Newer
Older
Presentations / Menu2016 / mchrzasz.tex~
@mchrzasz mchrzasz on 14 Jul 2016 51 KB added presentation for MENU
  1. \documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}
  2.  
  3. \usepackage[english]{babel}
  4. \usepackage{polski}
  5.  
  6.  
  7. \usetheme[
  8. bullet=circle, % Other option: square
  9. bigpagenumber, % circled page number on lower right
  10. topline=true, % colored bar at the top of the frame
  11. shadow=false, % Shading for beamer blocks
  12. watermark=BG_lower, % png file for the watermark
  13. ]{Flip}
  14.  
  15. %\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}
  16.  
  17. \usepackage[lf]{berenis}
  18. \usepackage[LY1]{fontenc}
  19. \usepackage[utf8]{inputenc}
  20.  
  21. \usepackage{emerald}
  22. \usefonttheme{professionalfonts}
  23. \usepackage[no-math]{fontspec}
  24. \defaultfontfeatures{Mapping=tex-text} % This seems to be important for mapping glyphs properly
  25.  
  26. \setmainfont{Gillius ADF} % Beamer ignores "main font" in favor of sans font
  27. \setsansfont{Gillius ADF} % This is the font that beamer will use by default
  28. % \setmainfont{Gill Sans Light} % Prettier, but harder to read
  29.  
  30. \setbeamerfont{title}{family=\fontspec{Gillius ADF}}
  31.  
  32. \input t1augie.fd
  33.  
  34. %\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
  35. %\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
  36. % \newcommand{\handwriting}{} % If you prefer no special handwriting font or don't have augie
  37.  
  38. %% Gill Sans doesn't look very nice when boldfaced
  39. %% This is a hack to use Helvetica instead
  40. %% Usage: \textbf{\forbold some stuff}
  41. %\newcommand{\forbold}{\fontspec{Arial}}
  42.  
  43. \usepackage{graphicx}
  44. \usepackage[export]{adjustbox}
  45.  
  46. \usepackage{amsmath}
  47. \usepackage{amsfonts}
  48. \usepackage{amssymb}
  49. \usepackage{bm}
  50. \usepackage{colortbl}
  51. \usepackage{mathrsfs} % For Weinberg-esque letters
  52. \usepackage{cancel} % For "SUSY-breaking" symbol
  53. \usepackage{slashed} % for slashed characters in math mode
  54. \usepackage{bbm} % for \mathbbm{1} (unit matrix)
  55. \usepackage{amsthm} % For theorem environment
  56. \usepackage{multirow} % For multi row cells in table
  57. \usepackage{arydshln} % For dashed lines in arrays and tables
  58. \usepackage{siunitx}
  59. \usepackage{xhfill}
  60. \usepackage{grffile}
  61. \usepackage{textpos}
  62. \usepackage{subfigure}
  63. \usepackage{tikz}
  64.  
  65. %\usepackage{hepparticles}
  66. \usepackage[italic]{hepparticles}
  67.  
  68. \usepackage{hepnicenames}
  69.  
  70. % Drawing a line
  71. \tikzstyle{lw} = [line width=20pt]
  72. \newcommand{\topline}{%
  73. \tikz[remember picture,overlay] {%
  74. \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
  75. -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}
  76.  
  77.  
  78.  
  79. % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
  80. \usepackage{tikzfeynman} % For Feynman diagrams
  81. \usetikzlibrary{arrows,shapes}
  82. \usetikzlibrary{trees}
  83. \usetikzlibrary{matrix,arrows} % For commutative diagram
  84. % http://www.felixl.de/commu.pdf
  85. \usetikzlibrary{positioning} % For "above of=" commands
  86. \usetikzlibrary{calc,through} % For coordinates
  87. \usetikzlibrary{decorations.pathreplacing} % For curly braces
  88. % http://www.math.ucla.edu/~getreuer/tikz.html
  89. \usepackage{pgffor} % For repeating patterns
  90.  
  91. \usetikzlibrary{decorations.pathmorphing} % For Feynman Diagrams
  92. \usetikzlibrary{decorations.markings}
  93. \tikzset{
  94. % >=stealth', %% Uncomment for more conventional arrows
  95. vector/.style={decorate, decoration={snake}, draw},
  96. provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
  97. antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
  98. fermion/.style={draw=gray, postaction={decorate},
  99. decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
  100. fermionbar/.style={draw=gray, postaction={decorate},
  101. decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
  102. fermionnoarrow/.style={draw=gray},
  103. gluon/.style={decorate, draw=black,
  104. decoration={coil,amplitude=4pt, segment length=5pt}},
  105. scalar/.style={dashed,draw=black, postaction={decorate},
  106. decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
  107. scalarbar/.style={dashed,draw=black, postaction={decorate},
  108. decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
  109. scalarnoarrow/.style={dashed,draw=black},
  110. electron/.style={draw=black, postaction={decorate},
  111. decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
  112. bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
  113. }
  114.  
  115. % TIKZ - for block diagrams,
  116. % from http://www.texample.net/tikz/examples/control-system-principles/
  117. % \usetikzlibrary{shapes,arrows}
  118. \tikzstyle{block} = [draw, rectangle,
  119. minimum height=3em, minimum width=6em]
  120.  
  121.  
  122.  
  123.  
  124. \usetikzlibrary{backgrounds}
  125. \usetikzlibrary{mindmap,trees} % For mind map
  126. \newcommand{\degree}{\ensuremath{^\circ}}
  127. \newcommand{\E}{\mathrm{E}}
  128. \newcommand{\Var}{\mathrm{Var}}
  129. \newcommand{\Cov}{\mathrm{Cov}}
  130. \newcommand\Ts{\rule{0pt}{2.6ex}} % Top strut
  131. \newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut
  132.  
  133. \graphicspath{{images/}} % Put all images in this directory. Avoids clutter.
  134.  
  135. % SOME COMMANDS THAT I FIND HANDY
  136. % \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
  137. \newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
  138. \newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
  139. \newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
  140. \newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
  141. \newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
  142. %% "\alert" is already a beamer pre-defined
  143. \newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%
  144.  
  145. \def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}
  146.  
  147. \usepackage{gmp}
  148. \usepackage[final]{feynmp-auto}
  149.  
  150. \usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
  151. \bibliography{bib}
  152. \setbeamertemplate{bibliography item}[text]
  153.  
  154. \makeatletter\let\frametextheight\beamer@frametextheight\makeatother
  155.  
  156. % suppress frame numbering for backup slides
  157. % you always need the appendix for this!
  158. \newcommand{\backupbegin}{
  159. \newcounter{framenumberappendix}
  160. \setcounter{framenumberappendix}{\value{framenumber}}
  161. }
  162. \newcommand{\backupend}{
  163. \addtocounter{framenumberappendix}{-\value{framenumber}}
  164. \addtocounter{framenumber}{\value{framenumberappendix}}
  165. }
  166.  
  167.  
  168. \definecolor{links}{HTML}{2A1B81}
  169. %\hypersetup{colorlinks,linkcolor=,urlcolor=links}
  170.  
  171. % For shapo's formulas:
  172. \def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
  173. \def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
  174. \newcommand{\lsim}{\mathop{\lsi}}
  175. \newcommand{\gsim}{\mathop{\gsi}}
  176. \newcommand{\wt}{\widetilde}
  177. %\newcommand{\ol}{\overline}
  178. \newcommand{\Tr}{\rm{Tr}}
  179. \newcommand{\tr}{\rm{tr}}
  180. \newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
  181. \newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
  182. \newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
  183. \newcommand{\eV}{\rm{eV}}
  184. \newcommand{\keV}{\rm{keV}}
  185. \newcommand{\GeV}{\rm{GeV}}
  186. \newcommand{\MeV}{\rm{MeV}}
  187. \newcommand{\im}{\rm{Im}}
  188. \newcommand{\re}{{\rm Re}}
  189. \newcommand{\invfb}{\rm{fb^{-1}}}
  190. \newcommand{\fixme}{\rm{{\color{red}{FIXME!}}}}
  191. \newcommand{\thetal}{\theta_l}
  192. \newcommand{\thetak}{\theta_k}
  193. \newcommand{\nn}{\nonumber}
  194. \newcommand{\eq}[1]{\begin{equation} #1 \end{equation}}
  195. %\newcommand{\eqn}[1]{\begin{displaymath} #1 \end{displaymath}}
  196. \newcommand{\eqa}[1]{\begin{eqnarray} #1 \end{eqnarray}}
  197. \newcommand{\apeL}{{A_\perp^L}}
  198. \newcommand{\apeR}{{A_\perp^R}}
  199. \newcommand{\apeLR}{{A_\perp^{L,R}}}
  200. \newcommand{\apaL}{{A_\|^L}}
  201. \newcommand{\apaR}{{A_\|^R}}
  202. \newcommand{\apaLR}{{A_\|^{L,R}}}
  203. \newcommand{\azeL}{{A_0^L}}
  204. \newcommand{\azeR}{{A_0^R}}
  205. \newcommand{\azeLR}{{A_0^{L,R}}}
  206. \newcommand{\Real}{\ensuremath{\mathcal{R}e}\xspace}
  207. \newcommand{\Imag}{\ensuremath{\mathcal{I}m}\xspace}
  208.  
  209. \renewcommand{\C}[1]{{\cal C}_{#1}}
  210. \newcommand{\Ceff}[1]{{\cal C}^{\rm eff}_{#1}}
  211. \newcommand{\Cpeff}[1]{{\cal C}^{\rm eff\prime}_{#1}}
  212. \newcommand{\Cp}[1]{{\cal C}^{\prime}_{#1}}
  213. \def\FL {\ensuremath{F_{\mathrm{L}}}\xspace}
  214. \def\ATDPH {\ensuremath{A_{\mathrm{T,PR}}^{(2)}}\xspace}
  215. \def\ATImPH {\ensuremath{A_{\mathrm{T,PR}}^{\mathrm{Im}}}\xspace}
  216. \def\ATRePH {\ensuremath{A_{\mathrm{T,PR}}^{\mathrm{Re}}}\xspace}
  217. \def\FLPH {\ensuremath{F_{\mathrm{L,PR}}}\xspace}
  218. \def\ATDKG {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{(2)}}\xspace}
  219. \def\ATImKG {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{\mathrm{Im}}}\xspace}
  220. \def\ATReKG {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{\mathrm{Re}}}\xspace}
  221. \def\FLKG {\ensuremath{F_{\mathrm{L,\Kstarz \gamma}}}\xspace}
  222. \def\ATD {\ensuremath{A_{\mathrm{T}}^{(2)}}\xspace}
  223. \def\ATIm {\ensuremath{A_{\mathrm{T}}^{\mathrm{Im}}}\xspace}
  224. \def\ATRe {\ensuremath{A_{\mathrm{T}}^{\mathrm{Re}}}\xspace}
  225.  
  226.  
  227.  
  228. \newcommand{\disp}{\displaystyle}
  229. \def\be{\begin{equation}}
  230. \def\ee{\end{equation}}
  231. \def\ba{\begin{eqnarray}}
  232. \def\ea{\end{eqnarray}}
  233. \def\d{\partial}
  234. \def\l{\left(}
  235. \def\r{\right)}
  236. \def\la{\langle}
  237. \def\ra{\rangle}
  238. \def\e{{\rm e}}
  239. \def\Br{{\rm Br}}
  240.  
  241.  
  242.  
  243. \author{ {\fontspec{Trebuchet MS}Marcin Chrz\k{a}szcz} (Universit\"{a}t Z\"{u}rich, IFJ PAN)}
  244. \institute{UZH, IFJ PAN}
  245. \title[Anomalies in Flavour physics]{Anomalies in Flavour physics}
  246. \date{25 September 2014}
  247.  
  248.  
  249. \begin{document}
  250. \tikzstyle{every picture}+=[remember picture]
  251.  
  252.  
  253.  
  254.  
  255.  
  256. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  257. {
  258. \setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
  259. \begin{frame}[c]%{\phantom{title page}}
  260. \begin{center}
  261. \begin{center}
  262. \begin{columns}
  263. \begin{column}{0.75\textwidth}
  264. \flushright\fontspec{Trebuchet MS}\bfseries \LARGE {Anomalies in Flavour physics}
  265. \end{column}
  266. \begin{column}{0.02\textwidth}
  267. {~}
  268. \end{column}
  269. \begin{column}{0.23\textwidth}
  270. % \hspace*{-1.cm}
  271. \vspace*{-3mm}
  272. \includegraphics[width=0.6\textwidth]{lhcb-logo}
  273. \end{column}
  274. \end{columns}
  275. \end{center}
  276. \quad
  277. \vspace{3em}
  278. \begin{columns}
  279. \begin{column}{0.44\textwidth}
  280. \flushright \vspace{-1.8em} {\fontspec{Trebuchet MS} \Large Marcin Chrząszcz\\\vspace{-0.1em}\small \href{mailto:mchrzasz@cern.ch}{mchrzasz@cern.ch}}
  281.  
  282. \end{column}
  283. \begin{column}{0.53\textwidth}
  284. \includegraphics[height=1.3cm]{uzh-transp}{~}{~}
  285. \includegraphics[height=1.1cm]{ifj.png}
  286. \end{column}
  287. \end{columns}
  288.  
  289. \vspace{1em}
  290. \footnotesize\textcolor{gray}{Universit\"{a}t Z\"{u}rich, \\ Institute of Nuclear Physics, Polish Academy of Science}\normalsize\\
  291. \vspace{0.5em}
  292.  
  293. \textcolor{normal text.fg!50!Comment}{$5^{th}$ KEK Flavour Factory Workshop \\October 26-27,\\ Tokyo 2015}
  294. \end{center}
  295. \end{frame}
  296. }
  297.  
  298.  
  299.  
  300.  
  301. \iffalse
  302.  
  303. \begin{frame}{Outline}
  304.  
  305. \begin{minipage}{\textwidth}
  306.  
  307. \begin{enumerate}
  308. \item Why flavour is important.
  309. \item $\Pbeauty \to \Pstrange \ell \ell$ theory in a nutshell.
  310. \item LHCb measurements of $\Pbeauty \to \Pstrange \ell \ell$.
  311. \item Global fit to $\Pbeauty \to \Pstrange \ell \ell$ measurements.
  312. \item Conclusions.
  313. \end{enumerate}
  314.  
  315.  
  316. \end{minipage}
  317. \vspace*{2.cm}
  318. \end{frame}
  319.  
  320. \fi
  321.  
  322.  
  323.  
  324.  
  325. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  326. \begin{frame}\frametitle{Why rare decays?}
  327. \begin{columns}
  328. \column{4in}
  329. \begin{itemize}
  330. \item In SM allows only the charged interactions to change flavour.
  331. \begin{itemize}
  332. \item Other interactions are flavour conserving.
  333. \end{itemize}
  334. \item One can escape this constrain and produce $\Pbottom \to \Pstrange$ and $\Pbottom \to \Pdown$ at loop level.
  335. \begin{itemize}
  336. \item This kind of processes are suppressed in SM $\to$~Rare decays.
  337. \item New Physics can enter in the loops.
  338. \end{itemize}
  339. \end{itemize}
  340. \begin{center}
  341. \includegraphics[scale=0.3]{images/lupa.png}
  342. \includegraphics[scale=0.3]{images/example.png}
  343. \end{center}
  344. \column{1.5in}
  345. \includegraphics[width=0.61\textwidth]{images/couplings.png}
  346. \end{columns}
  347. \end{frame}
  348.  
  349.  
  350. \begin{frame}\frametitle{Tools}
  351. \begin{itemize}
  352. \item \textbf{Operator Product Expansion and Effective Field Theory}
  353. \end{itemize}
  354. \begin{columns}
  355. \column{0.1in}{~}
  356. \column{3.2in}
  357. \begin{align*}
  358. H_{eff} = - \dfrac{4G_f}{\sqrt{2}} V V^{\prime \ast}\ \sum_i \left[\underbrace{C_i(\mu)O_i(\mu)}_\text{left-handed} +\underbrace{C'_i(\mu)O'_i(\mu)}_\text{right-handed}\right],
  359. \end{align*}
  360. \column{2in}
  361. \begin{tiny}
  362. \begin{description}
  363. \item[i=1,2] Tree
  364. \item[i=3-6,8] Gluon penguin
  365. \item[i=7] Photon penguin
  366. \item[i=9.10] EW penguin
  367. \item[i=S] Scalar penguin
  368. \item[i=P] Pseudoscalar penguin
  369. \end{description}
  370. \end{tiny}
  371. \end{columns}
  372. where $C_i$ are the Wilson coefficients and $O_i$ are the corresponding effective operators.
  373. \begin{center}
  374. \includegraphics[width=0.85\textwidth,height=3cm]{images/all.png}
  375. \end{center}
  376. \end{frame}
  377.  
  378.  
  379. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  380.  
  381. \begin{frame}
  382. \only<1>{\frametitle{LHCb detector - tracking}
  383. \begin{columns}
  384. \column{3in}
  385. \includegraphics[width=0.9\textwidth]{images/1050px-Lhcbview.jpg}
  386.  
  387. \column{2in}
  388. \includegraphics[width=0.95\textwidth]{images/sketch.png}
  389. \end{columns}
  390. \begin{itemize}
  391. \item Excellent Impact Parameter (IP) resolution ($20~\rm \mu m$).\\
  392. $\Rightarrow$ Identify secondary vertices from heavy flavour decays
  393. \item Proper time resolution $\sim~40~\rm fs$.\\
  394. $\Rightarrow$ Good separation of primary and secondary vertices.
  395. \item Excellent momentum ($\delta p/p \sim 0.4 - 0.6\%$) and inv. mass resolution.\\
  396. $\Rightarrow$ Low combinatorial background.
  397.  
  398. \end{itemize}
  399.  
  400.  
  401. }
  402.  
  403. \only<2>{\frametitle{LHCb detector - particle identification}
  404. \begin{columns}
  405. \column{3in}
  406. \includegraphics[width=0.9\textwidth]{images/1050px-Lhcbview.jpg}
  407.  
  408. \column{2in}
  409. \includegraphics[width=0.95\textwidth]{images/cher.png}
  410. \end{columns}
  411. \begin{itemize}
  412. \item Excellent Muon identification $\epsilon_{\mu \to \mu} \sim 97\%$, $\epsilon_{\pi \to \mu} \sim 1-3\%$
  413. \item Good $\PK-\Ppi$ separation via RICH detectors, $\epsilon_{\PK \to \PK} \sim 95\%$, $\epsilon_{\Ppi \to \PK} \sim 5\%$.\\
  414. $\Rightarrow$ Reject peaking backgrounds.
  415. \item High trigger efficiencies, low momentum thresholds.
  416. Muons: $p_T > 1.76 \GeV$ at L0, $p_T > 1.0 \GeV$ at HLT1,\\
  417. $B \to \PJpsi X $: Trigger $\sim 90\%$.
  418.  
  419. \end{itemize}
  420.  
  421.  
  422. }
  423.  
  424.  
  425. \end{frame}
  426.  
  427.  
  428.  
  429.  
  430. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  431. \begin{frame}{Recent measurements}
  432. {~}
  433. \only<1>{
  434.  
  435. \begin{minipage}{\textwidth}
  436.  
  437.  
  438. \begin{columns}
  439.  
  440. \column{0.5\textwidth}
  441. $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{Branching fractions:}}
  442. \begin{description}
  443. \item [$\PB^{0,\pm} \to \PK^{0,\pm} \Pmuon \APmuon$] {~}{~}LHCb, Mar 14
  444. \item [$\PB^{0} \to \PKstar \Pmuon \APmuon$] {~}{~}CMS, Jul 15
  445. \item [$\PBs \to \Pphi \Pmuon \APmuon$] {~}{~}{~}LHCb, Jun 15
  446. \item [$\PB^{\pm} \to \Ppi^{\pm} \Pmuon \APmuon$] {~}LHCb, Sep 15
  447. \item [$\PLambdab \to \PLambda \Pmuon \APmuon$] {~}{~}{~}{~}LHCb, Mar 15
  448. \item [$\PB \to\Pmuon \APmuon$] {~}{~}{~}{~}{~}CMS+LHCb, Jun 15
  449. \end{description}
  450.  
  451. $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{CP asymmetry:}}
  452. \begin{description}
  453. \item [$\PB^{\pm} \to \Ppi^{\pm} \Pmuon \APmuon$] {~}{~}LHCb, Sep 15
  454. \end{description}
  455.  
  456. $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{Isospin asymmetry:}}
  457. \begin{description}
  458. \item [$\PB \to \PK \Pmuon \APmuon$] {~}{~}{~}{~}{~}LHCb, Mar 14
  459. \end{description}
  460.  
  461.  
  462. \column{0.5\textwidth}
  463. $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{Lepton Universality:}}
  464. \begin{description}
  465. \item [$\PB^{\pm} \to \PK^{\pm} \Plepton \APlepton$] {~}{~}LHCb, Jun 14
  466. \end{description}
  467.  
  468.  
  469. $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{Angular:}}
  470. \begin{description}
  471. \item [$\PB^{0} \to \PK^{\ast} \Plepton \APlepton$] {~}{~}{~}LHCb, Jan 15
  472. \item [$\PB^{\pm} \to \PK^{\ast,\pm} \Plepton \APlepton$] BaBar, Aug 15
  473. \item [$\PBs \to \Pphi \Plepton \APlepton$] {~}{~}{~}LHCb, Jun 15
  474. \item [$\PLambdab \to \PLambda \Pmuon \APmuon$] {~}{~}LHCb, Mar 15
  475. \end{description}
  476.  
  477.  
  478.  
  479.  
  480.  
  481. \end{columns}
  482.  
  483. \end{minipage}
  484. }
  485. \only<2>{
  486.  
  487. \begin{minipage}{\textwidth}
  488.  
  489.  
  490. \begin{columns}
  491.  
  492. \column{0.5\textwidth}
  493. $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{Branching fractions:}}
  494. \begin{description}
  495. \item [{\color{red}{$\PB^{0,\pm} \to \PK^{0,\pm} \Pmuon \APmuon$}}] {~}{~}{\color{red}{LHCb, Mar 14}}
  496. \item [$\PB^{0} \to \PKstar \Pmuon \APmuon$] {~}{~}CMS, Jul 15
  497. \item [{\color{red}{$\PBs \to \Pphi \Pmuon \APmuon$}}] {~}{~}{~}{\color{red}{LHCb, Jun 15}}
  498. \item [$\PB^{\pm} \to \Ppi^{\pm} \Pmuon \APmuon$] {~}LHCb, Sep 15
  499. \item [$\PLambdab \to \PLambda \Pmuon \APmuon$] {~}{~}{~}{~}LHCb, Mar 15
  500. \item [{\color{red}{$\PB \to\Pmuon \APmuon$}}] {~}{~}{~}{~}{~}{\color{red}{CMS+LHCb, Jun 15}}
  501. \end{description}
  502.  
  503. $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{CP asymmetry:}}
  504. \begin{description}
  505. \item [$\PB^{\pm} \to \Ppi^{\pm} \Pmuon \APmuon$] {~}{~}LHCb, Sep 15
  506. \end{description}
  507.  
  508. $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{Isospin asymmetry:}}
  509. \begin{description}
  510. \item [$\PB \to \PK \Pmuon \APmuon$] {~}{~}{~}{~}{~}LHCb, Mar 14
  511. \end{description}
  512.  
  513.  
  514. \column{0.5\textwidth}
  515. $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{Lepton Universality:}}
  516. \begin{description}
  517. \item [{\color{red}{$\PB^{\pm} \to \PK^{\pm} \Plepton \APlepton$}}] {~}{~}{\color{red}{LHCb, Jun 14}}
  518. \end{description}
  519.  
  520.  
  521. $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{Angular:}}
  522. \begin{description}
  523. \item [{\color{red}{$\PB^{0} \to \PK^{\ast} \Plepton \APlepton$}}] {~}{~}{~}LHCb, Jan 15
  524. \item [{\color{red}{$\PB^{\pm} \to \PK^{\ast,\pm} \Plepton \APlepton$}}] {\color{red}{BaBar, Aug 15}}
  525. \item [$\PBs \to \Pphi \Plepton \APlepton$] {~}{~}{~}LHCb, Jun 15
  526. \item [{\color{red}{$\PLambdab \to \PLambda \Pmuon \APmuon$}}] {~}{~}{\color{red}{LHCb, Mar 15}}
  527. \end{description}
  528.  
  529. \begin{alertblock}{}
  530. $>2~\sigma$ deviations from SM
  531.  
  532. \end{alertblock}
  533.  
  534. \end{columns}
  535.  
  536. \end{minipage}
  537. }
  538.  
  539. \vspace*{2.1cm}
  540. \end{frame}
  541.  
  542.  
  543.  
  544. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  545. \begin{frame}{$\PBzero \to \PKstar \Pmuon \APmuon$ kinematics}
  546. {~}
  547. \begin{minipage}{\textwidth}
  548.  
  549. $\color{JungleGreen}{\Rrightarrow}$ The kinematics of $\PBzero \to \PKstar \Pmuon \APmuon$ decay is described by three angles $\thetal$, $\thetak$, $\phi$ and invariant mass of the dimuon system ($q^2)$.
  550.  
  551. \only<1>{
  552. \begin{columns}
  553. \column{0.5\textwidth}
  554.  
  555. $\color{JungleGreen}{\Rrightarrow}$ $\cos \thetak$: the angle between the direction of the kaon in the $\PKstar$ ($\overline{\PKstar}$) rest frame and the direction of the $\PKstar$ ($\overline{\PKstar}$) in the $\PBzero$ ($\APBzero$) rest frame.\\
  556. $\color{JungleGreen}{\Rrightarrow}$ $\cos \thetal$: the angle between the direction of the $\Pmuon$ ($\APmuon$) in the dimuon rest frame and the direction of the dimuon in the $\PBzero$ ($\APBzero$) rest frame.\\
  557. $\color{JungleGreen}{\Rrightarrow}$ $\phi$: the angle between the plane containing the $\Pmuon$ and $\APmuon$ and the plane containing the kaon and pion from the $\PKstar$.
  558.  
  559.  
  560.  
  561. \column{0.5\textwidth}
  562. \includegraphics[width=0.95\textwidth]{images/angles.png}
  563.  
  564. \end{columns}
  565. }
  566. \only<2>{
  567. {\tiny{
  568. \eqa{\label{dist}
  569. \frac{d^4\Gamma}{dq^2\,d\!\cos\theta_K\,d\!\cos\theta_l\,d\phi}&=&\frac9{32\pi} \bigg[
  570. J_{1s} \sin^2\theta_K + J_{1c} \cos^2\theta_K + (J_{2s} \sin^2\theta_K + J_{2c} \cos^2\theta_K) \cos 2\theta_l\nn\\[1.5mm]
  571. &&\hspace{-2.7cm}+ J_3 \sin^2\theta_K \sin^2\theta_l \cos 2\phi + J_4 \sin 2\theta_K \sin 2\theta_l \cos\phi + J_5 \sin 2\theta_K \sin\theta_l \cos\phi \nn\\[1.5mm]
  572. &&\hspace{-2.7cm}+ (J_{6s} \sin^2\theta_K + {J_{6c} \cos^2\theta_K}) \cos\theta_l
  573. + J_7 \sin 2\theta_K \sin\theta_l \sin\phi + J_8 \sin 2\theta_K \sin 2\theta_l \sin\phi \nn\\[1.5mm]
  574. &&\hspace{-2.7cm}+ J_9 \sin^2\theta_K \sin^2\theta_l \sin 2\phi \bigg]\,,
  575. \nonumber}
  576. }}\\{~}\\
  577. $\color{JungleGreen}{\Rrightarrow}$ This is the most general expression of this kind of decay.\\
  578. $\color{JungleGreen}{\Rrightarrow}$ The $CP$ averaged angular observables are defined:\\
  579. \eq{
  580. S_i = \dfrac{J_i+ \bar{J}_i}{(d \Gamma + d \bar{\Gamma})/dq^2}\nonumber
  581. }
  582.  
  583. }
  584.  
  585. \end{minipage}
  586. \vspace*{2.1cm}
  587. \end{frame}
  588. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  589. \begin{frame}{Transversity amplitudes }
  590. {~}
  591. \begin{minipage}{\textwidth}
  592.  
  593. $\color{JungleGreen}{\Rrightarrow}$ One can link the angular observables to transversity amplitudes
  594. {\tiny{
  595. \eqa{
  596. J_{1s} & = & \frac{(2+\beta_\ell^2)}{4} \left[|\apeL|^2 + |\apaL|^2 +|\apeR|^2 + |\apaR|^2 \right]
  597. + \frac{4 m_\ell^2}{q^2} \re\left(\apeL\apeR^* + \apaL\apaR^*\right)\,,\nn\\[1mm]
  598. %
  599. J_{1c} & = & |\azeL|^2 +|\azeR|^2 + \frac{4m_\ell^2}{q^2} \left[|A_t|^2 + 2\re(\azeL^{}\azeR^*) \right] + \beta_\ell^2\, |A_S|^2 \,,\nn\\[1mm]
  600. %
  601. J_{2s} & = & \frac{ \beta_\ell^2}{4}\left[ |\apeL|^2+ |\apaL|^2 + |\apeR|^2+ |\apaR|^2\right],
  602. \hspace{0.92cm} J_{2c} = - \beta_\ell^2\left[|\azeL|^2 + |\azeR|^2 \right]\,,\nn\\[1mm]
  603. %
  604. J_3 & = & \frac{1}{2}\beta_\ell^2\left[ |\apeL|^2 - |\apaL|^2 + |\apeR|^2 - |\apaR|^2\right],
  605. \qquad J_4 = \frac{1}{\sqrt{2}}\beta_\ell^2\left[\re (\azeL\apaL^* + \azeR\apaR^* )\right],\nn \\[1mm]
  606. %
  607. J_5 & = & \sqrt{2}\beta_\ell\,\Big[\re(\azeL\apeL^* - \azeR\apeR^* ) - \frac{m_\ell}{\sqrt{q^2}}\,
  608. \re(\apaL A_S^*+ \apaR^* A_S) \Big]\,,\nn\\[1mm]
  609. %
  610. J_{6s} & = & 2\beta_\ell\left[\re (\apaL\apeL^* - \apaR\apeR^*) \right]\,,
  611. \hspace{2.25cm} J_{6c} = 4\beta_\ell\, \frac{m_\ell}{\sqrt{q^2}}\, \re (\azeL A_S^*+ \azeR^* A_S)\,,\nn\\[1mm]
  612. %
  613. J_7 & = & \sqrt{2} \beta_\ell\, \Big[\im (\azeL\apaL^* - \azeR\apaR^* ) +
  614. \frac{m_\ell}{\sqrt{q^2}}\, \im (\apeL A_S^* - \apeR^* A_S)) \Big]\,,\nn\\[1mm]
  615. %
  616. J_8 & = & \frac{1}{\sqrt{2}}\beta_\ell^2\left[\im(\azeL\apeL^* + \azeR\apeR^*)\right]\,,
  617. %
  618. \hspace{1.9cm} J_9 = \beta_\ell^2\left[\im (\apaL^{*}\apeL + \apaR^{*}\apeR)\right] \,,
  619. \label{Js}\nonumber}
  620. }}
  621.  
  622. \end{minipage}
  623. \vspace*{2.1cm}
  624. \end{frame}
  625.  
  626.  
  627.  
  628. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  629. \begin{frame}{Link to effective operators}
  630. {~}
  631. \begin{minipage}{\textwidth}
  632. $\color{JungleGreen}{\Rrightarrow}$ So here is where the magic happens. At leading order the amplitudes can be written as:
  633. {\tiny{
  634. \eqa{
  635. \apeLR &=&\sqrt{2} N m_B(1- \hat s)\bigg[ (\Ceff9 + \Cpeff9) \mp (\C{10} + \Cp{10})
  636. +\frac{2\hat{m}_b}{\hat s} (\Ceff7 + \Cpeff7) \bigg]\xi_{\bot}(E_{K^*}) \nn \\[2mm]
  637. \apaLR &=& -\sqrt{2} N m_B (1-\hat s)\bigg[(\Ceff9 - \Cpeff9) \mp (\C{10} - \Cp{10})
  638. +\frac{2\hat{m}_b}{\hat s}(\Ceff7 - \Cpeff7) \bigg] \xi_{\bot}(E_{K^*}) \nn \\[2mm]
  639. \azeLR &=& -\frac{N m_B (1-\hat s)^2}{2 \hat{m}_{K^*} \sqrt{\hat s}} \bigg[ (\Ceff9 - \Cpeff9) \mp (\C{10} - \Cp{10}) + 2\hat{m}_b (\Ceff7 - \Cpeff7) \bigg]\xi_{\|}(E_{K^*}),
  640. \label{LargeRecoilAs}\nonumber}
  641. }}
  642. where $\hat s = q^2 /m_B^2$, $\hat{m}_i = m_i/m_B$. The $\xi_{\|,\bot }$ are the form factors. \\
  643. \pause
  644. $\color{JungleGreen}{\Rrightarrow}$ Now we can construct observables that cancel the $\xi$ form factors at leading order:
  645. \eq{P_5^{\prime} = \dfrac{J_5+\bar{J}_5}{2\sqrt{-(J_2^c+\bar{J}_2^c)(J_2^s+\bar{J}_2^s)} }\nonumber
  646. }
  647.  
  648.  
  649. \end{minipage}
  650. \vspace*{2.1cm}
  651. \end{frame}
  652. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  653.  
  654. % symmetries
  655. \begin{frame}{Symmetries in $\PB \to \PKstar \Pmu \Pmu$}
  656. {~}
  657. \begin{minipage}{\textwidth}
  658. $\color{JungleGreen}{\Rrightarrow}$ We have 12 angular coefficients ($S_i$).\\
  659. $\color{JungleGreen}{\Rrightarrow}$ There exists 4 symmetry transformations that leave the angular distributions non changed:
  660. \begin{tiny}
  661. \eq{
  662. n_\|=\binom{A_\|^L}{A_\|^{R*}}\ ,\quad
  663. n_\bot=\binom{A_\bot^L}{-A_\bot^{R*}}\ ,\quad
  664. n_0=\binom{A_0^L}{A_0^{R*}}\ .\nonumber
  665. }
  666. \end{tiny}
  667. \begin{tiny}
  668. \eq{
  669. n_i^{'} = U n_i=
  670. \left[
  671. \begin{array}{ll}
  672. e^{i\phi_L} & 0 \\
  673. 0 & e^{-i \phi_R}
  674. \end{array}
  675. \right]
  676. \left[
  677. \begin{array}{rr}
  678. \cos \theta & -\sin \theta \\
  679. \sin \theta & \cos \theta
  680. \end{array}
  681. \right]
  682. \left[
  683. \begin{array}{rr}
  684. \cosh i \tilde{\theta} & -\sinh i \tilde{\theta} \\
  685. - \sinh i \tilde{\theta} & \cosh i \tilde{\theta}
  686. \end{array}
  687. \right]
  688. n_i \,.
  689. \label{symmassless}\nonumber}
  690. \end{tiny}
  691. $\color{JungleGreen}{\Rrightarrow}$ Using this symmetries one can show that there are 8 independent observables. The pdf can be wrote as:
  692. \begin{tiny}
  693. \begin{align*}
  694. \left.\frac{1}{{\rm d}(\Gamma+\bar{\Gamma})/{\rm d}q^2}\frac{{\rm d}(\Gamma+\bar{\Gamma})}{{\rm dcos}\thetal\,{\rm dcos}\thetak\,{\rm d}\phi}\right|_{\rm P} =
  695. \tfrac{9}{32\pi}\bigl[
  696. &\tfrac{3}{4} (1-{F_{\rm L}})\sin^2\thetak \label{eq:pdfpwave}\\[-0.75em]
  697. &+ {F_{\rm L}}\cos^2\thetak + \tfrac{1}{4}(1-{F_{\rm L}})\sin^2\thetak\cos 2\thetal\nonumber\\
  698. &- {F_{\rm L}} \cos^2\thetak\cos 2\thetal + {S_3}\sin^2\thetak \sin^2\thetal \cos 2\phi\nonumber\\
  699. &+ {S_4} \sin 2\thetak \sin 2\thetal \cos\phi + {S_5}\sin 2\thetak \sin \thetal \cos \phi\nonumber\\
  700. &+ \tfrac{4}{3} {A_{\rm FB}} \sin^2\thetak \cos\thetal + {S_7} \sin 2\thetak \sin\thetal \sin\phi\nonumber\\
  701. &+ {S_8} \sin 2\thetak \sin 2\thetal \sin\phi + {S_9}\sin^2\thetak \sin^2\thetal \sin 2\phi \nonumber
  702. \bigr].
  703. %\end{split}
  704. %\bigr],\
  705. \end{align*}
  706. \end{tiny}
  707.  
  708. \end{minipage}
  709. \vspace*{2.1cm}
  710. \end{frame}
  711.  
  712.  
  713.  
  714.  
  715.  
  716.  
  717.  
  718.  
  719.  
  720.  
  721.  
  722. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  723. \begin{frame}{LHCb update of the $\PBzero \to \PKstar \Pmuon \APmuon$, Selection}
  724. {~}
  725. \begin{minipage}{\textwidth}
  726. \begin{columns}
  727.  
  728. \column{0.5\textwidth}
  729. \begin{itemize}
  730. \item \href{https://lhcb.web.cern.ch/lhcb/Physics-Results/LHCb-CONF-2015-002.pdf}{{\color{blue}{LHCb-CONF-2015-002}}}
  731. \item PID, kinematics and isolation variables used in a Boosted Decision Tree (BDT) to reject background.
  732. \item Reject the regions of $\PJpsi$ and $\Ppsi(2S)$.
  733. \item Specific vetos for backgrounds: $\PLambdab \to \Pproton \PK \Pmu \Pmu$, $\PBs \to \Pphi \Pmu \Pmu$, etc.
  734. \item Using k-Fold technique and signal proxy $\PB \to \PJpsi \PKstar$ for training the BDT.
  735. \item Improved selection allowed for finer binning than the $1\invfb$ analysis.
  736. \end{itemize}
  737.  
  738.  
  739. \column{0.5\textwidth}
  740.  
  741. \includegraphics[width=0.88\textwidth]{images/Fig1.pdf} \\
  742. \includegraphics[width=0.88\textwidth]{images/fold.png}
  743.  
  744. \end{columns}
  745.  
  746.  
  747.  
  748. \end{minipage}
  749. \vspace*{2.1cm}
  750. \end{frame}
  751.  
  752.  
  753. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  754. \begin{frame}{LHCb update of the $\PBzero \to \PKstar \Pmuon \APmuon$, Selection}
  755. {~}
  756. \begin{minipage}{\textwidth}
  757.  
  758. \begin{itemize}
  759. \item Signal modelled by a sum of two Crystal-Ball functions.
  760. \item Shape is defined using $\PB \to \PJpsi \PKstar$ and corrected for $q^2$ dependency.
  761. \item Combinatorial background modelled by exponent.
  762. \end{itemize}
  763.  
  764. \begin{columns}
  765. \column{0.5\textwidth}
  766. \begin{itemize}
  767. \item $\PK \Ppi$ system:
  768. \begin{itemize}
  769. \item Rel. Breit Wigner for P-wave
  770. \item Lass model for the S-wave.
  771. \item Linear model for background.
  772. \item Reduced the systematic compared to previous analysis.
  773. \end{itemize}
  774. \end{itemize}
  775.  
  776. \column{0.5\textwidth}
  777.  
  778. \includegraphics[width=0.88\textwidth]{images/pbkg}
  779.  
  780. \end{columns}
  781.  
  782. \begin{large}
  783. \begin{itemize}
  784. \item In total we found $2398\pm57$ candidates in the $(0.1,19)~\GeV^2$ $q^2$ region.
  785. \item $624 \pm 30$ candidates in the theoretically the most interesting $(1.1-6.0)~\GeV^2$ region.
  786. \end{itemize}
  787. \end{large}
  788.  
  789.  
  790.  
  791.  
  792. \end{minipage}
  793. \vspace*{2.1cm}
  794. \end{frame}
  795.  
  796.  
  797.  
  798. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  799. \begin{frame}{Detector acceptance}
  800. {~}
  801. \begin{minipage}{\textwidth}
  802. \begin{columns}
  803.  
  804. \column{0.6\textwidth}
  805. \begin{itemize}
  806. \item Detector distorts our angular distribution.
  807. \item We need to model this effect.
  808. \item 4D function is used:
  809. \begin{align*}
  810. \epsilon (\cos \thetal, \cos \thetak, \phi, q^2) = \\\sum_{ijkl} c_{ijkl} P_i(\cos \thetal) P_j(\cos \thetak ) P_k(\phi) P_l(q^2),
  811. \end{align*}
  812. where $P_i$ is the Legendre polynomial of order $i$.
  813. \item We use up to $4^{th}, 5^{th}, 6^{th}, 5^{th}$ order for the $\cos \thetal, \cos \thetak, \phi, q^2$.
  814. \end{itemize}
  815.  
  816.  
  817.  
  818.  
  819. \column{0.4\textwidth}
  820. \includegraphics[width=0.99\textwidth]{images/det.png}
  821. \end{columns}
  822.  
  823.  
  824. \end{minipage}
  825. \vspace*{2.1cm}
  826. \end{frame}
  827.  
  828. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  829.  
  830.  
  831. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  832. \begin{frame}{Control channel}
  833. {~}
  834. \begin{minipage}{\textwidth}
  835.  
  836.  
  837. \begin{itemize}
  838. \item We tested our unfolding procedure on $\PB \to \PJpsi \PKstar$.
  839. \item The result is in perfect agreement with other experiments and our different analysis of this decay.
  840. \end{itemize}
  841.  
  842. \begin{columns}
  843.  
  844. \column{0.5\textwidth}
  845.  
  846. \includegraphics[width=0.95\textwidth]{images/mlogjpsi.png}
  847. \column{0.5\textwidth}
  848. \includegraphics[width=0.95\textwidth]{images/mkpijpsi.png}
  849.  
  850. \end{columns}
  851.  
  852.  
  853. \includegraphics[width=0.99\textwidth]{images/angles2.png}
  854.  
  855.  
  856.  
  857. \end{minipage}
  858. \vspace*{2.1cm}
  859. \end{frame}
  860.  
  861.  
  862.  
  863. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
  864. \begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ results}
  865. \begin{minipage}{\textwidth}
  866. \begin{columns}
  867. \column{2.5in}
  868. \includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5a.pdf}\\
  869. \includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5c.pdf}
  870. \column{2.5in}
  871. \includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5b.pdf}\\
  872. \includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5d.pdf}
  873. \end{columns}
  874. \end{minipage}
  875. \vspace*{2.1cm}
  876. \end{frame}
  877. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
  878. \begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ results}
  879. \begin{minipage}{\textwidth}
  880. \begin{columns}
  881. \column{2.5in}
  882. \includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5e.pdf}\\
  883. \includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5f.pdf}
  884. \column{2.5in}
  885. \includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5g.pdf}\\
  886. \includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5h.pdf}
  887. \end{columns}
  888. \end{minipage}
  889. \vspace*{2.1cm}
  890. \end{frame}
  891. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  892. \begin{frame}{Results in $\PB \to \PKstar \Pmu \Pmu$}
  893. \begin{minipage}{\textwidth}
  894. \begin{center}
  895. \includegraphics[angle=-90,width=0.65\textwidth]{images/Fig17.pdf}\\
  896. \end{center}
  897.  
  898. \begin{itemize}
  899. \item Tension with $3~\invfb$ gets confirmed!
  900. \item The two bins deviate both in $2.8~\sigma$ from SM prediction.
  901. \item Result compatible with previous result.
  902. \end{itemize}
  903.  
  904.  
  905. \end{minipage}
  906. \vspace*{2.1cm}
  907. \end{frame}
  908.  
  909. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  910. \begin{frame}{Branching fraction measurements of $\PB \to \PKstar^{\pm} \Pmu \Pmu$}
  911. {~}
  912. \includegraphics[width=0.5\textwidth]{images/ksmumu_BF.png}
  913. \includegraphics[width=0.5\textwidth]{images/kmumu_BF.png}
  914.  
  915. \begin{center}
  916. \begin{columns}
  917.  
  918. \column{0.4\textwidth}
  919. \begin{itemize}
  920. \item Despite large theoretical errors the results are consistently smaller then SM prediction.
  921. \end{itemize}
  922. \column{0.6\textwidth}
  923. \includegraphics[width=0.87\textwidth]{images/bukst_BF.png}
  924.  
  925.  
  926. \end{columns}
  927.  
  928.  
  929. \end{center}
  930. \vspace*{2.1cm}
  931. \end{frame}
  932.  
  933. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  934.  
  935.  
  936.  
  937.  
  938. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  939. \begin{frame}{Branching fraction measurements of $\PBs \to \Pphi \Pmu \Pmu$}
  940. {~}
  941. \begin{minipage}{\textwidth}
  942. \begin{center}
  943. \includegraphics[height=4cm]{images/bs2phipi.png}
  944. \includegraphics[height=4cm]{images/BsSel.png}
  945. \end{center}
  946.  
  947. \begin{itemize}
  948. \item Recent LHCb measurement, \href{https://cds.cern.ch/record/2029820/files/JHEP09-179.pdf}{{\color{blue}{JHEPP09 (2015) 179}}}.
  949. \item Suppressed by $\frac{f_s}{f_d}$.
  950. \item Cleaner because of narrow $\Pphi$ resonance.
  951. \item $3.3~\sigma$ deviation in SM in the $1-6\GeV^2$ bin.
  952. \item Angular part in agreement with SM ($S_5$ is not accessible).
  953. \end{itemize}
  954.  
  955.  
  956. \end{minipage}
  957. \vspace*{2.1cm}
  958. \end{frame}
  959.  
  960.  
  961. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  962. \begin{frame}{Branching fraction measurements of $\PLambdab \to \PLambda \Pmu \Pmu$}
  963. {~}
  964. \begin{minipage}{\textwidth}
  965.  
  966. \begin{center}
  967. \only<1>{
  968. \includegraphics[width=0.65\textwidth]{images/Lb_BR.png}
  969. }
  970. \only<2>{
  971. \includegraphics[width=0.45\textwidth]{images/Lblow.png}
  972. \includegraphics[width=0.45\textwidth]{images/Lbhigh.png}
  973.  
  974. }
  975.  
  976.  
  977. \end{center}
  978.  
  979.  
  980. \begin{itemize}
  981. \item This years LHCb measurement \href{http://arxiv.org/abs/1503.07138}{{\color{blue}{JHEP 06 (2015) 115}}}.
  982. \item In total $\sim 300$ candidates in data set.
  983. \item Decay not present in the low $q^2$.
  984.  
  985. \end{itemize}
  986.  
  987.  
  988.  
  989. \end{minipage}
  990. \vspace*{2.1cm}
  991. \end{frame}
  992.  
  993.  
  994. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  995.  
  996. \begin{frame}{Angular analysis of $\PLambdab \to \PLambda \Pmu \Pmu$}
  997. {~}
  998. \begin{minipage}{\textwidth}
  999.  
  1000. \begin{itemize}
  1001. \item For the bins in which we have $>3~\sigma$ significance the forward backward asymmetry for the hadronic and leptonic system.
  1002. \end{itemize}
  1003. \begin{center}
  1004. \includegraphics[width=0.9\textwidth]{{images/AFB_Lb}.png}
  1005. \end{center}
  1006. \begin{itemize}
  1007. \item $A_{FB}^H$ is in good agreement with SM.
  1008. \item $A_{FB}^{\ell}$ always in above SM prediction.
  1009. \end{itemize}
  1010.  
  1011.  
  1012. \end{minipage}
  1013. \vspace*{2.1cm}
  1014. \end{frame}
  1015.  
  1016.  
  1017.  
  1018.  
  1019. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1020. \begin{frame}{Lepton universality test}
  1021. {~}
  1022. \begin{minipage}{\textwidth}
  1023. \begin{columns}
  1024. \column{3.0in}
  1025. \begin{itemize}
  1026. \item If $\PZprime$ is responsible for the $P'_5$ anomaly, does it couple equally to all flavours?
  1027. \includegraphics[width=0.9\textwidth]{images/uni2.png}
  1028. \item Challenging analysis due to bremsstrahlung.
  1029. \item Migration of events modeled by MC.
  1030. \item Correct for bremsstrahlung.
  1031. \item Take double ratio with $\PBplus \to \PJpsi \PKplus$ to cancel systematics.
  1032. \item In $3\invfb$, LHCb measures $R_K=0.745^{+0.090}_{-0.074}(stat.)^{+0.036}_{-0.036}(syst.)$
  1033. \item Consistent with SM at $2.6\sigma$.
  1034.  
  1035. \end{itemize}
  1036. \column{2.0in}
  1037. \includegraphics[width=0.99\textwidth]{images/RK.png}\\
  1038. \begin{itemize}
  1039. \item \href{http://arxiv.org/abs/1406.6482}{{\color{blue}{Phys. Rev. Lett. 113, 151601 (2014)}}}.
  1040. \end{itemize}
  1041. \end{columns}
  1042.  
  1043.  
  1044.  
  1045. \end{minipage}
  1046. \vspace*{2.1cm}
  1047. \end{frame}
  1048.  
  1049.  
  1050.  
  1051.  
  1052. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1053. \begin{frame}{Angular analysis of $\PBzero \to \PKstar \Pe \Pe$}
  1054. {~}
  1055. \only<1>{
  1056. \begin{minipage}{\textwidth}
  1057. \begin{itemize}
  1058. \item With the full data set ($3\invfb$) we performed angular analysis in $0.0004 < q^2 <1~\GeV^2$, \href{http://arxiv.org/abs/1503.07138}{{\color{blue}{JHEP 04 (2015) 064}}}.
  1059. \item Electrons channels are extremely challenging experimentally:
  1060. \begin{itemize}
  1061. \item Bremsstrahlung.
  1062. \item Trigger efficiencies.
  1063. \end{itemize}
  1064. \item Determine the angular observables: $\FL$, $\ATD$, $\ATRe$, $\ATIm$:
  1065. \end{itemize}
  1066. \begin{equation}
  1067. \label{eq:physPars}
  1068. \begin{split}
  1069. \FL &=\frac{|A_0|^2}{|A_0|^2+|A_{||}|^2 + |A_\perp|^2}\\
  1070. \ATD &= \frac{|A_\perp|^2-|A_{||}|^2}{|A_\perp|^2+|A_{||}|^2}\\
  1071. \ATRe &= \frac{2\Real(A_{||L}A^*_{\perp L} + A_{||R}A^*_{\perp R})}{|A_{||}|^2 + |A_\perp|^2}\\
  1072. \ATIm &= \frac{2\Imag(A_{||L}A^*_{\perp L} + A_{||R}A^*_{\perp R})}{|A_{||}|^2 + |A_\perp|^2},
  1073. \end{split}
  1074. \end{equation}
  1075.  
  1076. \end{minipage}
  1077. }
  1078. \only<2>{
  1079. \begin{center}
  1080. \includegraphics[width=0.5\textwidth]{images/Kstee.png}\\
  1081. \end{center}
  1082. \begin{itemize}
  1083. \item Results in full agreement with the SM.
  1084. \item Similar strength on $C_7$ Wilson coefficient as from $\Pbeauty \to \Pstrange \Pphoton$ decays.
  1085. \end{itemize}
  1086.  
  1087. \begin{center}
  1088. \includegraphics[width=0.9\textwidth]{images/Kstee2.png}
  1089. \end{center}
  1090.  
  1091. }
  1092. \vspace*{2.1cm}
  1093. \end{frame}
  1094.  
  1095.  
  1096.  
  1097. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1098. \begin{frame}{Theory implications}
  1099. {~}
  1100. \begin{minipage}{\textwidth}
  1101.  
  1102. \begin{itemize}
  1103. \item A preliminary fit prepared by \texttt{S. Descotes-Genon, L. Hofer, J. Matias, J. Virto}, presented in \href{http://arxiv.org/abs/1510.04239}{\color{blue}{arXiv::1510.04239}}
  1104. \item Took into the fit:
  1105. \begin{itemize}
  1106. \item $\mathcal{B} ( \PB \to X_s \Pphoton) = (3.36 \pm 0.23) \times 10^{-4} $, Misiak et. al. 2015.
  1107. \item $\mathcal{B} ( \PB \to\Pmu \Pmu)$, theory: Bobeth et al 2013, experiment: LHCb+CMS average (2015)
  1108. \item $\mathcal{B} ( \PB \to X_s \Pmu \Pmu$), Huber et al 2015
  1109. \item $\mathcal{B} ( \PB \to \PK \Pmu \Pmu$),Bouchard et al 2013, 2015
  1110. \item $\PB_{(s)} \to \PKstar(\Pphi) \Pmu \Pmu$, Horgan et al 2013
  1111. \item $\PB \to \PK \Pe \Pe$, $\PB \to \PKstar \Pe \Pe$ and $R_k$.
  1112. \end{itemize}
  1113. %\item Overall there is $>4~\sigma$ discrepancy wrt. SM.
  1114. \end{itemize}
  1115.  
  1116.  
  1117.  
  1118.  
  1119.  
  1120. \end{minipage}
  1121. \vspace*{2.1cm}
  1122. \end{frame}
  1123. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1124. \begin{frame}{Theory implications}
  1125. {~}
  1126. \begin{minipage}{\textwidth}
  1127.  
  1128. \begin{itemize}
  1129. \item A preliminary fit prepared by \texttt{S. Descotes-Genon, L. Hofer, J. Matias, J. Virto}, presented in \href{http://arxiv.org/abs/1510.04239}{\color{blue}{arXiv::1510.04239}}
  1130. \item The data can be explained by modifying the $C_9$ Wilson coefficient.
  1131. \item Overall there is around $>4.~\sigma$ discrepancy wrt. SM.
  1132. \end{itemize}
  1133. \includegraphics[width=0.9\textwidth]{images/C9.png}
  1134.  
  1135.  
  1136.  
  1137.  
  1138. \end{minipage}
  1139. \vspace*{2.1cm}
  1140. \end{frame}
  1141.  
  1142.  
  1143.  
  1144. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1145. \begin{frame}{If not NP?}
  1146. {~}
  1147. \begin{minipage}{\textwidth}
  1148. \begin{itemize}
  1149. \item We are not there yet!
  1150. \item There might be something not taken into account in the theory.
  1151. \item Resonances ($\PJpsi$, $\Ppsi(2S)$) tails can mimic NP effects.
  1152. \item There might be some non factorizable QCD corrections.\\
  1153. '' However, the central value of this effect would have to be significantly larger than expected on the basis of existing estimates'' \texttt{D.Straub}, \href{http://arxiv.org/abs/1503.06199}{ {\color{blue}{arXiv::1503.06199}}}
  1154. .
  1155. \end{itemize}
  1156. \only<1>{
  1157. \includegraphics[width=0.9\textwidth]{images/charmloop.png}
  1158. }
  1159. \only<2>{
  1160. \begin{center}
  1161. \includegraphics[width=0.6\textwidth]{images/charmloop2.png}
  1162. \end{center}
  1163. }
  1164.  
  1165. \end{minipage}
  1166. \vspace*{2.1cm}
  1167. \end{frame}
  1168.  
  1169. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1170. \begin{frame}{There is more!}
  1171. {~}
  1172. \begin{minipage}{\textwidth}
  1173.  
  1174. \begin{itemize}
  1175. \item There is one other LUV decay recently measured by LHCb.
  1176. \item $R(\PDstar)=\dfrac{\mathcal{B}(\PB \to \PDstar \Ptau \Pnu)}{\mathcal{B}(\PB \to \PDstar \Pmu \Pnu)}$
  1177. \item Clean SM prediction: $R(\PDstar)=0.252(3)$, PRD 85 094025 (2012)
  1178. \item LHCb result: $R(\PDstar)= 0.336 \pm 0.027 \pm 0.030$, HFAG average: $R(\PDstar)=0.322 \pm 0.022$
  1179. \item $3.9~\sigma$ discrepancy wrt. SM.
  1180. \end{itemize}
  1181.  
  1182. \begin{center}
  1183.  
  1184. \includegraphics[width=0.52\textwidth]{images/RDstar.png}
  1185.  
  1186. \end{center}
  1187. \end{minipage}
  1188. \vspace*{2.1cm}
  1189. \end{frame}
  1190.  
  1191. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1192. \begin{frame}{Conclusions}
  1193. {~}
  1194. \begin{minipage}{\textwidth}
  1195. \begin{itemize}
  1196. \item Clear tensions wrt. SM predictions!
  1197. \item Measurements cluster in the same direction.
  1198. \item We are not opening the champagne yet!
  1199. \item Still need improvement both on theory and experimental side.
  1200. \item Time will tell if this is QCD+fluctuations or new Physics:
  1201. \end{itemize}
  1202. \pause
  1203. ''... when you have eliminated all the\\
  1204. Standard Model explanations, whatever remains,\\
  1205. however improbable, must be New Physics.''\\
  1206. prof. Joaquim Matias
  1207.  
  1208. \end{minipage}
  1209. \vspace*{2.1cm}
  1210. \end{frame}
  1211.  
  1212.  
  1213. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1214. \begin{frame}
  1215. {~}
  1216. \begin{minipage}{\textwidth}
  1217. \begin{center}
  1218. \begin{LARGE}
  1219. Thank you for the attention!
  1220. \end{LARGE}
  1221. \includegraphics[width=0.8\textwidth]{images/Joke.jpg}
  1222.  
  1223. \end{center}
  1224.  
  1225.  
  1226.  
  1227. \end{minipage}
  1228. \vspace*{2.1cm}
  1229. \end{frame}
  1230.  
  1231.  
  1232.  
  1233. \backupbegin
  1234.  
  1235. \begin{frame}\frametitle{Backup}
  1236. \topline
  1237.  
  1238. \end{frame}
  1239.  
  1240. \backupend
  1241.  
  1242.  
  1243.  
  1244.  
  1245. \begin{frame}{Theory implications}
  1246. {~}
  1247. \begin{minipage}{\textwidth}
  1248.  
  1249. \includegraphics[height=0.9\textheight]{images/table.png}
  1250.  
  1251.  
  1252. \end{minipage}
  1253. \vspace*{2.1cm}
  1254. \end{frame}
  1255.  
  1256.  
  1257.  
  1258. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1259. \begin{frame}{If not NP?}
  1260. {~}
  1261. \begin{minipage}{\textwidth}
  1262. \begin{itemize}
  1263. \item How about our clean $P_i$ observables?
  1264. \item The QCD cancel as mentioned only at leading order.
  1265. \item Comparison to normal observables with the optimised ones.
  1266. \end{itemize}
  1267. \includegraphics[width=0.9\textwidth]{images/C9_S_P.png}
  1268.  
  1269.  
  1270. \end{minipage}
  1271. \vspace*{2.1cm}
  1272. \end{frame}
  1273.  
  1274. \end{document}