- \documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}
-
- \usepackage[english]{babel}
- \usepackage{polski}
-
-
- \usetheme[
- bullet=circle, % Other option: square
- bigpagenumber, % circled page number on lower right
- topline=true, % colored bar at the top of the frame
- shadow=false, % Shading for beamer blocks
- watermark=BG_lower, % png file for the watermark
- ]{Flip}
-
- %\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}
-
-
- \usepackage[lf]{berenis}
- \usepackage[LY1]{fontenc}
- \usepackage[utf8]{inputenc}
-
- \usepackage{emerald}
- \usefonttheme{professionalfonts}
- \usepackage[no-math]{fontspec}
- \defaultfontfeatures{Mapping=tex-text} % This seems to be important for mapping glyphs properly
-
- \setmainfont{Gillius ADF} % Beamer ignores "main font" in favor of sans font
- \setsansfont{Gillius ADF} % This is the font that beamer will use by default
- % \setmainfont{Gill Sans Light} % Prettier, but harder to read
-
- \setbeamerfont{title}{family=\fontspec{Gillius ADF}}
-
- \input t1augie.fd
-
- %\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
- %\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
- % \newcommand{\handwriting}{} % If you prefer no special handwriting font or don't have augie
-
- %% Gill Sans doesn't look very nice when boldfaced
- %% This is a hack to use Helvetica instead
- %% Usage: \textbf{\forbold some stuff}
- %\newcommand{\forbold}{\fontspec{Arial}}
-
- \usepackage{graphicx}
- \usepackage[export]{adjustbox}
-
- \usepackage{amsmath}
- \usepackage{amsfonts}
- \usepackage{amssymb}
- \usepackage{bm}
- \usepackage{colortbl}
- \usepackage{mathrsfs} % For Weinberg-esque letters
- \usepackage{cancel} % For "SUSY-breaking" symbol
- \usepackage{slashed} % for slashed characters in math mode
- \usepackage{bbm} % for \mathbbm{1} (unit matrix)
- \usepackage{amsthm} % For theorem environment
- \usepackage{multirow} % For multi row cells in table
- \usepackage{arydshln} % For dashed lines in arrays and tables
- \usepackage{siunitx}
- \usepackage{xhfill}
- \usepackage{grffile}
- \usepackage{textpos}
- \usepackage{subfigure}
- \usepackage{tikz}
-
- %\usepackage{hepparticles}
- \usepackage[italic]{hepparticles}
-
- \usepackage{hepnicenames}
-
- % Drawing a line
- \tikzstyle{lw} = [line width=20pt]
- \newcommand{\topline}{%
- \tikz[remember picture,overlay] {%
- \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
- -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}
-
-
-
- % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
- \usepackage{tikzfeynman} % For Feynman diagrams
- \usetikzlibrary{arrows,shapes}
- \usetikzlibrary{trees}
- \usetikzlibrary{matrix,arrows} % For commutative diagram
- % http://www.felixl.de/commu.pdf
- \usetikzlibrary{positioning} % For "above of=" commands
- \usetikzlibrary{calc,through} % For coordinates
- \usetikzlibrary{decorations.pathreplacing} % For curly braces
- % http://www.math.ucla.edu/~getreuer/tikz.html
- \usepackage{pgffor} % For repeating patterns
-
- \usetikzlibrary{decorations.pathmorphing} % For Feynman Diagrams
- \usetikzlibrary{decorations.markings}
- \tikzset{
- % >=stealth', %% Uncomment for more conventional arrows
- vector/.style={decorate, decoration={snake}, draw},
- provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
- antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
- fermion/.style={draw=gray, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
- fermionbar/.style={draw=gray, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
- fermionnoarrow/.style={draw=gray},
- gluon/.style={decorate, draw=black,
- decoration={coil,amplitude=4pt, segment length=5pt}},
- scalar/.style={dashed,draw=black, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
- scalarbar/.style={dashed,draw=black, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
- scalarnoarrow/.style={dashed,draw=black},
- electron/.style={draw=black, postaction={decorate},
- decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
- bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
- }
-
- % TIKZ - for block diagrams,
- % from http://www.texample.net/tikz/examples/control-system-principles/
- % \usetikzlibrary{shapes,arrows}
- \tikzstyle{block} = [draw, rectangle,
- minimum height=3em, minimum width=6em]
-
-
-
-
- \usetikzlibrary{backgrounds}
- \usetikzlibrary{mindmap,trees} % For mind map
- \newcommand{\degree}{\ensuremath{^\circ}}
- \newcommand{\E}{\mathrm{E}}
- \newcommand{\Var}{\mathrm{Var}}
- \newcommand{\Cov}{\mathrm{Cov}}
- \newcommand\Ts{\rule{0pt}{2.6ex}} % Top strut
- \newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut
-
- \graphicspath{{images/}} % Put all images in this directory. Avoids clutter.
-
- % SOME COMMANDS THAT I FIND HANDY
- % \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
- \newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
- \newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
- \newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
- \newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
- \newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
- %% "\alert" is already a beamer pre-defined
- \newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%
-
- \def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}
-
- \usepackage{gmp}
- \usepackage[final]{feynmp-auto}
-
- \usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
- \bibliography{bib}
- \setbeamertemplate{bibliography item}[text]
-
- \makeatletter\let\frametextheight\beamer@frametextheight\makeatother
-
- % suppress frame numbering for backup slides
- % you always need the appendix for this!
- \newcommand{\backupbegin}{
- \newcounter{framenumberappendix}
- \setcounter{framenumberappendix}{\value{framenumber}}
- }
- \newcommand{\backupend}{
- \addtocounter{framenumberappendix}{-\value{framenumber}}
- \addtocounter{framenumber}{\value{framenumberappendix}}
- }
-
-
- \definecolor{links}{HTML}{2A1B81}
- %\hypersetup{colorlinks,linkcolor=,urlcolor=links}
-
- % For shapo's formulas:
- \def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
- \def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
- \newcommand{\lsim}{\mathop{\lsi}}
- \newcommand{\gsim}{\mathop{\gsi}}
- \newcommand{\wt}{\widetilde}
- %\newcommand{\ol}{\overline}
- \newcommand{\Tr}{\rm{Tr}}
- \newcommand{\tr}{\rm{tr}}
- \newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
- \newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
- \newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
- \newcommand{\eV}{\rm{eV}}
- \newcommand{\keV}{\rm{keV}}
- \newcommand{\GeV}{\rm{GeV}}
- \newcommand{\MeV}{\rm{MeV}}
- \newcommand{\im}{\rm{Im}}
- \newcommand{\re}{{\rm Re}}
- \newcommand{\invfb}{\rm{fb^{-1}}}
- \newcommand{\fixme}{\rm{{\color{red}{FIXME!}}}}
- \newcommand{\thetal}{\theta_l}
- \newcommand{\thetak}{\theta_k}
- \newcommand{\nn}{\nonumber}
- \newcommand{\eq}[1]{\begin{equation} #1 \end{equation}}
- %\newcommand{\eqn}[1]{\begin{displaymath} #1 \end{displaymath}}
- \newcommand{\eqa}[1]{\begin{eqnarray} #1 \end{eqnarray}}
- \newcommand{\apeL}{{A_\perp^L}}
- \newcommand{\apeR}{{A_\perp^R}}
- \newcommand{\apeLR}{{A_\perp^{L,R}}}
- \newcommand{\apaL}{{A_\|^L}}
- \newcommand{\apaR}{{A_\|^R}}
- \newcommand{\apaLR}{{A_\|^{L,R}}}
- \newcommand{\azeL}{{A_0^L}}
- \newcommand{\azeR}{{A_0^R}}
- \newcommand{\azeLR}{{A_0^{L,R}}}
- \newcommand{\Real}{\ensuremath{\mathcal{R}e}\xspace}
- \newcommand{\Imag}{\ensuremath{\mathcal{I}m}\xspace}
-
- \renewcommand{\C}[1]{{\cal C}_{#1}}
- \newcommand{\Ceff}[1]{{\cal C}^{\rm eff}_{#1}}
- \newcommand{\Cpeff}[1]{{\cal C}^{\rm eff\prime}_{#1}}
- \newcommand{\Cp}[1]{{\cal C}^{\prime}_{#1}}
- \def\FL {\ensuremath{F_{\mathrm{L}}}\xspace}
- \def\ATDPH {\ensuremath{A_{\mathrm{T,PR}}^{(2)}}\xspace}
- \def\ATImPH {\ensuremath{A_{\mathrm{T,PR}}^{\mathrm{Im}}}\xspace}
- \def\ATRePH {\ensuremath{A_{\mathrm{T,PR}}^{\mathrm{Re}}}\xspace}
- \def\FLPH {\ensuremath{F_{\mathrm{L,PR}}}\xspace}
- \def\ATDKG {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{(2)}}\xspace}
- \def\ATImKG {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{\mathrm{Im}}}\xspace}
- \def\ATReKG {\ensuremath{A_{\mathrm{T,\Kstarz \gamma}}^{\mathrm{Re}}}\xspace}
- \def\FLKG {\ensuremath{F_{\mathrm{L,\Kstarz \gamma}}}\xspace}
- \def\ATD {\ensuremath{A_{\mathrm{T}}^{(2)}}\xspace}
- \def\ATIm {\ensuremath{A_{\mathrm{T}}^{\mathrm{Im}}}\xspace}
- \def\ATRe {\ensuremath{A_{\mathrm{T}}^{\mathrm{Re}}}\xspace}
-
-
-
- \newcommand{\disp}{\displaystyle}
- \def\be{\begin{equation}}
- \def\ee{\end{equation}}
- \def\ba{\begin{eqnarray}}
- \def\ea{\end{eqnarray}}
- \def\d{\partial}
- \def\l{\left(}
- \def\r{\right)}
- \def\la{\langle}
- \def\ra{\rangle}
- \def\e{{\rm e}}
- \def\Br{{\rm Br}}
-
-
-
- \author{ {\fontspec{Trebuchet MS}Marcin Chrz\k{a}szcz} (Universit\"{a}t Z\"{u}rich, IFJ PAN)}
- \institute{UZH, IFJ PAN}
- \title[Anomalies in Flavour physics]{Anomalies in Flavour physics}
- \date{25 September 2014}
-
-
- \begin{document}
- \tikzstyle{every picture}+=[remember picture]
-
-
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- {
- \setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
- \begin{frame}[c]%{\phantom{title page}}
- \begin{center}
- \begin{center}
- \begin{columns}
- \begin{column}{0.75\textwidth}
- \flushright\fontspec{Trebuchet MS}\bfseries \LARGE {Anomalies in Flavour physics}
- \end{column}
- \begin{column}{0.02\textwidth}
- {~}
- \end{column}
- \begin{column}{0.23\textwidth}
- % \hspace*{-1.cm}
- \vspace*{-3mm}
- \includegraphics[width=0.6\textwidth]{lhcb-logo}
- \end{column}
-
- \end{columns}
- \end{center}
- \quad
- \vspace{3em}
- \begin{columns}
- \begin{column}{0.44\textwidth}
- \flushright \vspace{-1.8em} {\fontspec{Trebuchet MS} \Large Marcin Chrząszcz\\\vspace{-0.1em}\small \href{mailto:mchrzasz@cern.ch}{mchrzasz@cern.ch}}
-
- \end{column}
- \begin{column}{0.53\textwidth}
- \includegraphics[height=1.3cm]{uzh-transp}{~}{~}
- \includegraphics[height=1.1cm]{ifj.png}
- \end{column}
- \end{columns}
-
- \vspace{1em}
- \footnotesize\textcolor{gray}{Universit\"{a}t Z\"{u}rich, \\ Institute of Nuclear Physics, Polish Academy of Science}\normalsize\\
- \vspace{0.5em}
-
- \textcolor{normal text.fg!50!Comment}{$5^{th}$ KEK Flavour Factory Workshop \\October 26-27,\\ Tokyo 2015}
- \end{center}
- \end{frame}
- }
-
-
-
-
- \iffalse
-
- \begin{frame}{Outline}
-
- \begin{minipage}{\textwidth}
-
- \begin{enumerate}
- \item Why flavour is important.
- \item $\Pbeauty \to \Pstrange \ell \ell$ theory in a nutshell.
- \item LHCb measurements of $\Pbeauty \to \Pstrange \ell \ell$.
- \item Global fit to $\Pbeauty \to \Pstrange \ell \ell$ measurements.
- \item Conclusions.
- \end{enumerate}
-
-
- \end{minipage}
- \vspace*{2.cm}
- \end{frame}
-
- \fi
-
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{Why rare decays?}
- \begin{columns}
- \column{4in}
- \begin{itemize}
- \item In SM allows only the charged interactions to change flavour.
- \begin{itemize}
- \item Other interactions are flavour conserving.
- \end{itemize}
- \item One can escape this constrain and produce $\Pbottom \to \Pstrange$ and $\Pbottom \to \Pdown$ at loop level.
- \begin{itemize}
- \item This kind of processes are suppressed in SM $\to$~Rare decays.
- \item New Physics can enter in the loops.
- \end{itemize}
- \end{itemize}
- \begin{center}
- \includegraphics[scale=0.3]{images/lupa.png}
- \includegraphics[scale=0.3]{images/example.png}
- \end{center}
- \column{1.5in}
- \includegraphics[width=0.61\textwidth]{images/couplings.png}
- \end{columns}
-
- \end{frame}
-
-
- \begin{frame}\frametitle{Tools}
- \begin{itemize}
- \item \textbf{Operator Product Expansion and Effective Field Theory}
- \end{itemize}
- \begin{columns}
- \column{0.1in}{~}
- \column{3.2in}
- \begin{align*}
- H_{eff} = - \dfrac{4G_f}{\sqrt{2}} V V^{\prime \ast}\ \sum_i \left[\underbrace{C_i(\mu)O_i(\mu)}_\text{left-handed} +\underbrace{C'_i(\mu)O'_i(\mu)}_\text{right-handed}\right],
- \end{align*}
-
- \column{2in}
- \begin{tiny}
- \begin{description}
- \item[i=1,2] Tree
- \item[i=3-6,8] Gluon penguin
- \item[i=7] Photon penguin
- \item[i=9.10] EW penguin
- \item[i=S] Scalar penguin
- \item[i=P] Pseudoscalar penguin
- \end{description}
-
- \end{tiny}
- \end{columns}
- where $C_i$ are the Wilson coefficients and $O_i$ are the corresponding effective operators.
- \begin{center}
- \includegraphics[width=0.85\textwidth,height=3cm]{images/all.png}
-
- \end{center}
-
-
- \end{frame}
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- \begin{frame}
- \only<1>{\frametitle{LHCb detector - tracking}
- \begin{columns}
- \column{3in}
- \includegraphics[width=0.9\textwidth]{images/1050px-Lhcbview.jpg}
-
- \column{2in}
- \includegraphics[width=0.95\textwidth]{images/sketch.png}
- \end{columns}
- \begin{itemize}
- \item Excellent Impact Parameter (IP) resolution ($20~\rm \mu m$).\\
- $\Rightarrow$ Identify secondary vertices from heavy flavour decays
- \item Proper time resolution $\sim~40~\rm fs$.\\
- $\Rightarrow$ Good separation of primary and secondary vertices.
- \item Excellent momentum ($\delta p/p \sim 0.4 - 0.6\%$) and inv. mass resolution.\\
- $\Rightarrow$ Low combinatorial background.
-
- \end{itemize}
-
-
- }
-
- \only<2>{\frametitle{LHCb detector - particle identification}
- \begin{columns}
- \column{3in}
- \includegraphics[width=0.9\textwidth]{images/1050px-Lhcbview.jpg}
-
- \column{2in}
- \includegraphics[width=0.95\textwidth]{images/cher.png}
- \end{columns}
- \begin{itemize}
- \item Excellent Muon identification $\epsilon_{\mu \to \mu} \sim 97\%$, $\epsilon_{\pi \to \mu} \sim 1-3\%$
- \item Good $\PK-\Ppi$ separation via RICH detectors, $\epsilon_{\PK \to \PK} \sim 95\%$, $\epsilon_{\Ppi \to \PK} \sim 5\%$.\\
- $\Rightarrow$ Reject peaking backgrounds.
- \item High trigger efficiencies, low momentum thresholds.
- Muons: $p_T > 1.76 \GeV$ at L0, $p_T > 1.0 \GeV$ at HLT1,\\
- $B \to \PJpsi X $: Trigger $\sim 90\%$.
-
- \end{itemize}
-
-
- }
-
-
- \end{frame}
-
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}{Recent measurements}
- {~}
- \only<1>{
-
- \begin{minipage}{\textwidth}
-
-
- \begin{columns}
-
- \column{0.5\textwidth}
- $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{Branching fractions:}}
- \begin{description}
- \item [$\PB^{0,\pm} \to \PK^{0,\pm} \Pmuon \APmuon$] {~}{~}LHCb, Mar 14
- \item [$\PB^{0} \to \PKstar \Pmuon \APmuon$] {~}{~}CMS, Jul 15
- \item [$\PBs \to \Pphi \Pmuon \APmuon$] {~}{~}{~}LHCb, Jun 15
- \item [$\PB^{\pm} \to \Ppi^{\pm} \Pmuon \APmuon$] {~}LHCb, Sep 15
- \item [$\PLambdab \to \PLambda \Pmuon \APmuon$] {~}{~}{~}{~}LHCb, Mar 15
- \item [$\PB \to\Pmuon \APmuon$] {~}{~}{~}{~}{~}CMS+LHCb, Jun 15
- \end{description}
-
- $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{CP asymmetry:}}
- \begin{description}
- \item [$\PB^{\pm} \to \Ppi^{\pm} \Pmuon \APmuon$] {~}{~}LHCb, Sep 15
- \end{description}
-
- $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{Isospin asymmetry:}}
- \begin{description}
- \item [$\PB \to \PK \Pmuon \APmuon$] {~}{~}{~}{~}{~}LHCb, Mar 14
- \end{description}
-
-
- \column{0.5\textwidth}
- $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{Lepton Universality:}}
- \begin{description}
- \item [$\PB^{\pm} \to \PK^{\pm} \Plepton \APlepton$] {~}{~}LHCb, Jun 14
- \end{description}
-
-
- $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{Angular:}}
- \begin{description}
- \item [$\PB^{0} \to \PK^{\ast} \Plepton \APlepton$] {~}{~}{~}LHCb, Jan 15
- \item [$\PB^{\pm} \to \PK^{\ast,\pm} \Plepton \APlepton$] BaBar, Aug 15
- \item [$\PBs \to \Pphi \Plepton \APlepton$] {~}{~}{~}LHCb, Jun 15
- \item [$\PLambdab \to \PLambda \Pmuon \APmuon$] {~}{~}LHCb, Mar 15
- \end{description}
-
-
-
-
-
- \end{columns}
-
- \end{minipage}
- }
- \only<2>{
-
- \begin{minipage}{\textwidth}
-
-
- \begin{columns}
-
- \column{0.5\textwidth}
- $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{Branching fractions:}}
- \begin{description}
- \item [{\color{red}{$\PB^{0,\pm} \to \PK^{0,\pm} \Pmuon \APmuon$}}] {~}{~}{\color{red}{LHCb, Mar 14}}
- \item [$\PB^{0} \to \PKstar \Pmuon \APmuon$] {~}{~}CMS, Jul 15
- \item [{\color{red}{$\PBs \to \Pphi \Pmuon \APmuon$}}] {~}{~}{~}{\color{red}{LHCb, Jun 15}}
- \item [$\PB^{\pm} \to \Ppi^{\pm} \Pmuon \APmuon$] {~}LHCb, Sep 15
- \item [$\PLambdab \to \PLambda \Pmuon \APmuon$] {~}{~}{~}{~}LHCb, Mar 15
- \item [{\color{red}{$\PB \to\Pmuon \APmuon$}}] {~}{~}{~}{~}{~}{\color{red}{CMS+LHCb, Jun 15}}
- \end{description}
-
- $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{CP asymmetry:}}
- \begin{description}
- \item [$\PB^{\pm} \to \Ppi^{\pm} \Pmuon \APmuon$] {~}{~}LHCb, Sep 15
- \end{description}
-
- $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{Isospin asymmetry:}}
- \begin{description}
- \item [$\PB \to \PK \Pmuon \APmuon$] {~}{~}{~}{~}{~}LHCb, Mar 14
- \end{description}
-
-
- \column{0.5\textwidth}
- $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{Lepton Universality:}}
- \begin{description}
- \item [{\color{red}{$\PB^{\pm} \to \PK^{\pm} \Plepton \APlepton$}}] {~}{~}{\color{red}{LHCb, Jun 14}}
- \end{description}
-
-
- $\color{JungleGreen}{\Rrightarrow}$ {\color{WildStrawberry}{Angular:}}
- \begin{description}
- \item [{\color{red}{$\PB^{0} \to \PK^{\ast} \Plepton \APlepton$}}] {~}{~}{~}LHCb, Jan 15
- \item [{\color{red}{$\PB^{\pm} \to \PK^{\ast,\pm} \Plepton \APlepton$}}] {\color{red}{BaBar, Aug 15}}
- \item [$\PBs \to \Pphi \Plepton \APlepton$] {~}{~}{~}LHCb, Jun 15
- \item [{\color{red}{$\PLambdab \to \PLambda \Pmuon \APmuon$}}] {~}{~}{\color{red}{LHCb, Mar 15}}
- \end{description}
-
- \begin{alertblock}{}
- $>2~\sigma$ deviations from SM
-
- \end{alertblock}
-
- \end{columns}
-
- \end{minipage}
- }
-
- \vspace*{2.1cm}
- \end{frame}
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}{$\PBzero \to \PKstar \Pmuon \APmuon$ kinematics}
- {~}
- \begin{minipage}{\textwidth}
-
- $\color{JungleGreen}{\Rrightarrow}$ The kinematics of $\PBzero \to \PKstar \Pmuon \APmuon$ decay is described by three angles $\thetal$, $\thetak$, $\phi$ and invariant mass of the dimuon system ($q^2)$.
-
- \only<1>{
- \begin{columns}
- \column{0.5\textwidth}
-
- $\color{JungleGreen}{\Rrightarrow}$ $\cos \thetak$: the angle between the direction of the kaon in the $\PKstar$ ($\overline{\PKstar}$) rest frame and the direction of the $\PKstar$ ($\overline{\PKstar}$) in the $\PBzero$ ($\APBzero$) rest frame.\\
- $\color{JungleGreen}{\Rrightarrow}$ $\cos \thetal$: the angle between the direction of the $\Pmuon$ ($\APmuon$) in the dimuon rest frame and the direction of the dimuon in the $\PBzero$ ($\APBzero$) rest frame.\\
- $\color{JungleGreen}{\Rrightarrow}$ $\phi$: the angle between the plane containing the $\Pmuon$ and $\APmuon$ and the plane containing the kaon and pion from the $\PKstar$.
-
-
-
- \column{0.5\textwidth}
- \includegraphics[width=0.95\textwidth]{images/angles.png}
-
- \end{columns}
- }
- \only<2>{
- {\tiny{
- \eqa{\label{dist}
- \frac{d^4\Gamma}{dq^2\,d\!\cos\theta_K\,d\!\cos\theta_l\,d\phi}&=&\frac9{32\pi} \bigg[
- J_{1s} \sin^2\theta_K + J_{1c} \cos^2\theta_K + (J_{2s} \sin^2\theta_K + J_{2c} \cos^2\theta_K) \cos 2\theta_l\nn\\[1.5mm]
- &&\hspace{-2.7cm}+ J_3 \sin^2\theta_K \sin^2\theta_l \cos 2\phi + J_4 \sin 2\theta_K \sin 2\theta_l \cos\phi + J_5 \sin 2\theta_K \sin\theta_l \cos\phi \nn\\[1.5mm]
- &&\hspace{-2.7cm}+ (J_{6s} \sin^2\theta_K + {J_{6c} \cos^2\theta_K}) \cos\theta_l
- + J_7 \sin 2\theta_K \sin\theta_l \sin\phi + J_8 \sin 2\theta_K \sin 2\theta_l \sin\phi \nn\\[1.5mm]
- &&\hspace{-2.7cm}+ J_9 \sin^2\theta_K \sin^2\theta_l \sin 2\phi \bigg]\,,
- \nonumber}
- }}\\{~}\\
- $\color{JungleGreen}{\Rrightarrow}$ This is the most general expression of this kind of decay.\\
- $\color{JungleGreen}{\Rrightarrow}$ The $CP$ averaged angular observables are defined:\\
- \eq{
- S_i = \dfrac{J_i+ \bar{J}_i}{(d \Gamma + d \bar{\Gamma})/dq^2}\nonumber
- }
-
- }
-
- \end{minipage}
- \vspace*{2.1cm}
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}{Transversity amplitudes }
- {~}
- \begin{minipage}{\textwidth}
-
- $\color{JungleGreen}{\Rrightarrow}$ One can link the angular observables to transversity amplitudes
- {\tiny{
- \eqa{
- J_{1s} & = & \frac{(2+\beta_\ell^2)}{4} \left[|\apeL|^2 + |\apaL|^2 +|\apeR|^2 + |\apaR|^2 \right]
- + \frac{4 m_\ell^2}{q^2} \re\left(\apeL\apeR^* + \apaL\apaR^*\right)\,,\nn\\[1mm]
- %
- J_{1c} & = & |\azeL|^2 +|\azeR|^2 + \frac{4m_\ell^2}{q^2} \left[|A_t|^2 + 2\re(\azeL^{}\azeR^*) \right] + \beta_\ell^2\, |A_S|^2 \,,\nn\\[1mm]
- %
- J_{2s} & = & \frac{ \beta_\ell^2}{4}\left[ |\apeL|^2+ |\apaL|^2 + |\apeR|^2+ |\apaR|^2\right],
- \hspace{0.92cm} J_{2c} = - \beta_\ell^2\left[|\azeL|^2 + |\azeR|^2 \right]\,,\nn\\[1mm]
- %
- J_3 & = & \frac{1}{2}\beta_\ell^2\left[ |\apeL|^2 - |\apaL|^2 + |\apeR|^2 - |\apaR|^2\right],
- \qquad J_4 = \frac{1}{\sqrt{2}}\beta_\ell^2\left[\re (\azeL\apaL^* + \azeR\apaR^* )\right],\nn \\[1mm]
- %
- J_5 & = & \sqrt{2}\beta_\ell\,\Big[\re(\azeL\apeL^* - \azeR\apeR^* ) - \frac{m_\ell}{\sqrt{q^2}}\,
- \re(\apaL A_S^*+ \apaR^* A_S) \Big]\,,\nn\\[1mm]
- %
- J_{6s} & = & 2\beta_\ell\left[\re (\apaL\apeL^* - \apaR\apeR^*) \right]\,,
- \hspace{2.25cm} J_{6c} = 4\beta_\ell\, \frac{m_\ell}{\sqrt{q^2}}\, \re (\azeL A_S^*+ \azeR^* A_S)\,,\nn\\[1mm]
- %
- J_7 & = & \sqrt{2} \beta_\ell\, \Big[\im (\azeL\apaL^* - \azeR\apaR^* ) +
- \frac{m_\ell}{\sqrt{q^2}}\, \im (\apeL A_S^* - \apeR^* A_S)) \Big]\,,\nn\\[1mm]
- %
- J_8 & = & \frac{1}{\sqrt{2}}\beta_\ell^2\left[\im(\azeL\apeL^* + \azeR\apeR^*)\right]\,,
- %
- \hspace{1.9cm} J_9 = \beta_\ell^2\left[\im (\apaL^{*}\apeL + \apaR^{*}\apeR)\right] \,,
- \label{Js}\nonumber}
- }}
-
- \end{minipage}
- \vspace*{2.1cm}
- \end{frame}
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}{Link to effective operators}
- {~}
- \begin{minipage}{\textwidth}
- $\color{JungleGreen}{\Rrightarrow}$ So here is where the magic happens. At leading order the amplitudes can be written as:
- {\tiny{
- \eqa{
- \apeLR &=&\sqrt{2} N m_B(1- \hat s)\bigg[ (\Ceff9 + \Cpeff9) \mp (\C{10} + \Cp{10})
- +\frac{2\hat{m}_b}{\hat s} (\Ceff7 + \Cpeff7) \bigg]\xi_{\bot}(E_{K^*}) \nn \\[2mm]
- \apaLR &=& -\sqrt{2} N m_B (1-\hat s)\bigg[(\Ceff9 - \Cpeff9) \mp (\C{10} - \Cp{10})
- +\frac{2\hat{m}_b}{\hat s}(\Ceff7 - \Cpeff7) \bigg] \xi_{\bot}(E_{K^*}) \nn \\[2mm]
- \azeLR &=& -\frac{N m_B (1-\hat s)^2}{2 \hat{m}_{K^*} \sqrt{\hat s}} \bigg[ (\Ceff9 - \Cpeff9) \mp (\C{10} - \Cp{10}) + 2\hat{m}_b (\Ceff7 - \Cpeff7) \bigg]\xi_{\|}(E_{K^*}),
- \label{LargeRecoilAs}\nonumber}
- }}
- where $\hat s = q^2 /m_B^2$, $\hat{m}_i = m_i/m_B$. The $\xi_{\|,\bot }$ are the form factors. \\
- \pause
- $\color{JungleGreen}{\Rrightarrow}$ Now we can construct observables that cancel the $\xi$ form factors at leading order:
- \eq{P_5^{\prime} = \dfrac{J_5+\bar{J}_5}{2\sqrt{-(J_2^c+\bar{J}_2^c)(J_2^s+\bar{J}_2^s)} }\nonumber
- }
-
-
- \end{minipage}
- \vspace*{2.1cm}
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- % symmetries
- \begin{frame}{Symmetries in $\PB \to \PKstar \Pmu \Pmu$}
- {~}
- \begin{minipage}{\textwidth}
- $\color{JungleGreen}{\Rrightarrow}$ We have 12 angular coefficients ($S_i$).\\
- $\color{JungleGreen}{\Rrightarrow}$ There exists 4 symmetry transformations that leave the angular distributions non changed:
- \begin{tiny}
- \eq{
- n_\|=\binom{A_\|^L}{A_\|^{R*}}\ ,\quad
- n_\bot=\binom{A_\bot^L}{-A_\bot^{R*}}\ ,\quad
- n_0=\binom{A_0^L}{A_0^{R*}}\ .\nonumber
- }
- \end{tiny}
- \begin{tiny}
- \eq{
- n_i^{'} = U n_i=
- \left[
- \begin{array}{ll}
- e^{i\phi_L} & 0 \\
- 0 & e^{-i \phi_R}
- \end{array}
- \right]
- \left[
- \begin{array}{rr}
- \cos \theta & -\sin \theta \\
- \sin \theta & \cos \theta
- \end{array}
- \right]
- \left[
- \begin{array}{rr}
- \cosh i \tilde{\theta} & -\sinh i \tilde{\theta} \\
- - \sinh i \tilde{\theta} & \cosh i \tilde{\theta}
- \end{array}
- \right]
- n_i \,.
- \label{symmassless}\nonumber}
- \end{tiny}
- $\color{JungleGreen}{\Rrightarrow}$ Using this symmetries one can show that there are 8 independent observables. The pdf can be wrote as:
- \begin{tiny}
- \begin{align*}
- \left.\frac{1}{{\rm d}(\Gamma+\bar{\Gamma})/{\rm d}q^2}\frac{{\rm d}(\Gamma+\bar{\Gamma})}{{\rm dcos}\thetal\,{\rm dcos}\thetak\,{\rm d}\phi}\right|_{\rm P} =
- \tfrac{9}{32\pi}\bigl[
- &\tfrac{3}{4} (1-{F_{\rm L}})\sin^2\thetak \label{eq:pdfpwave}\\[-0.75em]
- &+ {F_{\rm L}}\cos^2\thetak + \tfrac{1}{4}(1-{F_{\rm L}})\sin^2\thetak\cos 2\thetal\nonumber\\
- &- {F_{\rm L}} \cos^2\thetak\cos 2\thetal + {S_3}\sin^2\thetak \sin^2\thetal \cos 2\phi\nonumber\\
- &+ {S_4} \sin 2\thetak \sin 2\thetal \cos\phi + {S_5}\sin 2\thetak \sin \thetal \cos \phi\nonumber\\
- &+ \tfrac{4}{3} {A_{\rm FB}} \sin^2\thetak \cos\thetal + {S_7} \sin 2\thetak \sin\thetal \sin\phi\nonumber\\
- &+ {S_8} \sin 2\thetak \sin 2\thetal \sin\phi + {S_9}\sin^2\thetak \sin^2\thetal \sin 2\phi \nonumber
- \bigr].
- %\end{split}
- %\bigr],\
- \end{align*}
- \end{tiny}
-
- \end{minipage}
- \vspace*{2.1cm}
- \end{frame}
-
-
-
-
-
-
-
-
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}{LHCb update of the $\PBzero \to \PKstar \Pmuon \APmuon$, Selection}
- {~}
- \begin{minipage}{\textwidth}
- \begin{columns}
-
- \column{0.5\textwidth}
- \begin{itemize}
- \item \href{https://lhcb.web.cern.ch/lhcb/Physics-Results/LHCb-CONF-2015-002.pdf}{{\color{blue}{LHCb-CONF-2015-002}}}
- \item PID, kinematics and isolation variables used in a Boosted Decision Tree (BDT) to reject background.
- \item Reject the regions of $\PJpsi$ and $\Ppsi(2S)$.
- \item Specific vetos for backgrounds: $\PLambdab \to \Pproton \PK \Pmu \Pmu$, $\PBs \to \Pphi \Pmu \Pmu$, etc.
- \item Using k-Fold technique and signal proxy $\PB \to \PJpsi \PKstar$ for training the BDT.
- \item Improved selection allowed for finer binning than the $1\invfb$ analysis.
- \end{itemize}
-
-
- \column{0.5\textwidth}
-
- \includegraphics[width=0.88\textwidth]{images/Fig1.pdf} \\
- \includegraphics[width=0.88\textwidth]{images/fold.png}
-
- \end{columns}
-
-
-
- \end{minipage}
- \vspace*{2.1cm}
- \end{frame}
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}{LHCb update of the $\PBzero \to \PKstar \Pmuon \APmuon$, Selection}
- {~}
- \begin{minipage}{\textwidth}
-
- \begin{itemize}
- \item Signal modelled by a sum of two Crystal-Ball functions.
- \item Shape is defined using $\PB \to \PJpsi \PKstar$ and corrected for $q^2$ dependency.
- \item Combinatorial background modelled by exponent.
- \end{itemize}
-
- \begin{columns}
- \column{0.5\textwidth}
- \begin{itemize}
- \item $\PK \Ppi$ system:
- \begin{itemize}
- \item Rel. Breit Wigner for P-wave
- \item Lass model for the S-wave.
- \item Linear model for background.
- \item Reduced the systematic compared to previous analysis.
- \end{itemize}
- \end{itemize}
-
- \column{0.5\textwidth}
-
- \includegraphics[width=0.88\textwidth]{images/pbkg}
-
- \end{columns}
-
- \begin{large}
- \begin{itemize}
- \item In total we found $2398\pm57$ candidates in the $(0.1,19)~\GeV^2$ $q^2$ region.
- \item $624 \pm 30$ candidates in the theoretically the most interesting $(1.1-6.0)~\GeV^2$ region.
- \end{itemize}
- \end{large}
-
-
-
-
- \end{minipage}
- \vspace*{2.1cm}
- \end{frame}
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}{Detector acceptance}
- {~}
- \begin{minipage}{\textwidth}
- \begin{columns}
-
- \column{0.6\textwidth}
- \begin{itemize}
- \item Detector distorts our angular distribution.
- \item We need to model this effect.
- \item 4D function is used:
- \begin{align*}
- \epsilon (\cos \thetal, \cos \thetak, \phi, q^2) = \\\sum_{ijkl} c_{ijkl} P_i(\cos \thetal) P_j(\cos \thetak ) P_k(\phi) P_l(q^2),
- \end{align*}
- where $P_i$ is the Legendre polynomial of order $i$.
- \item We use up to $4^{th}, 5^{th}, 6^{th}, 5^{th}$ order for the $\cos \thetal, \cos \thetak, \phi, q^2$.
- \end{itemize}
-
-
-
-
- \column{0.4\textwidth}
- \includegraphics[width=0.99\textwidth]{images/det.png}
- \end{columns}
-
-
- \end{minipage}
- \vspace*{2.1cm}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}{Control channel}
- {~}
- \begin{minipage}{\textwidth}
-
-
- \begin{itemize}
- \item We tested our unfolding procedure on $\PB \to \PJpsi \PKstar$.
- \item The result is in perfect agreement with other experiments and our different analysis of this decay.
- \end{itemize}
-
- \begin{columns}
-
- \column{0.5\textwidth}
-
- \includegraphics[width=0.95\textwidth]{images/mlogjpsi.png}
- \column{0.5\textwidth}
- \includegraphics[width=0.95\textwidth]{images/mkpijpsi.png}
-
- \end{columns}
-
-
- \includegraphics[width=0.99\textwidth]{images/angles2.png}
-
-
-
- \end{minipage}
- \vspace*{2.1cm}
- \end{frame}
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
- \begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ results}
- \begin{minipage}{\textwidth}
- \begin{columns}
- \column{2.5in}
- \includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5a.pdf}\\
- \includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5c.pdf}
- \column{2.5in}
- \includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5b.pdf}\\
- \includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5d.pdf}
- \end{columns}
- \end{minipage}
- \vspace*{2.1cm}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
- \begin{frame}\frametitle{$\PBzero \rightarrow \PK^{\ast} \Pmu \Pmu$ results}
- \begin{minipage}{\textwidth}
- \begin{columns}
- \column{2.5in}
- \includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5e.pdf}\\
- \includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5f.pdf}
- \column{2.5in}
- \includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5g.pdf}\\
- \includegraphics[angle=-90,width=0.95\textwidth]{images/Fig5h.pdf}
- \end{columns}
- \end{minipage}
- \vspace*{2.1cm}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}{Results in $\PB \to \PKstar \Pmu \Pmu$}
- \begin{minipage}{\textwidth}
- \begin{center}
- \includegraphics[angle=-90,width=0.65\textwidth]{images/Fig17.pdf}\\
- \end{center}
-
- \begin{itemize}
- \item Tension with $3~\invfb$ gets confirmed!
- \item The two bins deviate both in $2.8~\sigma$ from SM prediction.
- \item Result compatible with previous result.
- \end{itemize}
-
-
- \end{minipage}
- \vspace*{2.1cm}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}{Branching fraction measurements of $\PB \to \PKstar^{\pm} \Pmu \Pmu$}
- {~}
- \includegraphics[width=0.5\textwidth]{images/ksmumu_BF.png}
- \includegraphics[width=0.5\textwidth]{images/kmumu_BF.png}
-
- \begin{center}
- \begin{columns}
-
- \column{0.4\textwidth}
- \begin{itemize}
- \item Despite large theoretical errors the results are consistently smaller then SM prediction.
- \end{itemize}
- \column{0.6\textwidth}
- \includegraphics[width=0.87\textwidth]{images/bukst_BF.png}
-
-
- \end{columns}
-
-
- \end{center}
- \vspace*{2.1cm}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}{Branching fraction measurements of $\PBs \to \Pphi \Pmu \Pmu$}
- {~}
- \begin{minipage}{\textwidth}
- \begin{center}
- \includegraphics[height=4cm]{images/bs2phipi.png}
- \includegraphics[height=4cm]{images/BsSel.png}
- \end{center}
-
- \begin{itemize}
- \item Recent LHCb measurement, \href{https://cds.cern.ch/record/2029820/files/JHEP09-179.pdf}{{\color{blue}{JHEPP09 (2015) 179}}}.
- \item Suppressed by $\frac{f_s}{f_d}$.
- \item Cleaner because of narrow $\Pphi$ resonance.
- \item $3.3~\sigma$ deviation in SM in the $1-6\GeV^2$ bin.
- \item Angular part in agreement with SM ($S_5$ is not accessible).
- \end{itemize}
-
-
- \end{minipage}
- \vspace*{2.1cm}
- \end{frame}
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}{Branching fraction measurements of $\PLambdab \to \PLambda \Pmu \Pmu$}
- {~}
- \begin{minipage}{\textwidth}
-
- \begin{center}
- \only<1>{
- \includegraphics[width=0.65\textwidth]{images/Lb_BR.png}
- }
- \only<2>{
- \includegraphics[width=0.45\textwidth]{images/Lblow.png}
- \includegraphics[width=0.45\textwidth]{images/Lbhigh.png}
-
- }
-
-
- \end{center}
-
-
- \begin{itemize}
- \item This years LHCb measurement \href{http://arxiv.org/abs/1503.07138}{{\color{blue}{JHEP 06 (2015) 115}}}.
- \item In total $\sim 300$ candidates in data set.
- \item Decay not present in the low $q^2$.
-
- \end{itemize}
-
-
-
- \end{minipage}
- \vspace*{2.1cm}
- \end{frame}
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- \begin{frame}{Angular analysis of $\PLambdab \to \PLambda \Pmu \Pmu$}
- {~}
- \begin{minipage}{\textwidth}
-
- \begin{itemize}
- \item For the bins in which we have $>3~\sigma$ significance the forward backward asymmetry for the hadronic and leptonic system.
- \end{itemize}
- \begin{center}
- \includegraphics[width=0.9\textwidth]{{images/AFB_Lb}.png}
- \end{center}
- \begin{itemize}
- \item $A_{FB}^H$ is in good agreement with SM.
- \item $A_{FB}^{\ell}$ always in above SM prediction.
- \end{itemize}
-
-
- \end{minipage}
- \vspace*{2.1cm}
- \end{frame}
-
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}{Lepton universality test}
- {~}
- \begin{minipage}{\textwidth}
- \begin{columns}
- \column{3.0in}
- \begin{itemize}
- \item If $\PZprime$ is responsible for the $P'_5$ anomaly, does it couple equally to all flavours?
- \includegraphics[width=0.9\textwidth]{images/uni2.png}
- \item Challenging analysis due to bremsstrahlung.
- \item Migration of events modeled by MC.
- \item Correct for bremsstrahlung.
- \item Take double ratio with $\PBplus \to \PJpsi \PKplus$ to cancel systematics.
- \item In $3\invfb$, LHCb measures $R_K=0.745^{+0.090}_{-0.074}(stat.)^{+0.036}_{-0.036}(syst.)$
- \item Consistent with SM at $2.6\sigma$.
-
- \end{itemize}
- \column{2.0in}
- \includegraphics[width=0.99\textwidth]{images/RK.png}\\
- \begin{itemize}
- \item \href{http://arxiv.org/abs/1406.6482}{{\color{blue}{Phys. Rev. Lett. 113, 151601 (2014)}}}.
- \end{itemize}
- \end{columns}
-
-
-
- \end{minipage}
- \vspace*{2.1cm}
- \end{frame}
-
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}{Angular analysis of $\PBzero \to \PKstar \Pe \Pe$}
- {~}
- \only<1>{
- \begin{minipage}{\textwidth}
- \begin{itemize}
- \item With the full data set ($3\invfb$) we performed angular analysis in $0.0004 < q^2 <1~\GeV^2$, \href{http://arxiv.org/abs/1503.07138}{{\color{blue}{JHEP 04 (2015) 064}}}.
- \item Electrons channels are extremely challenging experimentally:
- \begin{itemize}
- \item Bremsstrahlung.
- \item Trigger efficiencies.
- \end{itemize}
- \item Determine the angular observables: $\FL$, $\ATD$, $\ATRe$, $\ATIm$:
- \end{itemize}
- \begin{equation}
- \label{eq:physPars}
- \begin{split}
- \FL &=\frac{|A_0|^2}{|A_0|^2+|A_{||}|^2 + |A_\perp|^2}\\
- \ATD &= \frac{|A_\perp|^2-|A_{||}|^2}{|A_\perp|^2+|A_{||}|^2}\\
- \ATRe &= \frac{2\Real(A_{||L}A^*_{\perp L} + A_{||R}A^*_{\perp R})}{|A_{||}|^2 + |A_\perp|^2}\\
- \ATIm &= \frac{2\Imag(A_{||L}A^*_{\perp L} + A_{||R}A^*_{\perp R})}{|A_{||}|^2 + |A_\perp|^2},
- \end{split}
- \end{equation}
-
- \end{minipage}
- }
- \only<2>{
- \begin{center}
- \includegraphics[width=0.5\textwidth]{images/Kstee.png}\\
- \end{center}
- \begin{itemize}
- \item Results in full agreement with the SM.
- \item Similar strength on $C_7$ Wilson coefficient as from $\Pbeauty \to \Pstrange \Pphoton$ decays.
- \end{itemize}
-
- \begin{center}
- \includegraphics[width=0.9\textwidth]{images/Kstee2.png}
- \end{center}
-
- }
- \vspace*{2.1cm}
- \end{frame}
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}{Theory implications}
- {~}
- \begin{minipage}{\textwidth}
-
- \begin{itemize}
- \item A preliminary fit prepared by \texttt{S. Descotes-Genon, L. Hofer, J. Matias, J. Virto}, presented in \href{http://arxiv.org/abs/1510.04239}{\color{blue}{arXiv::1510.04239}}
- \item Took into the fit:
- \begin{itemize}
- \item $\mathcal{B} ( \PB \to X_s \Pphoton) = (3.36 \pm 0.23) \times 10^{-4} $, Misiak et. al. 2015.
- \item $\mathcal{B} ( \PB \to\Pmu \Pmu)$, theory: Bobeth et al 2013, experiment: LHCb+CMS average (2015)
- \item $\mathcal{B} ( \PB \to X_s \Pmu \Pmu$), Huber et al 2015
- \item $\mathcal{B} ( \PB \to \PK \Pmu \Pmu$),Bouchard et al 2013, 2015
- \item $\PB_{(s)} \to \PKstar(\Pphi) \Pmu \Pmu$, Horgan et al 2013
- \item $\PB \to \PK \Pe \Pe$, $\PB \to \PKstar \Pe \Pe$ and $R_k$.
- \end{itemize}
- %\item Overall there is $>4~\sigma$ discrepancy wrt. SM.
- \end{itemize}
-
-
-
-
-
- \end{minipage}
- \vspace*{2.1cm}
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}{Theory implications}
- {~}
- \begin{minipage}{\textwidth}
-
- \begin{itemize}
- \item A preliminary fit prepared by \texttt{S. Descotes-Genon, L. Hofer, J. Matias, J. Virto}, presented in \href{http://arxiv.org/abs/1510.04239}{\color{blue}{arXiv::1510.04239}}
- \item The data can be explained by modifying the $C_9$ Wilson coefficient.
- \item Overall there is around $>4.~\sigma$ discrepancy wrt. SM.
- \end{itemize}
- \includegraphics[width=0.9\textwidth]{images/C9.png}
-
-
-
-
- \end{minipage}
- \vspace*{2.1cm}
- \end{frame}
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}{If not NP?}
- {~}
- \begin{minipage}{\textwidth}
- \begin{itemize}
- \item We are not there yet!
- \item There might be something not taken into account in the theory.
- \item Resonances ($\PJpsi$, $\Ppsi(2S)$) tails can mimic NP effects.
- \item There might be some non factorizable QCD corrections.\\
- '' However, the central value of this effect would have to be significantly larger than expected on the basis of existing estimates'' \texttt{D.Straub}, \href{http://arxiv.org/abs/1503.06199}{ {\color{blue}{arXiv::1503.06199}}}
- .
- \end{itemize}
- \only<1>{
- \includegraphics[width=0.9\textwidth]{images/charmloop.png}
- }
- \only<2>{
- \begin{center}
- \includegraphics[width=0.6\textwidth]{images/charmloop2.png}
- \end{center}
- }
-
- \end{minipage}
- \vspace*{2.1cm}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}{There is more!}
- {~}
- \begin{minipage}{\textwidth}
-
- \begin{itemize}
- \item There is one other LUV decay recently measured by LHCb.
- \item $R(\PDstar)=\dfrac{\mathcal{B}(\PB \to \PDstar \Ptau \Pnu)}{\mathcal{B}(\PB \to \PDstar \Pmu \Pnu)}$
- \item Clean SM prediction: $R(\PDstar)=0.252(3)$, PRD 85 094025 (2012)
- \item LHCb result: $R(\PDstar)= 0.336 \pm 0.027 \pm 0.030$, HFAG average: $R(\PDstar)=0.322 \pm 0.022$
- \item $3.9~\sigma$ discrepancy wrt. SM.
- \end{itemize}
-
- \begin{center}
-
- \includegraphics[width=0.52\textwidth]{images/RDstar.png}
-
- \end{center}
- \end{minipage}
- \vspace*{2.1cm}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}{Conclusions}
- {~}
- \begin{minipage}{\textwidth}
- \begin{itemize}
- \item Clear tensions wrt. SM predictions!
- \item Measurements cluster in the same direction.
- \item We are not opening the champagne yet!
- \item Still need improvement both on theory and experimental side.
- \item Time will tell if this is QCD+fluctuations or new Physics:
- \end{itemize}
- \pause
- ''... when you have eliminated all the\\
- Standard Model explanations, whatever remains,\\
- however improbable, must be New Physics.''\\
- prof. Joaquim Matias
-
- \end{minipage}
- \vspace*{2.1cm}
- \end{frame}
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}
- {~}
- \begin{minipage}{\textwidth}
- \begin{center}
- \begin{LARGE}
- Thank you for the attention!
- \end{LARGE}
- \includegraphics[width=0.8\textwidth]{images/Joke.jpg}
-
- \end{center}
-
-
-
- \end{minipage}
- \vspace*{2.1cm}
- \end{frame}
-
-
-
- \backupbegin
-
- \begin{frame}\frametitle{Backup}
- \topline
-
- \end{frame}
-
- \backupend
-
-
-
-
- \begin{frame}{Theory implications}
- {~}
- \begin{minipage}{\textwidth}
-
- \includegraphics[height=0.9\textheight]{images/table.png}
-
-
- \end{minipage}
- \vspace*{2.1cm}
- \end{frame}
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}{If not NP?}
- {~}
- \begin{minipage}{\textwidth}
- \begin{itemize}
- \item How about our clean $P_i$ observables?
- \item The QCD cancel as mentioned only at leading order.
- \item Comparison to normal observables with the optimised ones.
- \end{itemize}
- \includegraphics[width=0.9\textwidth]{images/C9_S_P.png}
-
-
- \end{minipage}
- \vspace*{2.1cm}
- \end{frame}
-
- \end{document}