\documentclass[]{beamer} \setbeamertemplate{navigation symbols}{} \usepackage{beamerthemesplit} \useoutertheme{infolines} \usecolortheme{dolphin} \usetheme{Warsaw} \usepackage{graphicx} %\usetheme{Boadilla} %\beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2->{15}} \title{Silicon Vertex Tracker for SuperB} \author{Marcin Chrzaszcz} \institute{Institute of Nuclear Physics} \date{\today} \begin{document} { \setbeamertemplate{footline}{} \begin{frame} \titlepage \end{frame} } %tutaj mamy pierwsza strone \institute{IFJ} % redefinicja instytutu \section[Outline]{} \begin{frame} \tableofcontents \end{frame} %normal slides \section{General Overview of Silicon Vertex Tracker (SVT)} \subsection{Babar SVT} \begin{frame}\frametitle{Babar SVT} \begin{center} \includegraphics[scale=0.15]{svt2.png} \begin{columns}[c] \column{3in} \begin{itemize} \item Five layers(1-5) od double sided silicon strip detectors. \item Radius between $3-15cm$. \end{itemize} %first column \column{2in} \newline \includegraphics[scale=0.23]{svtb.png} %second column \end{columns} \end{center} MC studies showned that this solution meets with higher background conditions expected in SuperB. \end{frame} \subsection{Physics requirment} \begin{frame}\frametitle{Physics requirment} \begin{enumerate} \item SVT together with drift chamber (DCH) and magnet provite track and vertex reconsturction \item For low energetic particles SVT must provide the complete track information. \item SVT must provide the same precision of time dependend CP violation as Babar detector with boost lowered from $\alpha\beta=0.55$ to $\alpha\beta=0.28$ { \begin{itemize} \item $50-80 \mu m$ for exclusively reconstructed modes. \item $100-150 \mu m$ for inclusively reconstructed modes. \end{itemize} } \end{enumerate} \end{frame} \subsection{Layer0} \begin{frame}\frametitle{Layer0} \begin{columns}[c] \column{3in} To match the pointed requirements addiotional 6th layer was introduced (Layer 0). Aspects that are beeing taken in projecting Layer0: \begin{enumerate} \item Background: { \begin{itemize} \item $e^{+} e^{-} -> e^{+} e^{+} e^{-} e^{-}$. \item Bhabha scattering. \item Touschek. \item 2 photon events. \end{itemize} } \item Sensor occupancy. \item Radiation hardess. \end{enumerate} \column{2in} \includegraphics[scale=0.15]{s_vs_l0.png} \newline \includegraphics[scale=0.20]{dt_vs_l0.png} \end{columns} \end{frame} \section{Options for layer0} \subsection{List of optons} \begin{frame}\frametitle{List of optons} \begin{enumerate} \item Double-sided silicon strip detector. \item Pixel detectors: { \begin{itemize} \item Hybrid pixels. \item MAPS. \end{itemize} } \end{enumerate} \end{frame} \subsection{Striplets} \begin{frame}\frametitle{Striplets} \begin{columns}[c] \column{3in} \begin{itemize} \item $200 \mu m$ thick, with $50 \mu m$ readout pitch. \item Rotated by$\pm 45^{0}$. \item Occupancy: $0.8\%$, $4\%$ with safety factor. \item Chip with 128 analog channels and 132 $ns$ time window. \item Signal to Noise: 26. \item Material budget: $0.55 \% X_{0}$ \item Cluster rate: $6.37 \frac{MHz}{cm^{2}}$ \end{itemize} %first column \column{2in} \newline \includegraphics[scale=0.22]{striplets.png} \newline \includegraphics[scale=0.2]{pt.png} \end{columns} \end{frame} \begin{frame}\frametitle{Test Beam} \includegraphics[scale=0.22]{testbeam.png} \end{frame} \begin{frame}\frametitle{Test Beam} \begin{small} Work done by: Laura Fabbri (INFN Bologna) \end{small} \begin{columns}[c] \column{2.7in} \begin{enumerate} \begin{tiny} \item Test done on DUT roated by: $ 0^{o}, 15^{o}, 30^{o}, 45^{o}, 60^{o}, 70^{o}$. \item 1 week of data taking. (Alberto please confirm this) \item Thresholds = 20 or 15. \end{tiny} %\line(1,0){300} \end{enumerate} { \includegraphics[scale=0.16]{striplets2.png} } \begin{small} Procedure: \begin{itemize} \item Aligment done by minimalizing residuals, on telescope and DUT. \item Cut on the residual: $ 56\mu m$ and fiducial cut. \end{itemize} \end{small} \column{2.3in} \includegraphics[scale=0.18]{residsx.png} \newline \includegraphics[scale=0.18]{residsy.png} \end{columns} \end{frame} \begin{frame} \begin{columns}[c] \column{2.5in} \includegraphics[scale=0.17]{strip.png} \column{2.5in} \begin{itemize} \item Inactive strips not taken into accound in the analyses \end{itemize} \end{columns} \begin{center} \includegraphics[scale=0.17]{channel.png} \end{center} \end{frame} \begin{frame} \begin{center} \includegraphics[scale=0.23]{eff.png} \end{center} $\varepsilon_{u}=\frac{n_{clusters}|spUPos-intUPos|<56 \mu m}{n_{int} \subset active U region } $ \newline \newline $\varepsilon= \frac{n_{clusters}|spUPos-intUPos|<56 \mu m \wedge n_{clusters}|spvPos-intVPos|<56 \mu m}{n_{int} \subset active U and V region } $ \begin{columns}[c] \column{2.5in} \column{2.5in} \end{columns} \end{frame} %NOW pixels \subsection{Hybrid Pixels} \begin{frame}\frametitle{Hybrid Pixels} \begin{columns}[c] \column{2.5in} \begin{itemize} \item Pixels: 50 x 50 $\mu m^{2}$ pitch. \item $200 \mu m$ thick. \item Fron end chip optimised to work with $100\frac{MHz}{cm^{2}}$. \item Organised in Mega Pixels(16 Pixels). \item Data-push readout featuring on-pixel data sparsification and time-stamp. \item Gain = $42\dfrac{mV}{fC}$. \end{itemize} \column{2.5in} \includegraphics[scale=0.23]{pix.png} \end{columns} \end{frame} \begin{frame}\frametitle{Hybrid Pixels Test Beam Notes} \begin{block}{Work done by:} A.Lusiani, M.Chrzaszcz, Nicola Neri, Benjamin Oberhof, Antonio Paladino. \end{block} \begin{exampleblock} \begin{itemize} \item Several thresholds, reference threshold 1/4 of a m.i.p. at normal incidence. \item Data took with 3 chips: $12, 53, 55$. \item DUT rotated around at $ 0^{o}, 15^{o}, 30^{o}, 45^{o}, 60^{o}, 70^{o}$. \item 128 pixels along x (horizontal, u-axis), 32 pixels along y (vertical, v -axis). \item approximately parallel tracks, high momentum, negligible multiple scattering. \end{itemize} \end{exampleblock} \end{frame} \begin{frame}\frametitle{Hybrid Pixels Test Beam Results} \begin{center} \includegraphics[scale=0.3]{res.png} \end{center} \end{frame} \begin{frame}\frametitle{Hybrid Pixels Test Beam Results} \begin{center} \includegraphics[scale=0.3]{angle.png} \end{center} \end{frame} \begin{frame}\frametitle{Hybrid Pixels Test Beam Results} \begin{columns}[c] \column{1.5in} \begin{itemize} \item To cross check our results, TOY MC was written. \item Good agrement with the data. \end{itemize} \column{3.5in} \begin{center} \includegraphics[scale=0.3]{sim.png} \end{center} \end{columns} \end{frame} \begin{frame}\frametitle{Hybrid Pixels Test Beam Results} \begin{columns}[c] \column{1.5in} \begin{itemize} \item To cross check our results, TOY MC was written. \item Good agrement with the data. \end{itemize} \column{3.5in} \begin{center} \includegraphics[scale=0.3]{effvsangle.png} \end{center} \end{columns} \end{frame} \begin{frame}\frametitle{Threshold Simulations} \includegraphics[scale=0.29]{sim2.png} \begin{exampleblock}{Conclusion} Next Test Beam will be done with lover threshold. \end{exampleblock} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{MAPS} \begin{frame}\frametitle{Monolithic Active PixelS} \begin{columns}[c] \column{2.5in} \begin{itemize} \item Newer, more challenging. \item Pixels: 50 x 50 $\mu m^{2}$ pitch. \item Implemented in Deep n-well. \item Full signal processing chain: harge preamplifier, shaper, discriminator, in-pixel logic. \end{itemize} No TestBeam done. MC and lab results: \begin{itemize} \item Efficiency:$98 \% $. \item 100$ns$ timestamp. \end{itemize} Much more RD to be done. \column{2.5in} \includegraphics[scale=0.23]{maps.png} \end{columns} \end{frame} \section{Conclusions} \begin{frame}\frametitle{Sum up} \begin{itemize} \item SVT for SuperB will be equipped with moder layer to over come lover boost. \item Stripplets are the most propable solution for the Layer0. \item RD still needed. \item In the TDR(feb 2012) both options will be presented. Final decision after. \end{itemize} \end{frame} \end{document}