
- \includegraphics[height=1.3cm]{uzh-transp}
- \end{column}
- \end{columns}
-
- \vspace{1em}
- % \footnotesize\textcolor{gray}{With N. Serra, B. Storaci\\Thanks to the theory support from M. Shaposhnikov, D. Gorbunov}\normalsize\\
- \vspace{0.5em}
-
- \textcolor{normal text.fg!50!Comment}{Analysis and software week, CERN\\January 27, 2015}
- \end{center}
- \end{frame}
- }
-
- \begin{frame}\frametitle{Introduction to Drell-Yan}
-
- \begin{columns}
- \column{2.5in}
- \begin{itemize}
- \item Drell-Yan are process of two quark anihilations in which neutral coupling to two leptons.
- \item The cross section of this process depends on two components:
- \begin{itemize}
- \item Hard scattering process $\color{OrangeRed}{\Rrightarrow}$ NNLO pQCD.
- \item Parton Distribution Function (PDF).
- \end{itemize}
- \item Measurement of the cross section have a high sensitivity to the PDF
- \item Due to unique coverage $2<y<5$ LHCb probes the $Q^2-x$ region not covered by other experiments.
-
- \end{itemize}
-
- \column{2.5in}
- \includegraphics[width=0.95\textwidth]{images/feynmanDiagram_DrellYan_wRad.png}\\
- \includegraphics[width=0.85\textwidth]{images/Q2_x.png}
-
- \end{columns}
-
-
- \end{frame}
-
-
-
-
- \begin{frame}\frametitle{Selection}
- \begin{itemize}
- \item Analysis based on 2011 and 2012 data set.
- \item Plan to measure them separately as well as the ratio (cancellation of systematics).
- \item Trigger:
- \begin{itemize}
- \item \texttt{L0\_L0DiMuonDecision},
- \item \texttt{Hlt1DiMuonHighMassDecision},
- \item \texttt{Hlt2DiMuonDY(3,4)Decision}
- \end{itemize}
- \item Stripping:
- \begin{itemize}
- \item \texttt{StrippingDY2MuMuLine(3,4)}
- \end{itemize}
- \item Selection:
- \begin{itemize}
- \item $2<\eta^{\mu}<4.5$,
- \item $p^{\mu} > 10~\GeV$,
- \item $p_T^{\mu} > 3~\GeV$,
- \item $\chi^{2,\mu\mu}_{vtx}<5$,
- \item $10< m(\mu\mu) < 120~\GeV$.
- \end{itemize}
- \end{itemize}
- \end{frame}
-
-
-
-
- \begin{frame}\frametitle{The Goal}
- $\Rrightarrow$ Since there is no normalization channel, we will use the integrated luminosity for cross section calculations\\
- $\Rrightarrow$ The measurement will be performed in the bins of dimuon mass and pseudo-rapidity:
- \begin{center}
- \includegraphics[width=0.7\textwidth]{images/table.png}
- \end{center}
-
- \end{frame}
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{Isolation}
- \begin{itemize}
- \item Drell-Yan unfortunately do not peak in mass $\twoheadrightarrow$ need another variable to control the purity.
- \item Instead we define an isolation variable:
- \begin{align*}
- \mu_{ {\rm{iso}}} = \log(p_T^{ cone}(\mu, 0.5) - p_T^{ cone}(\mu, 0.1))
- \end{align*}
- \item For two muons we take the maximum of the two isolations:
- \begin{align*}
- \mu\mu_{ {\rm{iso}}} = \max( \mu_{ {\rm{iso}}}^+, \mu_{ {\rm{iso}}}^-)
- \end{align*}
- \end{itemize}
- \begin{center}
- \begin{columns}
- \column{0.5\textwidth}
- \includegraphics[angle=-90,width=0.9\textwidth]{images/Z0_iso.pdf}
- \column{0.5\textwidth}
- \includegraphics[width=0.8\textwidth]{images/iso.png}
- \end{columns}
-
- \end{center}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{Isolation mass dependence}
- \begin{itemize}
- \item Unfortunately the $\mu\mu_{iso}$ is showing some mass dependence:
- \end{itemize}
- \begin{center}
- \includegraphics[width=0.75\textwidth]{images/DY.png}
- \end{center}
-
-
- \end{frame}
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{Signal template}
- \begin{columns}
- \column{2.7in}
- \begin{itemize}
- \only<1>{
- \item We do not want to use MC for determination of the signal $\mu\mu_{iso}$ template.
- \item We adopted a data driven procedure:
- \begin{itemize}
- \item The template is taken from data and scaled to account for $\mu\mu_{iso}$ mass dependence.
- \end{itemize}
- \item Possibility 1:
- \begin{itemize}
- \item Take the \textit{Splot} $\PZ \to \mu \mu$ from data and multiply it by the scale factor determined from minimalising the $\chi^2$ between MC $\PZ$ and DY in particular region.
-
- \end{itemize}
- }
- \only<2>{
- \item Possibility 2:
- \begin{itemize}
- \item Use a second decay from data: $\PUpsilon \to \mu \mu$.
- \item The template for a given mass range ($M_{\min}, M_{\max}$) is choose as:
- \begin{tiny}
- \begin{align*}
- {\rm{Temp}}(M) = {\rm{Temp}}^{\PUpsilon} \frac{(M_{\PZ} -M_{\PUpsilon} - (M- M_{\PUpsilon} ))}{M_{\PZ} -M_{\PUpsilon}}\\ + {\rm{Temp}}^{\PZ} \frac{M- M_{\PUpsilon} }{M_{\PZ} -M_{\PUpsilon}}
- \end{align*}
- \end{tiny}
-
- \item Then the new obtained template is scaled in the same way as the previous one.
-
- \end{itemize}
- }
-
-
-
- \end{itemize}
-
- \column{2.3in}
- \only<1>{
- \includegraphics[width=0.9\textwidth]{images/result_Z0.png}\\
- \includegraphics[width=0.9\textwidth]{{images/3.0_3.25_10500.0_12000.0Nicola}.png}
- }
- \only<2>{
- \includegraphics[width=0.9\textwidth]{images/result_upsilon.png}\\
- \includegraphics[width=0.9\textwidth]{{images/3.0_3.25_10500.0_12000.0Me}.png}
- }
-
-
- \end{columns}
-
-
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- \begin{frame}\frametitle{Signal template - Summary}
- \begin{itemize}
- \item We are investigating the impact on the analysis for the different approaches
- \item For now it looks like the results do not change with using different signal templates.
- \item Because templates are data driven we need to ensure a large statistics in each of the $m_{\mu\mu},~y$ bins, because of this the last $y$ bin is larger then the rest.
- \end{itemize}
- \begin{center}
- \includegraphics[width=0.5\textwidth]{images/scalef.png}
- \end{center}
- \end{frame}
-
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{Backgrounds}
- \begin{itemize}
- \item There are two sources of backgrounds:
- \begin{itemize}
- \item Heavy flavour decays.
- \item Mis-ID.
- \end{itemize}
- \item For fitting the $\mu\mu_{iso}$ we need to know both the signal and background distribution.
- \item Background templates can be determined from data
- \begin{itemize}
- \item Heavy flavour decays:\\
- $\looparrowright$ Requiring the $\chi^{2,\mu\mu}_{vtx}>16$\\
- $\looparrowright$ For cross-check $\rm IP>5~\rm mm$
- \item Miss-ID:\\
- $\looparrowright$ Require that both muons have the same sign.\\
- $\looparrowright$ For cross-check take the minimum bias stripping line.
- \end{itemize}
-
-
- \end{itemize}
-
-
-
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{Over all fits}
- \begin{columns}
- \column{3in}
- \begin{itemize}
- \item Using the above 3 mentioned templates the fits converge without any problems.
- \item The higher one goes in mass the cleaner the signal is.
-
- \end{itemize}
- %\includegraphics[angle=-90,width=0.45\textwidth]{{images/Fits/12000_15000_y_bin_3.5_4.5_12}.pdf}
- \begin{small}
- {~}{~}{~}\begin{tabular}{|c|c|}
- \hline
- Mass bin & Purity \\ \hline
- $[40,60]~\GeV$ & $0.879 \pm 0.019$\\
- $[30,40]~\GeV$ & $0.754 \pm 0.015$\\
- $[25,30]~\GeV$ & $0.657 \pm 0.011$\\
- $[20,25]~\GeV$ & $0.507 \pm 0.008$\\
- $[17.5,20]~\GeV$ & $0.402 \pm 0.007$\\
- $[15,17.5]~\GeV$ & $0.316 \pm 0.006$\\ \hline
-
- \end{tabular}
- \end{small}
- \column{2in}
- \includegraphics[angle=-90,width=0.9\textwidth]{{images/Fits/12000_15000_y_bin_2_2.25_12}.pdf}\\
- \includegraphics[angle=-90,width=0.9\textwidth]{{images/Fits/15000_20000_y_bin_3.5_4.5_12}.pdf}
-
- \end{columns}
-
-
-
-
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{Cross section calculations}
- \begin{itemize}
- \item To calculate the cross section the luminosity will be used:
- \end{itemize}
- \begin{align*}
- \sigma= \dfrac{\varrho f^{{\rm MIG}}}{\mathcal{L} \varepsilon^{{\rm SEL}}} \sum \dfrac{1}{\varepsilon^{{\rm TRIG}} \varepsilon^{{\rm MUID}} \varepsilon^{{\rm GEC}} \varepsilon^{{\rm TRACK}}},
- \end{align*}
- where\\
- \begin{itemize}
- \item $\varrho$ signal fraction from the fit.
- \item $f^{{\rm MIG}}$ correction to bin-bin migration.
- \item $\mathcal{L}$ integrated luminosity.
- \item $\varepsilon^{{\rm SEL}}$ efficiency on the vertex requirement.
- \item $\varepsilon^{{\rm MUID}}$ muon identification efficiency.
- \item $\varepsilon^{{\rm GEC}}$ global event cut efficiency.
- \item $\varepsilon^{{\rm TRACK}}$ tracking efficiency.
- \end{itemize}
-
-
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{Luminosity}
- \begin{itemize}
- \item Thanks to our colleagues the error on the luminosity in LHCb is $1.16(1.71)\%$ for 2012(2011) data.
- \item For the $8~\TeV$ data we removed: 111802-111890 , 126124-126160, 129530-129539 runs.
- \item Lost $14.68~\rm pb^{-1}$ of data in total.
- \item For the $7~\TeV$ data we removed: 101401, 101403-101415 runs.
- \item Lost $8.23~\rm pb^{-1}$.
- \end{itemize}
-
-
-
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{Trigger efficiency}
- \begin{itemize}
- \item We take the trigger efficiency from MC. We are using the dimuon trigger that were always well simulated.
- \item We performed a cross check using tag and probe method that ensures the luminosity is correctly simulated.
- \end{itemize}
- \begin{center}
- \includegraphics[width=0.75\textwidth]{images/trigger.png}
- \end{center}
- \begin{itemize}
- \item An systematic uncertainty of $0.01$ is assigned.
- \end{itemize}
-
- \end{frame}
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{Muon Identification}
- \begin{itemize}
- \item Only muon ID requirement in this analysis is the \texttt{isMuon}.
- \item The efficiency is taken from MC.
- \item Has been cross-checked that it agrees in \href{https://cds.cern.ch/record/1709688/files/LHCb-INT-2014-030.pdf}{\texttt{LHCb-INT-2014-030}}
-
- \end{itemize}
- \begin{center}
- \includegraphics[width=0.65\textwidth]{images/MUID.png}\\
- \includegraphics[width=0.65\textwidth]{images/MUID2.png}
- \end{center}
- \begin{itemize}
- \item The systematics is $0.005$ (needs to be checked for the low $p_T$).
- \end{itemize}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{Global even cut efficiency}
- \begin{itemize}
- \item There is a SPD cut for the dimuon trigger: SPD<900.
- \item A data driven method is used to estimate the cut.
- \end{itemize}
- \begin{center}
- \includegraphics[width=0.6\textwidth]{images/GEC.png}\\
- \includegraphics[width=0.6\textwidth]{images/GEC2.png}
- \end{center}
- \begin{itemize}
- \item No dependence is observed of the $M_{\mu\mu}$ and the $y$ in data.
- \item Similar to the $\PW$ and $\PZ$ analysis.
- \end{itemize}
- \end{frame}
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{Conclusions}
- \begin{itemize}
- \item Analysis is well advanced!
- \item The analysis note is beeing written as we speak:\\ \url{svn+ssh://svn.cern.ch/reps/lhcbdocs/Users/mchrzasz/DY_ANANote}
- \item $+30$ pages!
- \item To do list:
- \begin{itemize}
- \item Calculate the theory predictions for $8~\TeV$ data.
- \item Missing systematics: bin-bin migration, templates determination.
- \item Hopefully the ANA note in WG review soon!
- \end{itemize}
- \end{itemize}
- \end{frame}
-
-
-
-
-
- \backupbegin
-
- \begin{frame}\frametitle{Backup}
-
-
- \end{frame}
-
- \backupend
-
- \end{document}