- \documentclass[xcolor=svgnames]{beamer}
- \usepackage[utf8]{inputenc}
- \usepackage[english]{babel}
- \usepackage{polski}
- %\usepackage{amssymb,amsmath}
- %\usepackage[latin1]{inputenc}
- %\usepackage{amsmath}
- %\newcommand\abs[1]{\left|#1\right|}
- \usepackage{amsmath}
- \newcommand\abs[1]{\left|#1\right|}
- \usepackage{hepnicenames}
- \usepackage{hepunits}
- \usepackage{color}
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
- \definecolor{mygreen}{cmyk}{0.82,0.11,1,0.25}
-
-
- \usetheme{Sybila}
-
- \title[Cross checks]{Cross checks}
- \author{Marcin Chrz\k{a}szcz$^{1}$, Nicola Serra$^{1}$}
- \institute{$^1$~University of Zurich}
- \date{\today}
-
- \begin{document}
- % --------------------------- SLIDE --------------------------------------------
- \frame[plain]{\titlepage}
- \author{Marcin Chrz\k{a}szcz{~}}
- \institute{(UZH)}
- % ------------------------------------------------------------------------------
- % --------------------------- SLIDE --------------------------------------------
- \section{Background studies}
- \begin{frame}\frametitle{Comparison MoM with LL fit}
- \begin{columns}
- \begin{column}{2.5in}
- \includegraphics[width=0.9\textwidth]{obs/Fl.pdf}\\
- \includegraphics[width=0.9\textwidth]{obs/S3.pdf}
- \end{column}
- \begin{column}{2.5in}
- \includegraphics[width=0.9\textwidth]{obs/Fs.pdf}\\
- \includegraphics[width=0.9\textwidth]{obs/S4.pdf}
- \end{column}
- \end{columns}
- \end{frame}
-
- \begin{frame}\frametitle{Comparison MoM with LL fit}
- \begin{columns}
- \begin{column}{2.5in}
- \includegraphics[width=0.9\textwidth]{obs/S5.pdf}\\
- \includegraphics[width=0.9\textwidth]{obs/S6.pdf}
- \end{column}
- \begin{column}{2.5in}
- \includegraphics[width=0.9\textwidth]{obs/S7.pdf}\\
- \includegraphics[width=0.9\textwidth]{obs/S8.pdf}
- \end{column}
- \end{columns}
- \end{frame}
-
-
-
- \begin{frame}\frametitle{Expected differences, MoM vs fit}
- \begin{itemize}
- \item We checked this already but as number of sigma is a bit to large for me.
- \item Let me put once again all the numbers I have in once place.
- \end{itemize}
-
- \only<1>{
- \begin{itemize}
- \item Here Signal only, WITH acceptance.
- \end{itemize}
-
-
-
- \begin{tiny}
- \begin{tabular}{ |c |c | c | c| c| c| c| c|c|}
- \hline
- {~} & \multicolumn{8}{|c|}{ absolute expected difference at $68\%$ CL} \\ \hline
- $q^2 [GeV^2 /c^4]$ & $F_l$ & $S_3$ & $S_4$ & $S_5$ & $S_6$ & $S_7$ & $S_8$ & $S_9$ \\ \hline
- $0.1 - 0.98$ & $0.035$ & $0.021$ & $0.044$ & $0.028$ & $0.073$ & $0.025$ & $0.038$ & $0.062$ \\ \hline
- $1.1 - 2.5$ & $0.062$ & $0.065$ & $0.082$ & $0.061$ & $0.073$ & $0.065$ & $0.084$ & $0.062$ \\ \hline
- $2.5 - 4.0$ & $0.062$ & $0.067$ & $0.085$ & $0.077$ & $0.065$ & $0.072$ & $0.080$ & $0.042$ \\ \hline
- $4.0 - 6.0$ & $0.043$ & $0.044$ & $0.059$ & $0.056$ & $0.027$ & $0.052$ & $0.054$ & $0.038$ \\ \hline
- $6.0 - 8.0$ & $0.038$ & $0.042$ & $0.056$ & $0.053$ & $0.028$ & $0.045$ & $0.051$ & $0.027$ \\ \hline
- $15.0 - 17.0$ & $0.027$ & $0.044$ & $0.051$ & $0.042$ & $0.032$ & $0.034$ & $0.045$ & $0.034$ \\ \hline
- $17.0 - 19.0$ & $0.034$ & $0.059$ & $0.066$ & $0.055$ & $0.044$ & $0.043$ & $0.056$ & $0.049$ \\ \hline
- \end{tabular}
- \end{tiny}
- }
-
-
- \end{frame}
-
-
- \begin{frame}\frametitle{Pull distribution}
- \begin{itemize}
- \item Take the observed difference($S_x^{MoM}-S_x^{Fit}$) and divide by the expected difference from table above.
- \end{itemize}
-
- \includegraphics[width=0.6\textwidth]{obs/pull.pdf}
-
- \begin{itemize}
- \item Important note: The fit I do is weighted, but the pull was obtained using Christoph fit which is unweighed, aka we are comparing apples to oranges here.
- \item Now repeat the exercise with my own fit weighted fit.
- \end{itemize}
- \end{frame}
-
-
- \begin{frame}\frametitle{Comparison MoM with LL fit}
- \begin{columns}
- \begin{column}{2.5in}
- \includegraphics[width=0.9\textwidth]{obs2/Fl.pdf}\\
- \includegraphics[width=0.9\textwidth]{obs2/S3.pdf}
- \end{column}
- \begin{column}{2.5in}
- \includegraphics[width=0.9\textwidth]{obs2/Fs.pdf}\\
- \includegraphics[width=0.9\textwidth]{obs2/S4.pdf}
- \end{column}
- \end{columns}
- \end{frame}
-
- \begin{frame}\frametitle{Comparison MoM with LL fit}
- \begin{columns}
- \begin{column}{2.5in}
- \includegraphics[width=0.9\textwidth]{obs2/S5.pdf}\\
- \includegraphics[width=0.9\textwidth]{obs2/S6.pdf}
- \end{column}
- \begin{column}{2.5in}
- \includegraphics[width=0.9\textwidth]{obs2/S7.pdf}\\
- \includegraphics[width=0.9\textwidth]{obs2/S8.pdf}
- \end{column}
- \end{columns}
- \end{frame}
-
- \begin{frame}\frametitle{Pull distribution}
- \begin{itemize}
- \item Take the observed difference($S_x^{MoM}-S_x^{Fit}$) and divide by the expected difference from table above.
- \end{itemize}
-
- \includegraphics[width=0.6\textwidth]{obs2/pull.pdf}
-
- \begin{itemize}
- \item Now oranges to oranges.
- \end{itemize}
- \end{frame}
-
-
-
-
-
-
- \begin{frame}%\frametitle{~}
-
- \begin{Huge}
-
- \center{BACKUP}
-
- \end{Huge}
- \end{frame}
-
-
-
-
- \begin{frame}\frametitle{Comparison MoM with LL fit}
- \begin{columns}
- \begin{column}{2.5in}
- \includegraphics[width=0.9\textwidth]{obs/S5_P.pdf}
- \end{column}
- \begin{column}{2.5in}
- \includegraphics[width=0.9\textwidth]{obs/S9.pdf}\\
-
- \end{column}
- \end{columns}
- \begin{itemize}
- \item My personal opinion: Despite what is expected the left plot scares the hell out of me!
- \end{itemize}
-
- \end{frame}
-
-
- \begin{frame}\frametitle{Expected differences, MoM vs fit}
- \begin{itemize}
- \item We checked this already but as number of sigma is a bit to large for me.
- \item Let me put once again all the numbers I have in once place.
- \end{itemize}
-
-
- \only<1>{
- \begin{itemize}
- \item Here Signal only, no acceptance.
- \end{itemize}
-
-
-
- \begin{tiny}
- \begin{tabular}{ |c |c | c | c| c| c| c| c|c|}
- \hline
- {~} & \multicolumn{8}{|c|}{ absolute expected difference at $68\%$ CL} \\ \hline
- $q^2 [GeV^2 /c^4]$ & $F_l$ & $S_3$ & $S_4$ & $S_5$ & $S_6$ & $S_7$ & $S_8$ & $S_9$ \\ \hline
- $0.1 - 0.98$ & $0.015$ & $0.014$ & $0.023$ & $0.014$ & $0.013$ & $0.012$ & $0.019$ & $0.021$ \\ \hline
- $1.1 - 2.5$ & $0.021$ & $0.025$ & $0.026$ & $0.024$ & $0.015$ & $0.024$ & $0.025$ & $0.020$ \\ \hline
- $2.5 - 4.0$ & $0.020$ & $0.022$ & $0.024$ & $0.025$ & $0.013$ & $0.023$ & $0.024$ & $0.016$ \\ \hline
- $4.0 - 6.0$ & $0.016$ & $0.017$ & $0.021$ & $0.020$ & $0.010$ & $0.019$ & $0.019$ & $0.015$ \\ \hline
- $6.0 - 8.0$ & $0.015$ & $0.017$ & $0.021$ & $0.018$ & $0.011$ & $0.016$ & $0.018$ & $0.015$ \\ \hline
- $15.0 - 17.0$ & $0.015$ & $0.022$ & $0.025$ & $0.018$ & $0.017$ & $0.014$ & $0.021$ & $0.018$ \\ \hline
- $17.0 - 19.0$ & $0.018$ & $0.026$ & $0.030$ & $0.022$ & $0.021$ & $0.018$ & $0.025$ & $0.024$ \\ \hline
- \end{tabular}
- \end{tiny}
- }
-
- \end{frame}
-
-
- \begin{frame}\frametitle{Expected differences, MoM vs fit}
-
-
- \begin{tiny}
- \begin{tabular}{ |c |c | c | c| c| c| c| c|c|}
- \hline
- {~} & \multicolumn{8}{|c|}{ observed difference in terms of sigmas} \\ \hline
- $q^2 [GeV^2 /c^4]$ & $F_l$ & $S_3$ & $S_4$ & $S_5$ & $S_6$ & $S_7$ & $S_8$ & $S_9$ \\ \hline
- $0.1 - 0.98$ & $-0.618$ & $-0.827$ & $-0.074$ & $0.794$ & $0.447$ & $-0.807$ & $0.581$ & $0.2374$ \\ \hline
- $1.1 - 2.5$ & $-0.624$ & $-1.687$ & $-0.518$ & $-1.4854$ & $0.932$ & $1.334$ & $0.5260$ & $-0.632$ \\ \hline
- $2.5 - 4.0$ & $-0.106$ & $-0.842$ & $0.240$ & $0.0223$ & $0.935$ & $-0.174$ & $-0.296$ & $1.098$ \\ \hline
- $4.0 - 6.0$ & $-2.063$ & $-0.1230$ & $-0.105$ & $1.0441$ & $-0.583$ & $-0.129$ & $2.394$ & $-1.921$ \\ \hline
- $6.0 - 8.0$ & $-1.1236$ & $0.5489$ & $-0.4824$ & $2.001$ & $-0.628$ & $0.059$ & $0.800$ & $-2.329$ \\ \hline
- $15.0 - 17.0$ & $ 0.1852$ & $0.128$ & $-0.560$ & $-0.230$ & $-0.573$ & $-0.572$ & $0.411$ & $0.062$ \\ \hline
- $17.0 - 19.0$ & $-0.859$ & $-1.215$ & $1.148$ & $0.757$ & $0.105$ & $-0.0927$ & $-0.529$ & $-0.304$ \\ \hline
- \end{tabular}
- \end{tiny}
-
-
- \end{frame}
-
-
-
-
- \end{document}