- % This program can be redistributed and/or modified under the terms
- % of the GNU Public License, version 3.
- %
- % Seth Brown, Ph.D.
- % sethbrown@drbunsen.org
- %
- % Compiled with XeLaTeX
- % Dependencies:
- % Fontin Sans font (http://www.exljbris.com/fontinsans.fsrtml)
- %
- \documentclass{beamer}
- \usepackage{pgf}
- \usepackage{tikz}
- \usepackage{times}
- \usepackage[T1]{fontenc}
- %\usepackage[mathscr]{eucal}
- %\usepackage{mathptmx}
- %\usepackage{mathrsfs}
- \usepackage{hyperref}
- \usepackage{color}
- \usepackage{graphicx}
- \usepackage{wasysym}
- % \usepackage{pgfpagfes}
- % \setbeameroption{show notes on second screen}
- %\pgfpagesuselayout{4 on 1}[a4paper,border shrink=5mm,landscape]
- \usepackage{xcolor}
- \usepackage{xcolor,multirow}
- %\usepackage[table]{xcolor}
- %\usepackage[dvipsnames]{xcolor}
- %\usepackage{amsfonts}
- %\usepackage{amsmath}
- % \usepackage[amssymb]{SIunits}
- %\usepackage{natbib}
- %\usepackage{amssymb}
- \usepackage{hepparticles}
- \usepackage{hepnicenames}
- \usepackage{hepunits}
- \usepackage{tikz}
- \usepackage[english]{babel}
- %%\usepackage{lmodern}
- %\usepackage{feynmp}
- % suppress navigation bar
- \beamertemplatenavigationsymbolsempty
- \usepackage[mathscr]{eucal}
- \usepackage{mathrsfs}
- \mode<presentation>
- {
- \usetheme{bunsen}
- \setbeamercovered{transparent}
- \setbeamertemplate{items}[circle]
- }
- \newcommand{\Simley}[1]{%
- \begin{tikzpicture}[scale=0.15]
- \newcommand*{\SmileyRadius}{1.0}%
- \draw [fill=brown!10] (0,0) circle (\SmileyRadius)% outside circle
- %node [yshift=-0.22*\SmileyRadius cm] {\tiny #1}% uncomment this to see the smile factor
- ;
-
- \pgfmathsetmacro{\eyeX}{0.5*\SmileyRadius*cos(30)}
- \pgfmathsetmacro{\eyeY}{0.5*\SmileyRadius*sin(30)}
- \draw [fill=cyan,draw=none] (\eyeX,\eyeY) circle (0.15cm);
- \draw [fill=cyan,draw=none] (-\eyeX,\eyeY) circle (0.15cm);
-
- \pgfmathsetmacro{\xScale}{2*\eyeX/180}
- \pgfmathsetmacro{\yScale}{1.0*\eyeY}
- \draw[color=red, domain=-\eyeX:\eyeX]
- plot ({\x},{
- -0.1+#1*0.15 % shift the smiley as smile decreases
- -#1*1.75*\yScale*(sin((\x+\eyeX)/\xScale))-\eyeY});
- \end{tikzpicture}%
- }%
- % set fonts
- \usepackage{amsfonts}
- \usepackage{amsmath}
- \usepackage{verbatim}
-
- \usepackage{fancyvrb}
- \DefineVerbatimEnvironment{code}{Verbatim}{fontsize=\small}
- \DefineVerbatimEnvironment{example}{Verbatim}{fontsize=\small}
- \usepackage{listings}
- \usepackage{courier}
- \lstset{
- basicstyle=\footnotesize\ttfamily, % Standardschrift
- %numbers=left, % Ort der Zeilennummern
- numberstyle=\tiny, % Stil der Zeilennummern
- %stepnumber=2, % Abstand zwischen den Zeilennummern
- numbersep=5pt, % Abstand der Nummern zum Text
- tabsize=2, % Groesse von Tabs
- extendedchars=true, %
- breaklines=true, % Zeilen werden Umgebrochen
- keywordstyle=\color{red},
- frame=b,
- % keywordstyle=[1]\textbf, % Stil der Keywords
- % keywordstyle=[2]\textbf, %
- % keywordstyle=[3]\textbf, %
- % keywordstyle=[4]\textbf, \sqrt{\sqrt{}} %
- stringstyle=\color{white}\ttfamily, % Farbe der String
- showspaces=false, % Leerzeichen anzeigen ?
- showtabs=false, % Tabs anzeigen ?
- xleftmargin=17pt,
- framexleftmargin=17pt,
- framexrightmargin=5pt,
- framexbottommargin=4pt,
- %backgroundcolor=\color{lightgray},
- showstringspaces=false % Leerzeichen in Strings anzeigen ?
- }
-
- %\DeclareCaptionFont{blue}{\color{blue}}
-
- %\captionsetup[lstlisting]{singlelinecheck=false, labelfont={blue}, textfont={blue}}
- \usepackage{caption}
- \DeclareCaptionFont{white}{\color{white}}
- \DeclareCaptionFormat{listing}{\colorbox[cmyk]{0.43, 0.35, 0.35,0.01}{\parbox{\textwidth}{\hspace{15pt}#1#2#3}}}
- \captionsetup[lstlisting]{format=listing,labelfont=white,textfont=white, singlelinecheck=false, margin=0pt, font={bf,footnotesize}}
- \usetikzlibrary{arrows}
- \usetikzlibrary{shapes}
-
- %\usepackage{gfsartemisia-euler}
- %\usepackage[T1]{fontenc}
- \setbeamerfont{frametitle}{size=\LARGE,series=\bfseries}
- \tikzstyle{decision} = [diamond, draw, fill=gray!20,
- text width=4.5em, text badly centered, node distance=3cm, inner sep=0pt]
- \tikzstyle{block} = [rectangle, draw, fill=blue!10,
- text width=5em, text centered, rounded corners, minimum height=2em]
- \tikzstyle{line} = [draw, -latex']
- \tikzstyle{cloud} = [draw, ellipse,fill=red!10, node distance=3cm,
- minimum height=2em]
-
- \tikzstyle{every picture}+=[remember picture]
-
-
- \renewcommand{\PKs}{{\HepParticle{K}{S}{}\xspace}}
- % color definitions
- \usepackage{color}
- \definecolor{uipoppy}{RGB}{225, 64, 5}
- \definecolor{uipaleblue}{RGB}{96,123,139}
- \definecolor{uiblack}{RGB}{0, 0, 0}
-
- % caption styling
- %\DeclareCaptionFont{uiblack}{\color{uiblack}}
- %\DeclareCaptionFont{uipoppy}{\color{uipoppy}}
- %\captionsetup{labelfont={uipoppy},textfont=uiblack}
-
- % see the macros.tex file for definitions
- \include{macros }
-
- % title slide definition
- \title{MC, $\eta$, TMVA }
- %\subtitle{a bias report}
- \author{ Marcin Chrz\k{a}szcz$^{1,2}$ , Nicola Serra$^{1}$ }
- \institute[UTH, IFJ]
- {
- %\begin{tiny}
- $ ^1$ University of Zurich , $ ^2$ Institute of Nuclear Physics, Krakow,
- %\end{tiny}smallsmall
- }
-
-
- \date{ \begin{small} $25^{th}$ July 2013 \end{small}}
-
- %--------------------------------------------------------------------
- % Introduction
- %--------------------------------------------------------------------
-
- \begin{document}
-
-
-
-
- \setbeamertemplate{background}
- {\includegraphics[width=\paperwidth,height=\paperheight]{frontpage_bg_mine}}
- \setbeamertemplate{footline}[default]
-
- \begin{frame}
- \vspace{1.1cm}
- \begin{columns}
- \column{2.75in}
- \titlepage
-
- \begin{center}
- \includegraphics[height=1.0cm ]{pic/uzh.jpg}
- % \hspace{0.5cm}
- % \includegraphics[height=1.5cm]{pic/babar.jpg}
- \hspace{1cm}
- \includegraphics[height=1.0cm]{pic/ifj.png}
- \hspace{1cm}
- %\includegraphics[height=1.0cm]{pic/SNS.jpg}
- \end{center}
- \vspace{10cm}
- \column{2.0in}
- \end{columns}
- \end{frame}
-
- %--------------------------------------------------------------------
- % OUTLINE
- %--------------------------------------------------------------------
-
-
-
-
- \section[Outline]{}
- \begin{frame}
- \tableofcontents
- \end{frame}
-
-
- %-------------------------------------------------------------------
- % Introduction
- %-------------------------------------------------------------------
- %
- % Set the background for the rest of the slides.
- % Insert infoline
- \setbeamertemplate{background}
- {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}}
- \setbeamertemplate{footline}[bunsentheme]
-
- \title{Update on analysis}
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- \setbeamertemplate{background}
- {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}}
- \setbeamertemplate{footline}[bunsentheme]
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%2>%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- \section{MC studies}
- \begin{frame}\frametitle{MC Signal}
- {~}\\
- Reminder:
- \begin{itemize}
- \item In 2011 we simulated a mixture of $\tau \to 3 \mu$.
- \item We found out that the cross section is wrong in MC.
- \item We reweighed all this distributions to match the correct cross section.
- \item But what with DPC? This can't be reweighed!
- \item Let's check how $\epsilon_{DPC}$ depends on signal channel.
- \end{itemize}
-
-
-
-
-
- \textref {M.Chrz\k{a}szcz, N.Serra 2013}
- \end{frame}
-
- %\section{Work done so far}
- \begin{frame}\frametitle{Cross check procedure}
- {~}\\
- \only<1>{
- Let's run Pythia6 with 8 TeV CM energy. With old decfile(aka the wrong mixture of $c\bar{c}$ and $b\bar{b}$. We get:
- \begin{itemize}
- \item $\epsilon_{DPC} =17.9 \%$
- \item For $7 TeV\% $ we had:$17.7\%$
- \item This part looks reasonable. We would expected a small gain.
-
- \end{itemize}
- }
- \only<2>{
- {~}\\
- We then simulate two samples for each of 5 sources of $\tau$.
- \begin{itemize}
- \item 1st Sample with Geometry+Daughter\footnote{Daugher cuts forces $\tau$ to come from a specific mother. Ex. B.} Cuts. $\epsilon_{DPC+DAU}$
- \item 2nd Sample with Daughter Cut. $\epsilon_{DAU}$
- \end{itemize}
- }
-
- \textref {M.Chrz\k{a}szcz, N.Serra 2013}
- \end{frame}
-
-
- \begin{frame}\frametitle{MC Signal}
- {~}\\
-
-
- \begin{center}
- \begin{tabular}{| l | l | l || l |}
- \hline
- $\tau$ source & $\epsilon_{DPC+DAU} [\%]$ & $\epsilon_{DAU} [\%]$ & $\epsilon_{DPC} [\%]$ \\ \hline \hline
- $D \to \tau$ & $12.12 \pm 0.07$ & $32.71 \pm 0.13$ & $ 18.5 \pm 0.1$ \\ \hline
- $B \to D \to \tau$ & $1.36 \pm 0.01$ & $3.99 \pm 0.03$ & $ 17.0 \pm 0.1$ \\ \hline
- $D_s \to \tau$ & $11.79 \pm 0.07$ & $31.53 \pm 0.13$ & $ 18.6 \pm 0.1$ \\ \hline
- $B \to D_s \to \tau$ & $1.75 \pm 0.01$ & $5.04 \pm 0.03$ & $ 17.4 \pm 0.1$ \\ \hline
- $B \to \tau$ & $5.16 \pm 0.05$ & $14.85 \pm 0.13$ & $ 17.4 \pm 0.2$ \\ \hline \hline
-
-
- \end{tabular}
- \end{center}
- \only<1>
- {
- Let's take wrong weights from MC and calculate the $\epsilon_{DPC}$:\\
- \textcolor{green}{
- $\epsilon_{DPC, WRONG}=17.86$} , with agriment with simulating the wrong mixture from beginning!
-
- }
- \only<2>
- {
- Let's take wrong weights from MC and calculate the $\epsilon_{DPC}$:\\
- \textcolor{green}{
- $\epsilon_{DPC, WRONG}=17.86 \%$} , with agriment with simulating the wrong mixture from beginning!
-
- If we take the correct weights we obtain:\\
- \textcolor{red}{
- $\epsilon_{DPC, CORRECT}=18.60 \%$. We underestimated our efficiency!
- }
- }
-
- \only<3>
- {
- How ever the overall effect will be smaller cuz the same thing will happen for the normalization channel.
-
- }
-
-
- \textref {M.Chrz\k{a}szcz, N.Serra 2013}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{Pythia Wars}
- {~}\\
- I have found an other disturbing thing. Lets compare pythia 6 with pythia8:
-
- \begin{center}
- \begin{tabular}{| l | l | }
- \hline
- {~} & $\epsilon_{DPC} [\%]$ \\ \hline \hline
- Pythia 6 & $ 17.9$ \\ \hline
- Pythia 8 & $ 19.1$ \\ \hline \hline
-
-
- \end{tabular}
- \end{center}
-
- This looks worse than it is. Jon checked and this happens not only to $\tau \to 3 \mu$. Turn out this is common. $B_s \to \mu \mu$ aslo has the same problem. However thanks to normalization this the ratio of efficiencies changes by $0.1\%$.\\
- We are safe anyway.
-
-
-
- \textref {M.Chrz\k{a}szcz, N.Serra 2013}
- \end{frame}
-
-
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
- \section{$\eta$ fits}
- \begin{frame}\frametitle{$\eta$ fits}
- %Do the Charm trigger lines really hurt us?
- \only<1>{
-
- \begin{itemize}
-
-
- \item Till yesterday we took $\eta$ for fitting directly from MC.
- \item But how much eta is there?
- \item We might have combinatorial background with partially reconstructed $\eta$.
- \item Lots of thanks to Paul for speedy implementation of this idea!
- \item To increase the sensitivity I took left mass range larger! Make the fit more stable.
-
- \end{itemize}
- }
- \only<2>{
-
- Extreme case: Trash bins
- {~}\\
- \begin{columns}
- \column{2.5in}
- Only $\eta$ \\
- \includegraphics[scale=0.165]{fits/new/pid_-0p1_0p48geo-1p1_-0p48.png}
-
- \column{2.5in}
- $\eta$ with combinatorics.\\
- \includegraphics[scale=0.165]{fits/old/pid_-0p1_0p48geo-1p1_-0p48.png}
-
- \end{columns}
-
- } %pid_0p6_0p65geo0p65_0p74.png
- \only<3>{
-
- Not only the trash bin is affected: pid $0.725 - 0.86$ \\
- geo: $-0.48 - 0.05$
- {~}\\
- \begin{columns}
- \column{2.5in}
- Only $\eta$ \\
- \includegraphics[scale=0.165]{fits/new/pid_0p725_0p86geo-0p48_0p05.png}
-
- \column{2.5in}
- $\eta$ with combinatorics.\\
- \includegraphics[scale=0.165]{fits/old/pid_0p725_0p86geo-0p48_0p05.png}
-
- \end{columns}
-
- }
-
-
- \only<4>{
- As old Chinese wisdom says: "One event can make a difference"\\
- Not only the trash bin is affected: pid $0.6 - 0.65$ \\
- geo: $0.65 - 0.74$
- {~}\\
- \begin{columns}
- \column{2.5in}
- Only $\eta$ \\
- \includegraphics[scale=0.165]{fits/new/pid_0p6_0p65geo0p65_0p74.png}
-
- \column{2.5in}
- $\eta$ with combinatorics.\\
- \includegraphics[scale=0.165]{fits/old/pid_0p6_0p65geo0p65_0p74.png}
-
- \end{columns}
-
- }
-
-
-
- \textref {M.Chrz\k{a}szcz, N.Serra 2013}
- \end{frame}
-
-
-
- \begin{frame}\frametitle{Conclusions on $\eta$}
- {~}\\
-
- \begin{itemize}
- \item $23\%$ of events in the ntuple are background.
- \item Much better shape of $\eta$.
- \item PDF similar in each bin!
- \item Much smaller linkage of $\eta$ to mass window!
- \item PDFs are ready for fitting with 2012 data!
-
- \end{itemize}
-
- \textref {M.Chrz\k{a}szcz, N.Serra 2013}
- \end{frame}
-
-
-
-
-
-
-
-
-
-
-
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
- \section{TMVA}
-
- \begin{frame}\frametitle{Introduction}
-
- \begin{columns}
- \column{3.5in}
- Kaggle (leading machine learning competition platform).
-
- \column{2.5in}
- \includegraphics[scale=0.4]{pic2/kaggle.png}
- \end{columns}
- {~}\\
- If you notice how people win this competition; you'll notice that sometimes people combine two or more algorithm into ensemble and get better results. \\
- This is called blending.
-
- Isn't $\tau \to 3 \mu$ perfect environment to play?
-
- \textref {M.Chrz\k{a}szcz, N.Serra 2013}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{First attempts}
- {~}\\
-
-
- \begin{itemize}
- \item Let's take our background produced so far.
- \item Already a comparable sample to 2011! Generator cuts are doing their job.
- \item Let's train each signal on separate source of $\tau$.
- \end{itemize}
-
- \textref {M.Chrz\k{a}szcz, N.Serra 2013}
- \end{frame}
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \begin{frame}\frametitle{$B \to \tau$}
- {~}\\
- We really suck in selecting this channel.
-
- \includegraphics[scale=0.4]{tmva/ROC_31113002.png}
-
-
-
- \textref {M.Chrz\k{a}szcz, N.Serra 2013}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
- \begin{frame}\frametitle{$B \to D_s \to \tau$}
- {~}\\
- On the biggest contributing channel we are quite optimal.
-
-
- \includegraphics[scale=0.4]{tmva/ROC_23513000.png}
-
-
-
- \textref {M.Chrz\k{a}szcz, N.Serra 2013}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
- \begin{frame}\frametitle{$D_s \to \tau$}
- {~}\\
- On the biggest contributing channel we are quite optimal.
-
-
- \includegraphics[scale=0.4]{tmva/ROC_23513001.png}
-
-
-
- \textref {M.Chrz\k{a}szcz, N.Serra 2013}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
- \begin{frame}\frametitle{$B \to D^+ \to \tau$}
- {~}\\
- On the biggest contributing channel we are quite optimal.
-
-
- \includegraphics[scale=0.4]{tmva/21513000_roc2.png}
-
-
-
- \textref {M.Chrz\k{a}szcz, N.Serra 2013}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
- \begin{frame}\frametitle{$D^+ \to \tau$}
- {~}\\
- On the biggest contributing channel we are quite optimal.
-
-
- \includegraphics[scale=0.4]{tmva/ROC_21513001.png}
-
-
-
- \textref {M.Chrz\k{a}szcz, N.Serra 2013}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
-
- \begin{frame}\frametitle{Comparison on mix sample}
- {~}\\
- On the biggest contributing channel we are quite optimal.
-
-
- \includegraphics[scale=0.4]{tmva/mix.png}
-
-
-
- \textref {M.Chrz\k{a}szcz, N.Serra 2013}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
- \begin{frame}\frametitle{Conclusions on TMVA}
- {~}\\
- \begin{itemize}
- \item Each of the signal components is enormously larger than MVA trained on mix.
- \item Method looks very promising if we can find a nice blending method(work for next week).
- \item Mayby discusion on TMVA/MatrixNet/Neurobayes is next to leading order effect compared to this method?
-
-
- \end{itemize}
-
-
- \textref {M.Chrz\k{a}szcz, N.Serra 2013}
- \end{frame}
-
- \section{Plans for next week}
- \begin{frame}\frametitle{Conclusions on TMVA}
- {~}\\
- \begin{itemize}
- \item Finish producing cc bck
- \item Continue blending.
- \item Finish calculating new 2D binning optimisation(last night it was still calculating).
- \item Start Normalizing the $\eta$
- \item Produce Normalization channel MC.
-
-
- \end{itemize}
-
-
- \textref {M.Chrz\k{a}szcz, N.Serra 2013}
- \end{frame}
-
-
-
-
- \end{document}