Newer
Older
Presentations / QCD_2015 / mchrzasz.tex
\documentclass[xcolor=svgnames]{beamer}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{polski}
%\usepackage{amssymb,amsmath}
%\usepackage[latin1]{inputenc}
%\usepackage{amsmath}
%\newcommand\abs[1]{\left|#1\right|}
\usepackage{amsmath}
\newcommand\abs[1]{\left|#1\right|}
\usepackage{hepnicenames}
\usepackage{hepunits}
\usepackage{color}
\usepackage{feynmp}
\usepackage{pst-pdf}
\usepackage{hyperref}
\usepackage{xcolor}

\setbeamertemplate{footline}{\insertframenumber/\inserttotalframenumber}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\definecolor{mygreen}{cmyk}{0.82,0.11,1,0.25}
\newcommand{\thetal}{\theta_l}
\newcommand{\thetak}{\theta_k}

%\DeclareCaptionFont{uiblack}{\color{uiblack}}
%\DeclareCaptionFont{uipoppy}{\color{uipoppy}}
%\captionsetup{labelfont={uipoppy},textfont=uiblack}

% see the macros.tex file for definitions



\renewcommand{\PKs}{{\HepParticle{K}{S}{}\xspace}}
\newcommand{\at}{\makeatletter @\makeatother}

%--------------------------------------------------------------------
%                           Introduction
%--------------------------------------------------------------------

\usetheme{Sybila} 

\title[ Rare beauty decays at LHCb]{ Rare beauty decays at LHCb}
\author{Marcin Chrz\k{a}szcz$^{1}$ \\ \footnotesize{on behalf of the LHCb collaboration}}
\institute{$^1$~University of Zurich \\{~}\\  18th High-Energy Physics International Conference \\ in Quantum Chromodynamics }
\date{July 3, 2015}
\begin{document}
% --------------------------- SLIDE --------------------------------------------
\frame[plain]{\titlepage}
\author{Marcin Chrz\k{a}szcz}
% ------------------------------------------------------------------------------
% --------------------------- SLIDE --------------------------------------------

\institute{~(UZH)}

%--------------------------------------------------------------------
%                          OUTLINE
%--------------------------------------------------------------------


\section[Outline]{}
\begin{frame}
%\tableofcontents
%FIXME!
\begin{enumerate}
\item Rare $\PB$ decays:
\begin{itemize}
\item $\PB^+ \to \PK^+ \Ppi^- \Ppi^+ \Pphoton$
\item $\PBs/\PBzero \to \mu^- \mu^+$.
\item $\PBzero \to \PKstar \Pmuon \APmuon$.
\end{itemize}

\end{enumerate}

\end{frame}

%-------------------------------------------------------------------
%                          Introduction
%-------------------------------------------------------------------
%
% Set the background for the rest of the slides.
% Insert infoline
%\setbeamertemplate{background}
% {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}}
%\setbeamertemplate{footline}[bunsentheme]



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%\setbeamertemplate{background}
% {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}}
%\setbeamertemplate{footline}[bunsentheme]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\section{LHCb detector}

%\begin{frame}\frametitle{LHCb detector}
%\begin{columns}
%\column{3.in}
%\begin{center}
%\includegraphics[width=0.98\textwidth]{det.jpg}
%\end{center}

%\column{2.0in}
%\begin{footnotesize}


 %     LHCb is a forward spectrometer:
 %       	\begin{itemize}
 %       	\item Excellent vertex resolution.
 %       	\item Efficient trigger.
 %       	\item High acceptance for $\Ptau$ and $\PB$.
 %       	\item Great Particle ID
 %       	\end{itemize}	
        


%\end{footnotesize}
%\end{columns}

%\end{frame}

\section{Introduction}

\begin{frame}\frametitle{Why rare decays?}
\begin{columns}
\column{4in}
\begin{itemize}
\item In SM allows only the charged interactions to change flavour.
\begin{itemize}
\item Other interactions are flavour conserving.
\end{itemize} 
\item One can escape this constrain and produce $\Pbottom \to \Pstrange$ and $\Pbottom \to \Pdown$ at loop level.
\begin{itemize}
\item This kind of processes are suppressed in SM $\to$~Rare decays.
\item New Physics can enter in the loops.
\end{itemize}
\end{itemize}
\begin{center}
\includegraphics[scale=0.3]{hql/lupa.png}
\includegraphics[scale=0.3]{hql/example.png}
\end{center}
\column{1.5in}
\includegraphics[width=0.61\textwidth]{hql/couplings.png}
\end{columns}

\end{frame}

\begin{frame}\frametitle{Tools}
\begin{itemize}
\item \textbf{Operator Product Expansion and Effective Field Theory}
\end{itemize}
\begin{columns}
\column{0.1in}{~}
\column{3.2in}
\begin{align*} 
H_{eff} = - \dfrac{4G_f}{\sqrt{2}} V V^{\prime \ast}\ \sum_i \left[\underbrace{C_i(\mu)O_i(\mu)}_\text{left-handed} +\underbrace{C'_i(\mu)O'_i(\mu)}_\text{right-handed}\right],
\end{align*}

\column{2in}
\begin{tiny}
\begin{description}
                \item[i=1,2] Tree
                \item[i=3-6,8] Gluon penguin
                \item[i=7] Photon penguin
				\item[i=9.10] EW penguin
				\item[i=S] Scalar penguin
				\item[i=P] Pseudoscalar penguin	
              \end{description}

\end{tiny}
\end{columns}
where $C_i$ are the Wilson coefficients and $O_i$ are the corresponding effective operators.
\begin{center}
\includegraphics[width=0.85\textwidth,height=3cm]{hql/all.png}

\end{center}


\end{frame}



\begin{frame}\frametitle{Radiative decays}

\begin{columns}
\column{5in}

\begin{itemize}
\item $\PBzero \to \PKstar \Pphoton$ - first observed penguin!
\begin{itemize}
\item CLEO, [\href{http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.71.674}{\color{blue}PRL, 71 (1993) 674}]
\end{itemize}
\item B-factories probed NP measuring, inclusively/ semi-inclusively  $\mathcal{B}(\Pbeauty \to \Pstrange \Pphoton)$
\end{itemize}
\column{0.1in}{~}

\end{columns}



\begin{columns}
\column{3in}
\begin{itemize}
\item Is there any way LHCb can contribute?
\begin{itemize}
\item Measurements of $\mathcal{B}(\Pbeauty \to \Pstrange \Pphoton)$ very difficult.
\item Can probe the photon polarization!
\end{itemize}
\end{itemize}
\column{2in}
\includegraphics[width=0.85\textwidth]{hql/btosgamma.png}
\end{columns}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5


\begin{columns}
\column{5in}

\begin{itemize}
\item In SM, photons form $\Pbeauty \to \Pstrange \Pphoton$ decays are left handed.
\begin{itemize}
\item Charged current interactions: $C_7/C'_7\sim m_{\Pbeauty}/m_{\Pstrange}$
\end{itemize}
\item Can test $C_7/C'_7$ using:
\begin{itemize}
\item Mixing induced CP violation: \href{http://arxiv.org/abs/hep-ph/9704272}{\color{blue}Atwood et. al. PRL 79 (1997) 185-188}
\item $\PLambdab$ baryons: \href{http://arxiv.org/abs/hep-ph/0108074}{\color{blue}Hiller \& kagan PRD 65 (2002) 074038}
\end{itemize}
\end{itemize}
\column{0.1in}{~}

\end{columns}

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5

\begin{frame}\frametitle{Photon polarization from $\PB^+ \to \PK^{+} \Ppi^- \Ppi^+ \Pphoton$}


\begin{columns}
\column{3.5in}

\begin{itemize}
\item OR: Study $\PB \to \PK^{\ast \ast} \Pphoton$ decays like $\PBplus \to \PK_1(1270) \Pphoton$
\begin{itemize}
\item \href{http://arxiv.org/abs/hep-ph/0205065}{\color{blue}Gronau \& Pirjol PRD 66 (2002) 054008}
\end{itemize}
\item The trick is to get the photon polarization from the up-down asymmetry of photon direction in the $\PK \Ppi \Ppi$ rest frame. 
\begin{itemize}
\item No asymmetry $\rightarrow$ Unpolarised photons.
\end{itemize}
\item Conceptionally this measurement is similar to the Wu experiment, which first observed parity violation.


\end{itemize}
\column{1.5in}

\includegraphics[width=0.95\textwidth]{hql/polarization.png}

\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{$\PB^+ \to \PK^{+} \Ppi^- \Ppi^+ \Pphoton$ at LHCb}


\begin{columns}
\column{3.in}

\begin{itemize}
\item LHCb looked at $\PBplus \to \PKplus \Ppiminus \Ppiplus \Pphoton$, using un-converted photons.
\item Got over 13.000 candidates in $3~fb^{-1}$!
\item \href{http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.161801}{\color{blue} Phys. Rev. Lett. 112, 161801 }
\item $\PKplus \Ppiminus \Ppiplus$ system has variety of resonances.
\begin{itemize}
\item $\PK \Ppi \Ppi$ system studied inclusively.
\item Bin the $m_{K\pi\pi}$ mass and look for polarization there.
\end{itemize}
\end{itemize}
\column{2in}
{~}
\includegraphics[width=0.95\textwidth]{hql/plotspolarization.png}

\end{columns}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}%\frametitle{$\color{white} B^+ \to K^{+} \pi^- \pi^+ \gamma$ at LHCb}
\begin{center}
{\color{red} Fit with $\color{red}(C_7'-C_7)/(C_7'+C_7)=0$}, {\color{blue} Best fit}
\includegraphics[width=0.93\textwidth]{hql/photonfit.png}
\end{center}


\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Up-down asymmetry}

\begin{columns}
\column{3.in}

\begin{itemize}
\item Combining the 4 bins, the hypothesis of non photon polarisation can be excluded with $5.2~\sigma$ significance.
\item Unfortunately without understanding the hadron system it is impossible to tell if the photon is left or right -handed.

\end{itemize}

\column{2in}
{~}
\includegraphics[width=0.95\textwidth]{hql/aud.png}

\end{columns}
\begin{center}
$\rightarrow$~ First observation of photon polarization in $\Pbeauty \to \Pstrange \Pphoton$!
\begin{itemize}
\item Ideal solution would be to leave photon polarization free in the fit.
\item No general description exist $\rightarrow$ input from theory community needed.
\end{itemize}


\end{center}



\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{$\PB_{(s)} \rightarrow \Pmu^+ \Pmu^-$}
\begin{columns}
\column{3.2in}

\begin{itemize}
\item Clean theoretical prediction, GIM and helicity suppressed in the SM:
\begin{itemize}
\item $\mathcal{B}(\PBs \to \Pmuon \APmuon) = (3.66 \pm 0.23)\times 10^{-9}$
\item $\mathcal{B}(\PBzero \to \Pmuon \APmuon) = (1.06 \pm 0.09)\times 10^{-10}$
\end{itemize}
\item $50\%$ of the error comes from lattice.
\item SM predictions from \href{http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.101801}{\color{blue}{Phys. Rev. Lett. 112, 101801 (2014)}}.
\item Sensitive to contributions from scalar and pesudoscalar couplings.
\item Probing: MSSM, higgs sector, etc.
\item In MSSM: $\mathcal{B}(\PBs \to \Pmuon \APmuon) \sim \tan^6 \beta /m_A^4$ 
\end{itemize}

\column{1.5in}
{~}
\includegraphics[width=0.95\textwidth]{hql/bs2mumu1.png}\\
\includegraphics[width=0.95\textwidth]{hql/bs2mumu2.png}\\
\includegraphics[width=0.6\textwidth]{hql/higgspen.png}
\end{columns}


\end{frame}
\iffalse
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{$\PB_{(s)} \rightarrow \Pmu^+ \Pmu^-$ searches}


\begin{columns}
\column{5in}

\begin{itemize}
\item Background rejection power is a key feature of rare decays $\rightarrow$ use multivariate classifiers (BDT) and strong PID.
\end{itemize}
\column{0.1in}{~}

\end{columns}
\begin{columns}
\column{2.5in}
\includegraphics[width=0.95\textwidth]{hql/BDT.png}

\column{2.5in}

\includegraphics[width=0.95\textwidth]{hql/mass.png}

\end{columns}

\begin{itemize}
\item Normalize the BF to $\PBplus \to \PJpsi(\mu\mu) \PKplus$ and $\PBzero \to \PK \Ppi$.
\end{itemize}
\end{frame}

\fi
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{$\PB_{(s)} \rightarrow \Pmu^+ \Pmu^-$ Results}



\begin{columns}
\column{2.in}
\begin{itemize}
\item Nov. 2012:
\begin{itemize}
\item First evidence $3.5\sigma$ for $\PB_s \rightarrow \mu^+ \mu^-$. with $2.1~fb^{-1}$.
\end{itemize}
\item Summer 2013:
\begin{itemize}
\item Full data sample: $3~fb^{-1}$.
\end{itemize}
\end{itemize}
\column{3.0in}

\includegraphics[width=0.95\textwidth]{hql/mass2.png}

\end{columns}
\begin{itemize}
\item Measured BF:\\ $\mathcal{B}(\PBs \to \Pmuon \APmuon) =(2.9^{+1.1}_{-1.0}(stat.)^{+0.3}_{-0.1}(syst.))\times 10^{-9}$ 
\item $4.0 \sigma$ significance!
\item $\mathcal{B}(\PBzero \to \Pmuon \APmuon) < 7 \times 10^{-10}$ at $95\%$ CL
\item \href{http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.021801}{\color{blue} PRL 110 (2013) 021801 }
\item \href{http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.101805}{\color{blue} CMS result: PRL 111 (2013) 101805}
\end{itemize}


\end{frame}





%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{LHCb+CMS combined analysis}
\begin{Large}


\begin{center}
$\mathcal{B}(\PBs \to \Pmuon \APmuon) =(2.8^{+0.7}_{-0.6} )\times 10^{-9}$\\
$\mathcal{B}(\PBzero \to \Pmuon \APmuon) =(3.9^{+1.6}_{-1.4} )\times 10^{-10}$
\end{center}
\end{Large}

\includegraphics[width=0.95\textwidth]{hql/bs2mumu_comb.png}

\begin{itemize}
\item \href{http://arxiv.org/pdf/1411.4413v1.pdf}{\color{blue}Nature 522, 7554}
\item See Daniele Fasanella talk for CMS side.
\end{itemize}

\end{frame}





%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ angular distributions}
\begin{columns}
\column{2.5in}{~}
\begin{itemize}
\item $\Pbeauty \to \Pstrange \Plepton \Plepton$ decays poses large spectrum of observables.
\item LHCb favourite: $\PBzero \to \PKstar \Pmuon \APmuon$.
\item Sensitive to lot of new physics models.
\item Decay described by three angles $\theta_l, \theta_K, \phi$ and dimuon invariant mass $q^2$.
\item Analysis is performed in bins of $q^2$.
\end{itemize}
\column{2.5in}
\includegraphics[width=0.95\textwidth]{hql/angles.png}

\end{columns}
\end{frame}
\begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ selection}
\begin{center}
\includegraphics[width=0.65\textwidth]{images/Fig1.pdf}
\end{center}
\begin{itemize}
\item BDT to suppress combinatorial background.\\ Input variables: PID, kinematics and geometric quantities, isolations.
\item Veto the $\PJpsi$ and $\Psi(2S)$ resonances.
\item \href{http://lhcb.web.cern.ch/lhcb/Physics-Results/LHCb-CONF-2015-002.pdf}{\color{blue}{CONF-2015-002}}
\end{itemize}


\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ angular distributions}
\begin{itemize}
\item Angular distributions depends on 11 angular terms:
%\includegraphics[width=0.95\textwidth]{hql/eq.png}
\tiny{
\begin{align}                                                                                                                                                     
\left.\frac{1}{{\rm d}(\Gamma+\bar{\Gamma})/{\rm d}q^2}\frac{{\rm d}(\Gamma+\bar{\Gamma})}{{\rm dcos}\thetal\,{\rm dcos}\thetak\,{\rm d}\phi}   \right|_{\rm P} =    
\tfrac{9}{32\pi}\bigl[                                                                                                                                            
&\tfrac{3}{4} (1-{F_{\rm L}})\sin^2\thetak \label{eq:pdfpwave}\\[-0.75em]                                                                                         
&+ {F_{\rm L}}\cos^2\thetak + \tfrac{1}{4}(1-{F_{\rm L}})\sin^2\thetak\cos 2\thetal\nonumber\\                                                                    
&- {F_{\rm L}} \cos^2\thetak\cos 2\thetal + {S_3}\sin^2\thetak \sin^2\thetal \cos 2\phi\nonumber\\                                                                
&+ {S_4} \sin 2\thetak \sin 2\thetal \cos\phi + {S_5}\sin 2\thetak \sin \thetal \cos \phi\nonumber\\                                                              
&+ \tfrac{4}{3} {A_{\rm FB}} \sin^2\thetak \cos\thetal + {S_7} \sin 2\thetak \sin\thetal \sin\phi\nonumber\\                                                      
&+ {S_8} \sin 2\thetak \sin 2\thetal \sin\phi + {S_9}\sin^2\thetak \sin^2\thetal \sin 2\phi \nonumber                                                             
\bigr].                                                                                                                                                           
%\end{split}                                                                                                                                                      
%\bigr],                                                                                                                                                          
\end{align}                                                                                                                                                       
}
\end{itemize}
where the $S_i$ are bilinear combinations of helicity amplitudes.
\begin{itemize}
\item We assume no scalar and tensor contribution and massless leptons.
\end{itemize}

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{S-wave pollution}
\begin{itemize}
\item S-wave: $\PK^+ \Ppi^-$ in spin $0$ configuration
\item Introduced by additional two decay amplitudes $\rightarrow$ six observables.
\end{itemize}
{\tiny{
\begin{align}                                                                                                                                                                                 
\left.\frac{1}{{\rm d}(\Gamma+\bar{\Gamma})/{\rm d}q^2}\frac{{\rm d}(\Gamma+\bar{\Gamma})}{{\rm dcos}\thetal\,{\rm dcos}\thetak\,{\rm d}\phi}\right|_{{\rm S}+{\rm P}} =                      
(1-F_S)&\left.\frac{1}{{\rm d}(\Gamma+\bar{\Gamma})/{\rm d}q^2}\frac{{\rm d}(\Gamma+\bar{\Gamma})}{{\rm dcos}\thetal\,{\rm dcos}\thetak\,{\rm d}\phi}\right|_{\rm P}\label{eq:pdfswave}\\     
+\tfrac{3}{16\pi} &\bigl[F_S \sin^2\thetal + S-P~\rm{interefence} \bigr].\nonumber                                                                                                                                     
\end{align}                                                                                                                                                                                   
}}
\begin{columns}
\column{2.5in}
\begin{itemize}
\item $F_S$ dilutes the P-wave observables by a factor $1-F_S$. 
\item Needs to be taken into account \\ $\rightarrow$ fit the $m_{K\pi}$.
\item Rel. BW for P-wave.
\item LASS model for S-wave\\{~}\\{~}\\{~}
\end{itemize}
\column{2in}
\includegraphics[width=0.85\textwidth]{images/mkpi4sig.pdf}

\end{columns}


\end{frame}




%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$  results}
\begin{columns}
\column{2.5in}
\includegraphics[width=0.95\textwidth]{images/Fig5a.pdf}\\
\includegraphics[width=0.95\textwidth]{images/Fig5c.pdf}
\column{2.5in}
\includegraphics[width=0.95\textwidth]{images/Fig5b.pdf}\\
\includegraphics[width=0.95\textwidth]{images/Fig5d.pdf}
\end{columns}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$  results}
\begin{center}
\includegraphics[width=0.65\textwidth]{images/Fig17.pdf}\\
\end{center}
\begin{itemize}
\item Tension in $P_5^{\prime}$ confirmed!
\item $[4.0,6.0]$ and $[6.0, 8.0]~\GeV^2/c^4$ show $2.9 \sigma$ deviation each.
\item Naive combination shows $3.7\sigma$ discrepancy.
\item Result compatible with previous result.
\end{itemize}


\end{frame}



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Understanding the $\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ anomaly}
\begin{columns}
\column{3.in}
\begin{itemize}
\item Matias, Decotes-Genon \& Virto performed a fit to our preliminary result.s
\item Found $\sim 4 \sigma$ discrepancy from SM.
\item Fit favours $C_9^{NP}=-1.1$
\item \href{https://indico.in2p3.fr/event/10819/session/10/contribution/14/material/slides/0.pdf}{\color{blue} Moriond 2015 slides}
\end{itemize}
\begin{itemize}
\item Straub performed  the same analysis as Matias et. al.
\item Found the same solution:\\ $\rightarrow$ $C_9$ modification.
\item Data can be explained by introducing a flavour changing $\PZprime$ boson, with mass $\mathcal{O}(10~TeV)$
\item \href{https://indico.in2p3.fr/event/10819/session/10/contribution/87/material/slides/0.pdf}{\blue{Moriond 2015 slides}}
\end{itemize}

\column{2.in}
\includegraphics[width=0.95\textwidth]{images/quim.png}\\
\includegraphics[width=0.95\textwidth]{images/straub.png}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\begin{frame}\frametitle{Understanding the $\color{white}B^{0} \rightarrow K^{\ast} \mu \mu$ anomaly 2/2}
%\begin{columns}
%\column{3in}

%\includegraphics[width=0.99\textwidth]{hql/c9.png}
%\column{2in}
%\begin{itemize}
%\item High $q^2$ differential BF suggests are all below SM. 
%\item Better consistency with $C_9^{NP}=-1.5$
%\end{itemize}

%\end{columns}


%\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Lepton universality}
\begin{columns}
\column{3.0in}
\begin{itemize}
\item If $\PZprime$ is responsible for the $P'_5$ anomaly, does it couple equally to all flavours?
\includegraphics[width=0.9\textwidth]{hql/uni2.png}
\item Challenging analysis due to bremsstrahlung.
\item Migration of events modeled by MC.
\item Correct bremsstrahlung.
\item Take double ratio with $\PBplus \to \PJpsi \PKplus$ to cancel systematics.
\item In $3fb^{-1}$, LHCb measures $R_K=0.745^{+0.090}_{-0.074}(stat.)^{+0.036}_{-0.036}(syst.)$
\item Consistent with SM at $2.6\sigma$. 

\end{itemize}
\column{2.0in}
\includegraphics[width=0.99\textwidth]{images/RK.png}\\
\begin{itemize}
\item \href{http://arxiv.org/abs/1406.6482}{Phys. Rev. Lett. 113, 151601 (2014)}
\end{itemize}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Lepton universality with $\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ anomaly}
\begin{columns}
\column{3in}
\begin{itemize}
\item Lepton flavour universality cannot be explained by any QCD effect!
\item This effect is consistent with anomaly (non universal $\PZ'$)
\item Global fit to $\Pbeauty \rightarrow  \Pstrange \Pmuon \APmuon$ and $\Pbeauty \rightarrow  \Pstrange \Pelectron \APelectron$ seems to favour $\PZ'$ with non lepton universal couplings.
\end{itemize}


\column{2in}
\includegraphics[width=0.9\textwidth]{images/LU.png}
\end{columns}
\href{http://arxiv.org/pdf/1408.4097v3.pdf}{\color{blue}{JHEP (2014) 131}}
\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Conclusions}
\begin{columns}
\column{3.3in}
\begin{itemize}
\item Rare decays play important role in hutting NP.
\item Can access NP scales beyond reach of GPD.
\item Tension in $\Pbeauty \to \Pstrange \Plepton \Plepton$, theory correct?
\item List of decays presented in this talk is just a tip of iceberg:
\begin{itemize}
\item Please look at ours: isospin, $A_{CP}$.
\item More results are on their way.
\end{itemize}
\item Many results really on SM prediction, QCD improved calculations would be highly appreciated.

\end{itemize}
\column{2in}
\includegraphics[width=0.9\textwidth]{hql/higgs_boring.png}
\end{columns}

\end{frame}


\end{document}