- \documentclass{beamer}
- \usepackage{pgf}
- \usepackage{times}
- \usepackage[T1]{fontenc}
- %\usepackage[mathscr]{eucal}
- %\usepackage{mathptmx}
- %\usepackage{mathrsfs}
- \usepackage{hyperref}
- % \usepackage{pgfpagfes}
- % \setbeameroption{show notes on second screen}
- %\pgfpagesuselayout{4 on 1}[a4paper,border shrink=5mm,landscape]
- \usepackage{xcolor}
- %\usepackage[dvipsnames]{xcolor}
- %\usepackage{amsfonts}
- %\usepackage{amsmath}
- % \usepackage[amssymb]{SIunits}
- %\usepackage{natbib}
- %\usepackage{amssymb}
- \usepackage{hepparticles}
- \usepackage{hepnicenames}
- \usepackage{hepunits}
- \usepackage{tikz}
- \usepackage[polish]{babel}
- %\usepackage{lmodern}
- \usepackage{feynmp}
- % suppress navigation bar
- \beamertemplatenavigationsymbolsempty
- \usepackage[mathscr]{eucal}
- \usepackage{mathrsfs}
- \mode<presentation>
- {
- \usetheme{bunsen}
- \setbeamercovered{transparent}
- \setbeamertemplate{items}[circle]
- }
-
- % set fonts
- \usepackage{amsfonts}
- \usepackage{amsmath}
- \usepackage{verbatim}
-
- \usetikzlibrary{arrows}
- \usetikzlibrary{shapes}
-
- %\usepackage{gfsartemisia-euler}
- %\usepackage[T1]{fontenc}
- \setbeamerfont{frametitle}{size=\LARGE,series=\bfseries}
- \tikzstyle{decision} = [diamond, draw, fill=gray!20,
- text width=4.5em, text badly centered, node distance=3cm, inner sep=0pt]
- \tikzstyle{block} = [rectangle, draw, fill=blue!10,
- text width=5em, text centered, rounded corners, minimum height=2em]
- \tikzstyle{line} = [draw, -latex']
- \tikzstyle{cloud} = [draw, ellipse,fill=red!10, node distance=3cm,
- minimum height=2em]
-
- \tikzstyle{every picture}+=[remember picture]
-
-
- \renewcommand{\PKs}{{\HepParticle{K}{S}{}\xspace}}
- % color definitions
- \usepackage{color}
- \definecolor{uipoppy}{RGB}{225, 64, 5}
- \definecolor{uipaleblue}{RGB}{96,123,139}
- \definecolor{uiblack}{RGB}{0, 0, 0}
-
- % caption styling
- %\DeclareCaptionFont{uiblack}{\color{uiblack}}
- %\DeclareCaptionFont{uipoppy}{\color{uipoppy}}
- %\captionsetup{labelfont={uipoppy},textfont=uiblack}
-
- % see the macros.tex file for definitions
- \include{macros}
-
- % title slide definition
- \title{The SuperB factory}
- \subtitle{physics prospects and project status}
- \author{Marcin Chrz\k{a}szcz}
- \institute[Institute of Nuclear Physics]
- {
- Institute of Nuclear Physics,
- \newline Polish Academy of Science,
- \newline on behalf of the SuperB collaboration
- }
-
-
- \date{$21^{st}$ September $2012$}
-
-
-
- \begin{document}
-
-
- \setbeamertemplate{background}
- {\includegraphics[width=\paperwidth,height=\paperheight]{frontpage_bg_mine}}
- \setbeamertemplate{footline}[default]
-
- \begin{frame}
- \vspace{1.5cm}
- \begin{columns}
- \column{2.75in}
- \titlepage
- \vspace{0.8cm}
- \begin{center}
- \includegraphics[height=1.0cm,keepaspectratio ]{pic/ifj.png}
- \hspace{1cm}
- \includegraphics[height=1.0cm]{pic/SuperB_logo.png}
- \end{center}
- \vspace{10cm}
- \column{2.0in}
- \end{columns}
- \end{frame}
-
-
-
- %tutaj mamy pierwsza strone
-
-
- \section[Outline]{}
- \begin{frame}
- \tableofcontents
- \end{frame}
- \setbeamertemplate{background}
- {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}}
- \setbeamertemplate{footline}[bunsentheme]
-
- %normal slides
- \section{Introduction}
-
-
- \begin{frame}\frametitle{B factories}
-
- %B factories have achieved great successes over the last dozen of years. They will be succeeded by the Super Flavor Factories:
- B factories have contributed to many important physics discoveries over the last decade. They will be succeeded the Super Flavor Factories:
- \begin{exampleblock}{Super Flavor Factories} \begin{enumerate}
- \item Data $75 ab^{-1}$
- \item Luminosity $10^{36} cm^{-2} s^{-1} $
- \item Flexibility to run on charm threshold with luminosity $10^{35} cm^{-2} s^{-1} $
- \item Longitudinal polarization of electron beam $80 \% $
- \item Upgraded BaBar detector
- \item Start of data taking: 2018
- \item $10ab^{-1}$ per year
-
- \end{enumerate}
-
-
- \end{exampleblock}
-
- \end{frame}
-
- \section{SuperB Infrastructure}
-
-
-
- \begin{frame}\frametitle{Tor Vergata Site}
-
- \vspace{0.8cm}
- \includegraphics[scale=0.35]{pic/tor_veggata_site.png}
- \newline Important dates:
- \begin{enumerate}
- \item TDR: Autumn this year.
- \item Colliding beams: June 2018.
- \end{enumerate}
-
-
- \end{frame}
-
-
- %\subsection{Accelerator}
- \begin{frame}\frametitle{Tor Vergata Site}
-
- \vspace{0.7cm}
- \includegraphics[scale=0.35]{pic/acc.png}
-
-
-
- \end{frame}
-
-
-
-
-
-
- %%%%%%%%%%% uFFFFFFFFFFFFFFFFFfff detector finished
-
-
- \section{B Physics}
-
-
-
- \subsection{Precision Measurements}
- \begin{frame}\frametitle{CKM Matrix}
- \only<1>{
- \vspace{0.5cm}
- %\hspace{0.7cm}
- \begin{columns}[c]
-
- \column{2.5in}
-
- \includegraphics[scale=0.4]{pic/ckm_m1.png}
- \center $\Delta \overline{\eta}= 0.016$
- \center $\Delta \overline{\rho}= 0.028$
-
- \column{2.5in}
- \end{columns}
- }
- \only<2>{
-
-
- \vspace{0.5cm}
- %\hspace{0.7cm}
- \begin{columns}[c]
- \column{2.5in}
-
- \includegraphics[scale=0.4]{pic/ckm_m1.png}
-
- \column{2.5in}
- \includegraphics[scale=0.4]{pic/ckm_m2.png}
-
-
- \end{columns}
-
- \begin{columns}[c]
- \column{2.2in}
-
-
- \center $\Delta \overline{\eta}= 0.016$
- \center $\Delta \overline{\rho}= 0.028$
- \column{2.8in}
-
- $\Delta \overline{\eta}= 0.0024$
- \newline $\Delta \vert V_{cb} \vert_{incl} = 0.5\% $ $\Delta \vert V_{cb} \vert_{excl} = 1.0 \%$
- \newline $\Delta \overline{\rho}= 0.0028$
- \newline $\Delta \vert V_{ub} \vert_{incl} = 1.0\% $ $\Delta \vert V_{ub} \vert_{excl} = 3.0 \%$
-
-
- \end{columns}
-
-
-
-
-
-
- }
-
- %%%%%%%%%%%%
-
-
-
-
-
-
- \end{frame}
-
-
-
-
-
-
-
-
- \begin{frame}\frametitle{$B \rightarrow \tau \nu$}
- \vspace{0.5cm}
- \hspace{0.7cm}
- \begin{columns}[c]
- \column{3.8in}
- \hspace{0.7cm}{
- %\hspace{0.3cm}}
- Precise SM prediction:
- \small \newline $Br(B \rightarrow l \nu) = \dfrac{G^{2}_{F} m_{B}}{8\pi} m_{l}^{2} (1-\dfrac{m_{l}^{2}}{m_{B}^{2}})f_{B}^{2}\vert V_{ub}\vert^{2} \tau_{B}$
- \newline In SUSY:
- \small \newline $Br(B \rightarrow l \nu) = \dfrac{G^{2}_{F} m_{B}}{8\pi} m_{l}^{2} (1-\dfrac{m_{l}^{2}}{m_{B}^{2}})f_{B}^{2}\vert V_{ub}\vert^{2} \tau_{B}(1-\dfrac{tan^{2}\beta}{1+\overline{\epsilon} tan \beta}\dfrac{m_{B}^{2}}{m_{H}^{2}})$
- }
- \center \includegraphics[scale=0.16]{pic/excl.png}
-
-
- \column{1.5in}
- \includegraphics[scale=0.2]{pic/b2taunu.png}
- \newline \includegraphics[scale=0.2]{pic/higggs.png}
- \end{columns}
-
-
- \end{frame}
-
- \subsection{TDCP}
- \begin{frame}\frametitle{Time-Dependent CP (TDCP)}
-
- %Time-dependent CP can be signs of new physics. One has to study a set of modes:
- Time-dependent CP analysis can show signs of new physics. One has to study a set of modes:
- \newline $b \rightarrow s\overline{s}c$, $b \rightarrow s$
-
- Current experimental results show $\Delta$(SM - Observed):
- \newline $\Delta sin(2\beta)=2.7\sigma$, penguin
- \newline $\Delta sin(2\beta)=2.1\sigma$, tree
-
- Golden modes in SuperB:
- $B \rightarrow J/\psi K^{0}$, $B \rightarrow \eta ' K^{0}$, $B \rightarrow f_{0}K_{s}^{0}$
- \begin{columns}[c]
- \column{3.0in}
- \includegraphics[scale=0.17]{pic/table.png}
- \column{2.0in}
- \includegraphics[scale=0.12]{pic/jpsi.png}
- \newline
- \newline \includegraphics[scale=0.12]{pic/jpsi2.png}
- \end{columns}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- \subsection{$B \rightarrow X_{s} \gamma$}
- \begin{frame}\frametitle{$B \rightarrow X_{s} \gamma$}
- \vspace{0.5cm}
- Very important probe for new physics! Current experimental average:
- $Br(B \rightarrow X_{s} \gamma ) = (3.52\pm0.23\pm0.09) 10^{-4} $
-
- %Theoretical calculation on NNLO:
- Theoretical prediction from NNLO:
-
-
- $Br(B \rightarrow X_{s} \gamma ) = (3.15 \pm 0.23) 10^{-4}$
-
- There are two ways to study this decay:
- \begin{enumerate}
- \item Exclusive:
- \begin{itemize}
-
- \item The earliest results were done using a large number of exclusive decays, which were fully reconstructed
- \item Errors arising from unseen modes
- \item Obsolete for SuperB
-
- \end{itemize}
- \item Inclusive:
- \begin{itemize}
- \item Use tagging to tag the other B
- \item No requirements on $X_{s}$
- \item Disadvantage: Cut on photon energy
- \item Effort to keep the cut as small as possible
-
- \end{itemize}
- \end{enumerate}
- Experimentally challenging to measure inclusive decays.
-
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
-
-
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- \subsection{$\HepParticle{B}{s}{}$ Decays}
- \begin{frame}\frametitle{$\HepParticle{B}{s}{}$ Decays}
- \vspace{0.5cm}
-
-
- \begin{columns}[c]
- \column{0.05in}
- \column{1.7in}
- \begin{small} \fcolorbox{red}{white}{\textcolor{blue}{$\HepParticle{B}{s}{}$ is clearly LHCb domain}} \end{small}
- \begin{footnotesize}
- \textcolor{blue}{Short runs at CLEO and Belle showed that $\Pep$ $\Pem$ can also contribute in $\HepParticle{B}{s}{}$ studies }
- \end{footnotesize}
- \column{3.3in}
- \begin{scriptsize}
- \begin{tabular}{|l|l|l|}
- \hline
- Observable & Error on $1 \reciprocal\femtobarn$ & Error on $30 \reciprocal\femtobarn$ \\
- \hline
- \hline
- $\Delta \Gamma [ \reciprocal \ps ]$ & $0.16$ & $0.03$ \\
- % $\Gamma [ \reciprocal \ps$ & $0.16$ & $0.03$ \\
- $\beta_{s}$ from $\HepParticle{B}{s}{} \to \HepParticle{J\!/\psi}{}{} \Pphi [deg]$ & $16$ & $6$ \\
- $\beta_{s}$ from $\HepParticle{B}{s}{} \to \PK \APK [deg]$ & $24$ & $11$ \\
- $\left| \dfrac{V_{td}}{V_{ts}} \right|$ & $0.08$ & $0.017$ \\
- \hline
- % \Vert
- \end{tabular}
-
- \end{scriptsize}
-
- \end{columns}
- %%%%%%%%%%%%%
- \textcolor{green}{Potentials in SuperB:}
- \begin{scriptsize}
- \begin{enumerate}
- \small \item Decays with neutral particle $\HepParticle{B}{s}{} \to \HepParticle{J\!/\psi}{}{} \eta$ , $\HepParticle{B}{s}{} \to \HepParticle{K}{S}{0} \pi$, $\HepParticle{B}{s}{} \to \HepParticle{D}{}{\ast}\HepParticle{K}{S}{0} $, $\HepParticle{B}{s}{} \to \Phi \eta^{'}$
-
- \small \item Measurements of $\mathcal{B} (\HepParticle{B}{}{} \to \gamma \gamma)$. SM prediction $\mathcal{B} (\HepParticle{B}{}{} \to \gamma \gamma) = (2-4) \times 10^{-7}$. NP (SUSY) $\mathcal{B} (\HepParticle{B}{}{} \to \gamma \gamma) = 5 \times 10^{-6}$.
-
- \small \item Measurements of semi-leptonic asymmetry. $A_{SL}^{s} = \dfrac{1-\left|\dfrac{q}{p} \right|^{4}}{1+\left|\dfrac{q}{p} \right|^{4}} =\dfrac{N_{1} -N_{2}}{N_{1}+N_{2}}$
-
- $N_{1} = \HepParticle{B}{s}{} \to \HepParticle{\overline{B}}{s}{} \to \HepParticle{D}{s}{\ast -}\Plepton^{+} \Pnu$ $N_{2} = \HepParticle{B}{s}{} \to \HepParticle{\overline{B}}{s}{} \to \HepParticle{\overline{D}}{s}{\ast}\Plepton^{-} \Pnu$
-
- \end{enumerate}
- \end{scriptsize}
-
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- \subsection{Charm Physics}
- \begin{frame}\frametitle{Charm Physics}
- \only<1>{
- \vspace{0.5cm}
- \begin{enumerate}
- \item Plan for running at $\psi(3770)$ threshold
- \item Scenario: Collect $500 \reciprocal\femtobarn $
- \item D tag possible; other meson can be studied with very small background
-
-
-
-
-
- \end{enumerate}
-
- Potential improvement from SuperB:
- \begin{itemize}
-
- \item Improved measurement of the mixing parameters $x_{D}$ and $y_{D}$
- \item CP violation in $\HepParticle{\overline{D}}{}{} - \HepParticle{\overline{D}}{}{}$: $A_{SL}=\dfrac{N_{1} -N_{2}}{N_{1}+N_{2}}$
- \newline $N_{1} = \Gamma( \HepParticle{D}{}{0} \to \Plepton^{-} \Pnu \PKp)$,
- \newline $N_{2} = \Gamma( \overline{\HepParticle{D}{}{0}} \to \Plepton^{+} \Pnu \PKm)$
- \item Search for $\HepParticle{D}{}{0} \to \mu \mu$
- \item Quantum correlations allow one to measure relatively strong phase
- \end{itemize}
- }
- \only<2>
- {
-
- \begin{center}
- \includegraphics[scale=0.30]{pic/dmix.png}
- \end{center}
-
- }
- \only<3>
- {
-
- \begin{center}
- \includegraphics[scale=0.26]{pic/d_mix2.png}
- \end{center}
-
- }
-
-
-
-
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section{$\tau$ Physics}
- \begin{frame}\frametitle{$\tau$ Physics}
- \begin{enumerate}
- \item Lepton Flavaur Violation
- \begin{itemize}
- \item Some SUSY model can occure in SuperB sensitive.
- \item Complementary to searches in LHC and MEG.
- \item Golden channels: $\tau \to 3\Plepton$, $\tau \to \Plepton \gamma$, $\tau \to \rho \Plepton$, $\tau \to \Plepton \eta$ .
- \end{itemize}
- \item $\tau$ $g-2$
- \begin{itemize}
- \item MSSM can explain $ 3 \times 10^{-9}$ discrepancy.
- \item SuperB sensitivety is in range of doing this.
-
- \end{itemize}
- \item $\tau$ EDM and CPV
- \begin{itemize}
- \item In SuperB sensitivity!
- \item $\tau$ EDM constrained by electron EDM upper limit to a range inaccessible by SuperB
-
- \end{itemize}
-
- \end{enumerate}
-
-
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \subsection{LFV}
-
-
-
-
- \begin{frame}\frametitle{CMSSM Model}
- \vspace{0.3cm}
- \begin{columns}[c]
- %\vspace{0.6cm}
- \column{2.5in}
- \includegraphics[scale=0.28]{pic/mugammavsegamma.png}
- \begin{itemize}
- \begin{scriptsize}
- \item $N_{i}$ - right handed neutrinos
- \item $\nu_{i}$ - left handed neutrinos
- \item $\phi_{i}$ - complex mixing angle
- \item $\phi_{13}$ - PNMS matrix.
- \end{scriptsize}
- \end{itemize}
-
- \column{2.5in}
- \includegraphics[scale=0.28]{pic/egamma.png}
- \begin{itemize}
- \begin{small}
- \item LFV up to present limit
- \item $\tau \to \mu \gamma$ complementary to $\mu \to e \gamma$
- \end{small}
- \end{itemize}
- \fcolorbox{blue}{white}{JHEP11(2006)090 }
-
- \end{columns}
- \end{frame}
-
-
- \begin{frame}\frametitle{NUHM Model}
- \vspace{0.3cm}
- \begin{columns}[c]
- %\vspace{0.6cm}
- \column{2.5in}
- \includegraphics[scale=0.25]{pic/tau23mu.png}
- \begin{itemize}
- \begin{scriptsize}
- \item $\delta_{1}$, $\delta_{2}$ parametrizes the non universal Higgs masses.
-
- \end{scriptsize}
- \fcolorbox{blue}{white}{arXiv:0812.2692v1}
- \end{itemize}
-
- \column{2.5in}
- \includegraphics[scale=0.22]{pic/tautof0mu.png}
- \begin{itemize}
- \begin{small}
- \item Increase sensitivity for $\tau \to f_{0}(980) \mu$, $\tau \to \eta \mu$, than to $\tau \to \mu \gamma$
-
- \end{small}
- \end{itemize}
- \fcolorbox{blue}{white}{JHEP11(2006)090 }
-
- \end{columns}
- \end{frame}
-
-
- \begin{frame}\frametitle{SuperB sensitivity}
- \begin{enumerate}
- \item Taking the BaBar analysis results and improving: $\sqrt{\mathcal{L}_{SuperB}/ \mathcal{L}_{BaBar} }\approx 12$
- \item Signal is rising linearly: $\mathcal{L}_{SuperB}/ \mathcal{L}_{BaBar}$
- \item Sensitivety increases with detector resolution.
- \item Babar papers used to extrapolate:
- \begin{itemize}
- \item Phys.Rev.Lett.104:021802,2010, arXiv:0908.2381v2
- \item PhysRevD.81.111101(2010), arXiv:1002.4550v1
- \end{itemize}
- \end{enumerate}
-
-
- \end{frame}
-
-
-
-
-
-
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- \begin{frame}\frametitle{$\tau \rightarrow \Plepton \gamma$ Sensitivity}
-
-
- \begin{columns}[c]
- \column{2.5in}
-
- \begin{itemize}
- \item Better tracking resolution, reduced $\Delta m - \Delta E $ box by $65\%$
- \item Higher photon efficiency
- \item Increase of geometry acceptance
- \item Thicker signal peak
- \item Approximate frequentistic upper limits, only Poissonian BKG uncertainty.
- \item Smaller boost improves the performance of the fit.
- \end{itemize}
- \column{2.5in}
-
- \includegraphics[scale=0.2]{pic/dm_de.png}
-
- \end{columns}
- SuperB limits:
- \begin{tabular}{|l|l|l|}
- \hline
- Process & Error on 90\% upper limit & $3 \sigma$ observation \\
- \hline
- \hline
- $\tau \to \mu \gamma$ & $2.4 \times 10^{-9}$ & $5.4 \times 10^{-9}$ \\
- $\tau \to e \gamma$ & $3.0 \times 10^{-9}$ & $6.8 \times 10^{-9}$ \\
- \hline
- % \Vert
- \end{tabular}
-
- \end{frame}
-
-
-
-
-
- \begin{frame}\frametitle{Polarization}
- \vspace{0.5cm}
- \begin{columns}[c]
- \column{2.6in}
-
-
- {~}
-
- \begin{enumerate}
- \item SuperB will have polarized electron beam ($80\%$) \\
- \item One can use this information in NP searches \\
- \item TAUOLA SUSY decay model. \\
- \item Discriminating between NP models! \\
- \end{enumerate}
- \column{2.4in}
-
- \includegraphics[scale=0.23]{pic/polar.png}
-
- \end{columns}
-
- \end{frame}
-
-
-
- \begin{frame}\frametitle{SuperB sensitivity for $\tau \to 3\Plepton$}
- \begin{enumerate}
- \item Taking the BaBar analysis results and improving: $\sqrt{\mathcal{L}_{SuperB}/ \mathcal{L}_{BaBar} }\approx 12$
- \item Signal is rising linearly: $\mathcal{L}_{SuperB}/ \mathcal{L}_{BaBar}$
- \item No detector resolution assumed.
- \item Approximate frequentistic upper limits, only Poissonian BKG uncertainty
- \item Babar papers used to extrapolate:
- \begin{itemize}
- \item Phys.Rev.Lett.104:021802,2010, arXiv:0908.2381v2
- \item PhysRevD.81.111101(2010), arXiv:1002.4550v1
- \end{itemize}
- \end{enumerate}
-
-
- \end{frame}
-
-
-
- \begin{frame}\frametitle{$\tau \rightarrow 3\Plepton$}
- \vspace{0.23cm}
- \begin{columns}[c]
- \column{2.5in}
- \begin{center}
- \includegraphics[scale=0.3]{pic/eee.png}
- \newline $\Ptau \to eee$
- \end{center}
- \column{2.5in}
- \begin{center}
- \includegraphics[scale=0.3]{pic/eemu1.png}
- \newline $\Ptau \to e^{-} e^{+} \mu$
- \end{center}
- \end{columns}
- \begin{center}
-
- \includegraphics[scale=0.3]{pic/eemu2.png}
- \newline $\Ptau \to e^{-} e^{-} \mu$
-
- \end{center}
- \end{frame}
-
-
- \begin{frame}\frametitle{$\tau \rightarrow 3\Plepton$}
- \vspace{0.23cm}
- \begin{columns}[c]
- \column{2.5in}
- \begin{center}
- \includegraphics[scale=0.3]{pic/mumumu.png}
- \newline $\Ptau \to \mu \mu \mu$
- \end{center}
- \column{2.5in}
- \begin{center}
- \includegraphics[scale=0.3]{pic/emumu1.png}
- \newline $\Ptau \to \mu^{-} \mu^{+} e$
- \end{center}
- \end{columns}
- \begin{center}
-
- \includegraphics[scale=0.3]{pic/emumu2.png}
- \newline $\Ptau \to \mu^{-} \mu^{-} e$
-
- \end{center}
- \end{frame}
-
-
-
-
-
-
-
- \begin{frame}\frametitle{LFV Summary}
-
- Current analysis:
- \begin{itemize}
- \item SuperB will be the cutting age factory for LFV in $\tau$ decays.
- \item Beam polarization will improve the the analysis and make distinguishng among NP models possible.
- \end{itemize}
-
- \begin{tabular}{|l|l|l|}
- \hline
- Process & Error on 90\% upper limit & $3 \sigma$ observation \\
- \hline
- \hline
- $\tau \to \mu \gamma$ & $2.4 \times 10^{-9}$ & $5.4 \times 10^{-9}$ \\
- $\tau \to e \gamma$ & $3.0 \times 10^{-9}$ & $6.8 \times 10^{-9}$ \\
- \hline
- % \Vert
- \end{tabular}
- \end{frame}
-
-
- \subsection{$\tau$ $g-2$}
- \begin{frame}\frametitle{$\tau$ $g-2$}
- \begin{itemize}
- \item MSSM would shift muon $g-2$ by about the presently observed discrepancy $\Delta a_{\mu} \approx 3 \times 10^{-9}$.
- \item SuperB sensitivity estimates: $\sigma(a_{\tau}) =2.6 \times 10^{-6}$.
- \fcolorbox{blue}{white}{JHEP098P1108}
- \item SuperB measures $a_{\tau}(q^{2})$ from final state distributions of $ e^{+} e^{-} \to \tau^{+} \tau^{-}$
- See \fcolorbox{green}{white}{M.Passera talk}
- \item Luckly NP contributions are constant for small $q^{2}$.
- \end{itemize}
-
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- \subsection{EDM at SuperB}
- \begin{frame}\frametitle{EDM at SuperB}
- \begin{itemize}
- \item Experimental status: $\vert d_{e} \vert < 1.6 \times 10 ^-27$.
- \newline \fcolorbox{green}{white}{PhysRevLett.88.071805}
- \item NP expect: $\vert d_{\tau} \vert \propto (m_{\tau}/ m_{e})\vert d_{e} \vert $
- \item SuperB upper limit $\vert d_{e} \vert \approx 10^{-22}$
- \newline \fcolorbox{green}{white}{SuperB 2010 Physic Report }
-
- \item Again we measure $\vert d_{e} \vert(q^{2})$.
- \item Luckly NP contributions are constant for small $q^{2}$.
- \end{itemize}
-
- \end{frame}
-
-
- \subsection{EDM at SuperB}
- \begin{frame}\frametitle{EDM at SuperB}
- Belle result:
- \begin{enumerate}
- \item $29.5 fb^{-1}$ data sample
- \item Resolution: $0.9-1.7 \times 10^{-19} e cm$
- \item \fcolorbox{green}{white}{J. Bernabeu hep-ex/0210066}
- \item Extrapolation for SuperB ($75 ab^{-1}$): $\sigma(d_{\tau}) = 17-34 \times 10^{-17} ecm$.
- \item No beam polarization assumed!
- \end{enumerate}
- Other aproach: \fcolorbox{green}{white}{arXiv:0707.1658v1}
- \begin{itemize}
- \item Assume beam polarity: $(80\ \pm 1) $.
- \item $80\%$ geometry acceptance.
- \item Track reconstrucion $97.5\%$.
- \item $\sigma(d_{\tau}) \approx 10 \times 10^{-17} ecm$
-
- \end{itemize}
- \end{frame}
-
-
- \subsection{CP Violation}
- \begin{frame}\frametitle{CP Violation}
- \begin{itemize}
- \item CP violation has never been observed in $\tau$ sector
- \item SM prediction is negligibly small $O(10^{-12})l$ in $\tau^{\pm} \rightarrow K^{pm} \pi^{0} \nu$.
- \item Any observation is clear indication of NP
- \item Very few NP models can explain this:
- \begin{enumerate}
- \item RPV SUSY
- \item Multi Higgs models
- \end{enumerate}
- \item SuperB can improve sensitivity 75 times compared to CLEO ($\xi(\tau \to K_{s} \pi \nu = -2.0 \times 10^{-3}$
- \end{itemize}
-
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- %%%%%% BACKUP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-
- \begin{frame}\frametitle{Backup}
- \begin{center}
- \Huge Backup
- \end{center}
-
- \end{frame}
-
-
- \begin{frame}\frametitle{Quest for Luminosity}
-
- \begin{columns}[c]
-
- \column{3.0in}
- \includegraphics[scale=0.3]{pic/crab_off.png}
- \newline \includegraphics[scale=0.3]{pic/crab_on.png}
- \column{1.5in}
-
- $L \propto \dfrac{1}{\sqrt{\beta}_{y}}$, $ \Phi \approx \dfrac{\sigma_{z}}{\sigma_{x}} \dfrac{\theta}{2}$
-
-
- \end{columns}
-
-
-
-
- \end{frame}
-
-
- \begin{frame}\frametitle{$\HepParticle{B}{}{}$ Rare Decays}
- \vspace{0.5cm}
-
-
- \begin{columns}[c]
-
- \column{0.1in}
- \column{2.1in}
-
- \begin{center}
- \fcolorbox{blue}{yellow}{$\HepParticle{B}{}{\pm} \to \HepParticle{D}{}{(\ast)} \tau^{\pm} \nu$}
- \end{center}
-
- \fcolorbox{green}{white}{Babar ref. arXiv:1205.5442}
-
- \includegraphics[scale=0.40]{pic/babar_rare.png}
- \newline \fcolorbox{red}{white}{ Hot decay for SuperB! }
- \column{0.1in}
- \column{2.8in}
- \includegraphics[scale=0.24]{pic/b2ds.png}
-
- \textcolor{blue}{Observables:}
- \newline
- % \fcolorbox{green}{white}{
- \begin{itemize}
- \item $R(\HepParticle{D}{}{})=\dfrac{\HepParticle{B}{}{} \to \HepParticle{D}{}{} \tau \nu }{\HepParticle{B}{}{} \to \HepParticle{D}{}{} \Plepton \nu} $
- \item $R(\HepParticle{D}{}{\ast})=\dfrac{\HepParticle{B}{}{} \to \HepParticle{D}{}{\ast} \tau \nu }{\HepParticle{B}{}{} \to \HepParticle{D}{}{\ast} \Plepton \nu} $
- \end{itemize}
-
- \begin{footnotesize}
- \begin{tabular}{|l|l|l|}
- \hline
- & $R(\HepParticle{D}{}{})$ & $R(\HepParticle{D}{}{\ast})$ \\
- \hline
- \hline
- BaBar & $0.440 \pm 0.071$ & $ 0.332 \pm 0.029$ \\
- SM & $0.297 \pm 0.017$ & $0.252 \pm 0.003$ \\
- \hline
- \textcolor{green}{Difference} & \textcolor{red}{$2.0 \sigma$} & \textcolor{red}{$2.7 \sigma$} \\
- \hline
- \end{tabular}
- \end{footnotesize}
- \end{columns}
- \end{frame}
-
-
-
-
-
-
- \end{document}