- % This program can be redistributed and/or modified under the terms
- % of the GNU Public License, version 3.
- %
- % Seth Brown, Ph.D.
- % sethbrown@drbunsen.org
- %
- % Compiled with XeLaTeX
- % Dependencies:
- % Fontin Sans font (http://www.exljbris.com/fontinsans.fsrtml)
- %
- \documentclass{beamer}
- \usepackage{pgf}
- \usepackage{tikz}
- \usepackage{times}
- \usepackage[T1]{fontenc}
- %\usepackage[mathscr]{eucal}
- %\usepackage{mathptmx}
- %\usepackage{mathrsfs}
- \usepackage{hyperref}
- \usepackage{color}
- \usepackage{graphicx}
- \usepackage{wasysym}
- % \usepackage{pgfpagfes}
- % \setbeameroption{show notes on second screen}
- %\pgfpagesuselayout{4 on 1}[a4paper,border shrink=5mm,landscape]
- \usepackage{xcolor}
- %\usepackage[dvipsnames]{xcolor}
- %\usepackage{amsfonts}
- %\usepackage{amsmath}
- % \usepackage[amssymb]{SIunits}
- %\usepackage{natbib}
- %\usepackage{amssymb}
- \usepackage{hepparticles}
- \usepackage{hepnicenames}
- \usepackage{hepunits}
- \usepackage{tikz}
- \usepackage[english]{babel}
- %%\usepackage{lmodern}
- %\usepackage{feynmp}
- % suppress navigation bar
- \beamertemplatenavigationsymbolsempty
- \usepackage[mathscr]{eucal}
- \usepackage{mathrsfs}
- \mode<presentation>
- {
- \usetheme{bunsen}
- \setbeamercovered{transparent}
- \setbeamertemplate{items}[circle]
- }
- \newcommand{\Simley}[1]{%
- \begin{tikzpicture}[scale=0.15]
- \newcommand*{\SmileyRadius}{1.0}%
- \draw [fill=brown!10] (0,0) circle (\SmileyRadius)% outside circle
- %node [yshift=-0.22*\SmileyRadius cm] {\tiny #1}% uncomment this to see the smile factor
- ;
-
- \pgfmathsetmacro{\eyeX}{0.5*\SmileyRadius*cos(30)}
- \pgfmathsetmacro{\eyeY}{0.5*\SmileyRadius*sin(30)}
- \draw [fill=cyan,draw=none] (\eyeX,\eyeY) circle (0.15cm);
- \draw [fill=cyan,draw=none] (-\eyeX,\eyeY) circle (0.15cm);
-
- \pgfmathsetmacro{\xScale}{2*\eyeX/180}
- \pgfmathsetmacro{\yScale}{1.0*\eyeY}
- \draw[color=red, domain=-\eyeX:\eyeX]
- plot ({\x},{
- -0.1+#1*0.15 % shift the smiley as smile decreases
- -#1*1.75*\yScale*(sin((\x+\eyeX)/\xScale))-\eyeY});
- \end{tikzpicture}%
- }%
- % set fonts
- \usepackage{amsfonts}
- \usepackage{amsmath}
- \usepackage{verbatim}
- \usepackage{fancyvrb}
- \DefineVerbatimEnvironment{code}{Verbatim}{fontsize=\small}
- \DefineVerbatimEnvironment{example}{Verbatim}{fontsize=\small}
- \usepackage{listings}
- \usepackage{courier}
- \lstset{
- basicstyle=\footnotesize\ttfamily, % Standardschrift
- %numbers=left, % Ort der Zeilennummern
- numberstyle=\tiny, % Stil der Zeilennummern
- %stepnumber=2, % Abstand zwischen den Zeilennummern
- numbersep=5pt, % Abstand der Nummern zum Text
- tabsize=2, % Groesse von Tabs
- extendedchars=true, %
- breaklines=true, % Zeilen werden Umgebrochen
- keywordstyle=\color{red},
- frame=b,
- % keywordstyle=[1]\textbf, % Stil der Keywords
- % keywordstyle=[2]\textbf, %
- % keywordstyle=[3]\textbf, %
- % keywordstyle=[4]\textbf, \sqrt{\sqrt{}} %
- stringstyle=\color{white}\ttfamily, % Farbe der String
- showspaces=false, % Leerzeichen anzeigen ?
- showtabs=false, % Tabs anzeigen ?
- xleftmargin=17pt,
- framexleftmargin=17pt,
- framexrightmargin=5pt,
- framexbottommargin=4pt,
- %backgroundcolor=\color{lightgray},
- showstringspaces=false % Leerzeichen in Strings anzeigen ?
- }
- \lstloadlanguages{% Check Dokumentation for further languages ...
- %[Visual]Basic
- %Pascal
- %C
- C++
- %XML
- %HTML
- %Java
- }
- %\DeclareCaptionFont{blue}{\color{blue}}
-
- %\captionsetup[lstlisting]{singlelinecheck=false, labelfont={blue}, textfont={blue}}
- \usepackage{caption}
- \DeclareCaptionFont{white}{\color{white}}
- \DeclareCaptionFormat{listing}{\colorbox[cmyk]{0.43, 0.35, 0.35,0.01}{\parbox{\textwidth}{\hspace{15pt}#1#2#3}}}
- \captionsetup[lstlisting]{format=listing,labelfont=white,textfont=white, singlelinecheck=false, margin=0pt, font={bf,footnotesize}}
- \usetikzlibrary{arrows}
- \usetikzlibrary{shapes}
-
- %\usepackage{gfsartemisia-euler}
- %\usepackage[T1]{fontenc}
- \setbeamerfont{frametitle}{size=\LARGE,series=\bfseries}
- \tikzstyle{decision} = [diamond, draw, fill=gray!20,
- text width=4.5em, text badly centered, node distance=3cm, inner sep=0pt]
- \tikzstyle{block} = [rectangle, draw, fill=blue!10,
- text width=5em, text centered, rounded corners, minimum height=2em]
- \tikzstyle{line} = [draw, -latex']
- \tikzstyle{cloud} = [draw, ellipse,fill=red!10, node distance=3cm,
- minimum height=2em]
-
- \tikzstyle{every picture}+=[remember picture]
-
-
- \renewcommand{\PKs}{{\HepParticle{K}{S}{}\xspace}}
- % color definitions
- \usepackage{color}
- \definecolor{uipoppy}{RGB}{225, 64, 5}
- \definecolor{uipaleblue}{RGB}{96,123,139}
- \definecolor{uiblack}{RGB}{0, 0, 0}
-
- % caption styling
- %\DeclareCaptionFont{uiblack}{\color{uiblack}}
- %\DeclareCaptionFont{uipoppy}{\color{uipoppy}}
- %\captionsetup{labelfont={uipoppy},textfont=uiblack}
-
- % see the macros.tex file for definitions
- \include{macros }
-
- % title slide definition
- \title{Report on $\tau \to p \Plepton \Plepton$}
- %\subtitle{a bias report}
- \author{Marcin Chrz\k{a}szcz, Alberto Lusiani}
- \institute[Institute of Nuclear Physics]
- {
- Institute of Nuclear Physics, INFN, Scuola Normale Superiore
- }
-
-
- \date{$27^{th}$ March 2013}
-
- %--------------------------------------------------------------------
- % Introduction
- %--------------------------------------------------------------------
-
- \begin{document}
-
-
-
- \setbeamertemplate{background}
- {\includegraphics[width=\paperwidth,height=\paperheight]{frontpage_bg_mine}}
- \setbeamertemplate{footline}[default]
-
- \begin{frame}
- \vspace{1.1cm}
- \begin{columns}
- \column{2.75in}
- \titlepage
-
- \begin{center}
- \includegraphics[height=1.0cm ]{pic/ifj.png}
- % \hspace{0.5cm}
- % \includegraphics[height=1.5cm]{pic/babar.jpg}
- \hspace{1cm}
- \includegraphics[height=1.0cm]{pic/INFN.jpg}
- \hspace{1cm}
- \includegraphics[height=1.0cm]{pic/SNS.jpg}
- \end{center}
- \vspace{10cm}
- \column{2.0in}
- \end{columns}
- \end{frame}
-
- %--------------------------------------------------------------------
- % OUTLINE
- %--------------------------------------------------------------------
-
-
-
-
- \section[Outline]{}
- \begin{frame}
- \tableofcontents
- \end{frame}
-
-
-
-
-
-
-
- %-------------------------------------------------------------------
- % Introduction
- %-------------------------------------------------------------------
- %
- % Set the background for the rest of the slides.
- % Insert infoline
- \setbeamertemplate{background}
- {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}}
- \setbeamertemplate{footline}[bunsentheme]
-
- \title{Report on $\tau \to p \Plepton \Plepton$}
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- \setbeamertemplate{background}
- {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}}
- \setbeamertemplate{footline}[bunsentheme]
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%2>%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- \section{Motivation}
- \begin{frame}\frametitle{Motivation}
- \begin{small}
- \begin{itemize}
- \item Each of studied decay: $\tau^- \to p \Plepton^- \Plepton^-$ or $\tau^- \to \bar{p} \Plepton^- \Plepton^+$ violates Lepton and Baryon numbers.
- \item However the quantity: $\Delta \vert B-L \vert = 0$, which is predicted by many NP models, ex. R-parity violating SUSY.
- \item LHCb searched for this decays($\Plepton=\mu$) using 2011 data.
- \end{itemize}
- \end{small}
- \begin{figure}[h]
- \begin{center}
- \mbox{
- {\includegraphics[scale=0.15]{pic/OS_banan_un.png}}
- {\includegraphics[scale=0.15]{pic/SS_banan_un.png}}
- }
- \end{center}
- \end{figure}
- \small Limits 90\% CL: (can we do better?)\\
- $\mathcal{B}(\tau^- \to p^+ \mu^- \mu^-) < 4.4 \times 10^{-7}$\\
- $\mathcal{B}(\tau^- \to \bar{p}^+ \mu^+ \mu^-) < 3.3 \times 10^{-7}$\\
-
- \end{frame}
-
- \section{MC \& data}
- \begin{frame}
-
- \frametitle{Data Set used in this analysis.}
- {~}
-
- Available data:
- \only<1>{
-
- The MC signal samples used:
- \begin {table}[h]
- \begin{center}
- \begin{tabular}{ l | l }
- \hline
- Decay & Generated events \\ \hline \hline
- $\tau^{-} \rightarrow p \mu^- \mu^{-}$ & 207000 \\ \hline
- $\tau^{+} \rightarrow \overline{p} \mu^+ \mu^{+}$ & 212000 \\ \hline
- $\tau^{-} \rightarrow \overline{p} \mu^+ \mu^{-}$ & 212000\\ \hline
- $\tau^{+} \rightarrow p \mu^- \mu^{+}$ & 217000 \\ \hline
- %%%%%%%%%%%%%%%%%%%%%%5 electrons now
- $\tau^{-} \rightarrow p e^- e^{-}$ & 185000 \\ \hline
- $\tau^{+} \rightarrow \overline{p} e^+ e^{+}$ & 198000 \\ \hline
- $\tau^{-} \rightarrow \overline{p} e^+ e^{-}$ & 191000 \\ \hline
- $\tau^{+} \rightarrow p e^- e^{+}$ & 187000 \\ \hline
-
- \end{tabular}
- \end{center}
-
- \caption {Simulated MC signal samples.}
-
- \end {table}
-
-
- }
-
- \only<2>{
- Data: $472 fb^{-1}$ (run 1-6, on and off peak). \\
- MC bck samples: Run 1-6
- \begin {table}[h]
- \begin{center}
- \begin{tabular}{ l | l | l }
- \hline
- Background type & $\sigma [nb]$ & $L [ fb^{-1} ] $ \\ \hline \hline
- $e^{-} e^{+} \to \tau \tau$ & 0.92 & 471 \\ \hline
- $e^{-} e^{+} \to uu/dd/ss$ & 1.09 & 746 \\ \hline
- $e^{-} e^{+} \to cc$ &1.3 & 860 \\ \hline
- $e^{-} e^{+} \to B\bar{B}$ & 1.1 & 1190 \\ \hline
-
-
- \end{tabular}
- \end{center}
-
-
- \caption {MC background samples used in this analysis.}
-
- \end {table}
-
- %The luminosity is not used in the analysis.
- }
-
- \end{frame}
-
- \section{Preselection}
- \begin{frame}\frametitle{Preselection}
- We divide our pre selection cuts into two categories:
- \begin{itemize}
- \item Geometric \& Topology
- \item PID
- \end{itemize}
- \end{frame}
-
- \subsection{Geometric \& Topology}
- \begin{frame}\frametitle{Geometric \& Topology}
- \only<1>{
- The following selections are applied to data and MC samples:
-
- \begin{itemize}
- \item Trigger logic: (L3OutDch $\Vert$ L3OutEmc)$\&$BGFMultiHadron.
- \item Pass the 1N skim.
- \item Events are divided into two hemispheres using the thrust axis:
- \begin{equation}
- thr= MAX ( \dfrac{\sum^n_{i=0} \vert A \cdot P_i \vert }{\sum^n_{i=0}\sqrt{ P_i \cdot P_i }} )
- \end{equation}
- \item Total charge =0 and opposite sign of the two hemispheres is required.
- \end{itemize}
- }
-
- \only<2>{
- The following selections are applied to data and MC samples:
-
- \begin{itemize}
- \item On the signal side we require 3 charged tracks from GoodChargeLoose list.
- \item Tag side is single charge track form the same list. $85\%$ eff. in SM decays.
- \item A loose kinematic cuts are also applied:
- \end{itemize}
-
-
- \begin{table}[h]
- \begin{center}
- \begin{tabular}{| l | l |}
- \hline
- Variable & Cut \\ \hline \hline
- $P_t$ & $>0.1GeV$ \\ \hline
- $P$ & <$10GeV$ \\ \hline
- $\theta$ & $(0.41;2.46)$\\ \hline
- \hline
- \end{tabular}
- \end{center}
- \caption{Cuts applied for each track in the event.}
- \end{table}
-
- }
-
-
- \only<3>{
- we found the following efficiencies:
- \begin{table}
- \begin{center}
- \begin{tabular}{ l | l | l }
- \hline
- Decay & $\epsilon_{Geo}$ & $\pm \delta\epsilon_{Geo}$ \\ \hline \hline
- $\tau \rightarrow p e^- e^{-}$ & 35.3 \% & 0.1 \% \\ \hline
- $\tau \rightarrow \overline{p} e^+ e^{-}$ & 35.3 \%& 0.1 \% \\ \hline
- $\tau \rightarrow \overline{p} \mu^- \mu^{-}$ & 39.4 \% & 0.1 \% \\ \hline
- $\tau \rightarrow p \mu^- \mu^{+}$ & 39.3 \% & 0.1 \% \\ \hline \hline
- %%%%%%%%%%%%%%%%%%%%%%5 electrons now \%
-
- \end{tabular}
- \end{center}
- \caption{Efficiencies for signal MC.}
-
- \end{table}
-
- where we used:
-
- $
- \varepsilon = \dfrac{n+0.5}{k+1}
- $,
- $
- \delta \varepsilon = \sqrt{\dfrac{(n+0.5)(k-b+0.5)}{(k+2)(k+1)^2} }
- $ \footnote{arXiv0908.0130}
-
-
-
- }
- \end{frame}
-
-
- \begin{frame}\frametitle{Energy constrain fit}
-
- We applied an Energy constrain fit for $\tau$ reconstruction(signal hemisphere is constrain to have $E_{cm}/2$ energy. This improves the mass resolution by $5-10 \%$ depending on the decay mode.
- \begin{figure}[h]
- \begin{center}
- \mbox{
- {\includegraphics[scale=0.16]{pic/eeOS_fit_energy.png}}
- {\includegraphics[scale=0.16]{pic/eeOS_fit_geo.png}}
- }
- \caption
- {Fits to $\tau \to p e^- e^+$ mass. Left- with energy constrain. Right with Geo constrain.}
- \end{center}
- \end{figure}
-
- \end{frame}
-
- \begin{frame}\frametitle{Signal distribution.}
-
- \begin{figure}[h]
- \begin{center}
- \mbox{
- {\includegraphics[scale=0.1]{pic/dE_dM_tau2mumuOS.png}}
- {\includegraphics[scale=0.1]{pic/dE_dM_tau2eeOS.png}}
- }
- \mbox{
- {\includegraphics[scale=0.1]{pic/dE_dM_tau2mumuSS.png}}
- {\includegraphics[scale=0.1]{pic/dE_dM_tau2eeSS.png}}
- }
- \end{center}
- \end{figure}
-
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%}
-
-
- \subsection{PID}
- \begin{frame}\frametitle{PID}
- %\begin{small}
- \begin{itemize}
- \item We used the standard BaBar classifiers for the PID cuts.
- \end{itemize}
- \begin{table}[h]
- \begin{center}
- \begin{tabular}{ l | l | l | l | l }
- \hline
- Decay & e Classifier & $\mu$ Classifier & p Classifier & $\epsilon_{PID|GEO}$\\ \hline \hline
- $\tau \rightarrow p \mu^- \mu^{-}$ & DNA & BDTLoose & LooseKM & $34.5 \pm 0.1\%$ \\ \hline
- $\tau \rightarrow \overline{p} \mu^+ \mu^{-}$ & DNA & BDTLoose & LooseKM & $35.3 \pm 0.1\%$\\ \hline
-
- %%%%%%%%%%%%%%%%%%%%%%5 electrons now
- $\tau \rightarrow p e^- e^{-}$ & TightKM & DNA & LooseKM & $54.7 \pm 0.1\%$\\ \hline
-
- $\tau \rightarrow \overline{p} e^+ e^{-}$ & TightKM & DNA & LooseKM& $55.1 \pm 0.1\%$ \\ \hline \hline
- \end{tabular}
- \end{center}
- \caption{Classifiers and efficiencies after the PID cut. DNA = does not apply}
- \end{table}
-
-
- \end{frame}
-
-
- \section{Selection}
- \begin{frame}\frametitle{Selection}
- %\begin{small}
- \begin{itemize}
- \item Selection was optimised in order to get the best upper limit. For the optimisation the CLs method was used.
- \item
- The optimisation is done to reach the best separation of signal+background like hypothesis and background only hypothesis. We used the following figure of merit:
- \end{itemize}
- \[\Delta LQ = 2ln(Q_{SB})-2ln(Q_{B})\]
-
- \only<1>{
- where,
- \begin{align*}
- Q_{SB}&= \prod \frac{P(s_{i}+b_{i},s_{i}+b_{i})}{P(s_{i}+b_{i},b_{i})}\\
- Q_{B} &= \prod \frac{P(b_{i},s_{i}+b_{i})}{P(b_{i},b_{i})}.
- \end{align*}
- }
-
- \only<2>{
- \begin{figure}[h]
- \begin{center}
- \mbox{
- {\includegraphics[scale=0.12]{pic/cls.png}}
- }
- \end{center}
- \end{figure}
-
-
- }
-
- \end{frame}
-
-
-
- \begin{frame}\frametitle{Optimisation results}
- %\begin{small}
-
-
- \begin{figure}[h]
- \begin{center}
- \mbox{
- {\includegraphics[scale=0.07]{pic/cos31_eeOS.png}}
- {\includegraphics[scale=0.07]{pic/tagmass_eeOS.png}}
- {\includegraphics[scale=0.07]{pic/thrust_eeOS.png}}
- }
- \end{center}
- \end{figure}
-
- \begin{figure}[h]
- \begin{center}
- \mbox{
- {\includegraphics[scale=0.07]{pic/cos31_mumuOS.png}}
- {\includegraphics[scale=0.07]{pic/tagmass_mumuOS.png}}
- {\includegraphics[scale=0.07]{pic/thrust_mumuOS.png}}
- }
- \end{center}
- \end{figure}
-
-
- \end{frame}
-
-
- \begin{frame}\frametitle{Efficiency after the selection}
- %\begin{small}
- \begin{table}[h]
- \begin{center}
- \begin{tabular}{ l | l | l }
- \hline
- Decay & $\epsilon_{Sel|PID}$ & $ \pm \delta\epsilon_{Sel|PID}$ \\ \hline \hline
- $\tau \rightarrow p e^- e^{-}$ & $41.8 \%$ & $0.2 \%$ \\ \hline
- $\tau \rightarrow \overline{p} e^+ e^{-}$ & $47.7 \%$ & $0.2 \%$ \\ \hline
- $\tau \rightarrow \overline{p} \mu^+ \mu^{-}$ & $ 75.2 \%$ & $0.2 \%$ \\ \hline
- $\tau \rightarrow p \mu^- \mu^{+}$ & $79.0 \%$ & $0.2 \% $ \\ \hline
- %%%%%%%%%%%%%%%%%%%%%%5 electrons now \%
-
- \end{tabular}
- \end{center}
- \caption{Efficiencies for signal MC.}
-
- \end{table}
- \end{frame}
-
- \section{Fits}
- \begin{frame}\frametitle{Background and fits}
- \begin{itemize}
- \item Because only few events from $B\bar{B}$ background survive the geometric cut we will not consider this in further analysis.
- \item We used the PID weighting procedure as in $\tau \to \mu \mu \mu$ to determined the pdf shape. We consider 3 types of background: QED, $udsc$ , $\tau \tau$.
- \item QED samples are evaluated directly on data.
- \item We sum the bck pdf and preform an Unbinned maximum likelihood fit to data side band to determine the expected number of bck events.
-
- \end{itemize}
- \end{frame}
-
-
- \begin{frame}\frametitle{Fits to MC background}
-
- \begin{figure}[h]
- \begin{center}
- \mbox{
- {\includegraphics[scale=0.15]{pic/tautaumumuOS_before_out_DM.png}}
- {\includegraphics[scale=0.15]{pic/tautaumumuSS_before_out_DE.png}}
- }
- \mbox{
- {\includegraphics[scale=0.15]{pic/udsmumuOS_before_out_DE.png}}
- {\includegraphics[scale=0.15]{pic/udsmumuOS_before_out_DM.png}}
- }
- \end{center}
- \end{figure}
-
- \end{frame}
- \begin{frame}\frametitle{Fits to data}
-
- \begin{figure}[h]
- \begin{center}
- \mbox{
- {\includegraphics[scale=0.15]{pic/DEmumuOS.png}}
- {\includegraphics[scale=0.15]{pic/DMmumuOS.png}}
- }
- \end{center}
- \end{figure}
- \end{frame}
-
-
- \begin{frame}\frametitle{Expected background}
-
-
- \begin{table}[h]
- \begin{center}
- \begin{tabular}{ l | l | l }
- \hline
- Decay & Expected & Error \\ \hline \hline
- $\tau^- \rightarrow p e^- e^{-}$ & $0.30$ & $0.09$ \\ \hline
- $\tau^- \rightarrow \overline{p} e^+ e^{-}$ & $1.08$ & $0.13$ \\ \hline
- $\tau^- \rightarrow \overline{p} \mu^+ \mu^{-}$ & $0.81$ & $0.15$ \\ \hline
- $\tau^- \rightarrow p \mu^- \mu^{-}$ & $ 0.49 $ &$0.14 $ \\ \hline
- %%%%%%%%%%%%%%%%%%%%%%5 electrons now \%
-
- \end{tabular}
- \end{center}
- \caption{Number of expected events in the signal window.}
-
- \end{table}
- \end{frame}
-
- \section{systematics}
- \begin{frame}\frametitle{Systematics}
- We define three types of systematics:
- \begin{itemize}
- \item MC related
- \item Background systematics
- \item Luminosity systematics.
-
- \end{itemize}
-
- \end{frame}
-
-
- \subsection{MC systematics}
- \begin{frame}\frametitle{MC Systematics}
- \only<1>{
- Considered systematics:
-
- \begin{itemize}
- \item Signal systematics, limited MC statistics.
- \item $\tau$ BR.
- \item PID
- \item Tracking efficiency.
-
- \end{itemize}
- }
-
- \only<2>{
- { \Large $\tau$ BR. } \\
- TAUOLA takes the SM branching fractions from PDG 2006. The systematic uncertainty
- related to the branching fraction errors is evaluated as a quadrature sum of the individual BF uncertainties weighted by their relative fraction.
-
-
- }
-
- \only<3>{
- { \Large PID efficiency } \\
- The PID systematics is evaluated in a conservative way. We sum squared errors for each track on the tag side. Because the distribution is asymmetric the error is defined at 68\% coverage.
-
- \begin{figure}[h]
- \begin{center}
- \mbox{
- {\includegraphics[scale=0.15]{pic/eeSS.png}}
- {\includegraphics[scale=0.15]{pic/MUMUSS.png}}
- }
- \end{center}
- \end{figure}
-
- }
- \only<4>{
- \begin{table}[h]
- \begin{center}
- \begin{tabular}{ l | l | l | l | l }
- \hline
- --- & $\tau \rightarrow \bar{p} e^+ e^{-}$ & $\tau \rightarrow p e^{-} e^{-}$ & $\tau \rightarrow \bar{p} \mu^{+} \mu^{-}$ & $\tau \rightarrow p \mu^{-} \mu^{-}$ \\ \hline \hline
- Total eff. & $9.3 $ & $8.1$ & $ 11.0$ & $10.3$ \\ \hline \hline
- MC statistics & $0.46 $ & $0.54$ & $ 0.39 $ & $3.8$ \\ \hline
- Tau BR & $0.7 $ & $0.7 $ & $0.7 $ & $0.7 $ \\ \hline
- PID sig side & $2.34 $ & $3.1 $ & $ 7.0$ & $7.8 $\\ \hline
- PID tag side & $0.9 $ & $0.9 $ & $0.0$ & $0.0$\\ \hline
- Tracking eff. & $ 1.0 $ & $ 1.0 $ & $ 1.0$ & $ 1.0$\\ \hline \hline
- Total & $2.7$ & $3.4$ & $7.1 $ & $7.9$ \\ \hline \hline
- %%%%%%%%%%%%%%%%%%%%%%5 electrons now \%
- \end{tabular}
- \end{center}
- \caption{Total efficiency and systematic uncertainties expressed in relative percent
- }
- \end{table}
-
-
- }
- \end{frame}
- \section{Results}
- \begin{frame}\frametitle{Expected UL at 90\% CL}
-
- \begin{table}[h]
- \begin{center}
- \begin{tabular}{ l | l }
- \hline
- Decay & Expected UL \\ \hline \hline
- $\tau^- \rightarrow p e^- e^{-}$ & $3.2 \times 10^{-8}$ \\ \hline
- $\tau^- \rightarrow \overline{p} e^+ e^{-}$ & $4.0 \times 10^{-8}$ \\ \hline
- $\tau^- \rightarrow \overline{p} \mu^+ \mu^{-}$ & $3.5 \times 10^{-8}$ \\ \hline
- $\tau^- \rightarrow p \mu^- \mu^{-}$ & $ 2.5 \times 10^{-8} $ \\ \hline
- %%%%%%%%%%%%%%%%%%%%%%5 electrons now \%
-
- \end{tabular}
- \end{center}
- \caption{Expected upper limits at $90\%$ CL.}
-
- \end{table}
-
- \end{frame}
-
- \begin{frame}\frametitle{Conclusions}
-
-
-
- \begin{itemize}
- \item Analysis in pretty good shape.
- \item Supporting documentation 20, pages, needs just polishing.
- \item With this presentation we ask to start an AWG review.
-
- \end{itemize}
-
- \end{frame}
-
- \end{document}