Newer
Older
Presentations / Epiphana2012 / epiphana_svt22.tex
@mchrzasz mchrzasz on 9 Jan 2013 8 KB first commit
\documentclass[]{beamer}
\setbeamertemplate{navigation symbols}{}
\usepackage{beamerthemesplit}
\useoutertheme{infolines}
\usecolortheme{dolphin}
\usetheme{Warsaw}
\usepackage{graphicx}
\usepackage{amssymb,amsmath}
\usepackage[latin1]{inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{latexsym}
\usepackage{hyperref}

\usepackage[T1]{fontenc}
\usepackage[polish]{babel}
\usepackage{lmodern}



%\usetheme{Boadilla}

%\beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2->{15}}
\title{Silicon Vertex Tracker for SuperB}  
\author{Marcin Chrz\k{a}szcz}

\date{\today} 

\begin{document}

{
\institute{Institute of Nuclear Physics PAN}
\setbeamertemplate{footline}{} 
\begin{frame}
  \titlepage
\end{frame}
}

\institute{IFJ PAN}



%tutaj mamy pierwsza strone


\section[Outline]{}
\begin{frame}
\tableofcontents
\end{frame}

%normal slides
\section{General Overview of Silicon Vertex Tracker (SVT)}

\subsection{Physics requirements}
\begin{frame}\frametitle{Physics requirements}

The SuperB SVT design is based on the BaBar vertex detector layout with an additional innermost layer closer to the IP (Layer0).


\begin{enumerate}

\item SVT together with drift chamber (DCH) and magnet provide track and vertex reconsturction. 
	\item For less energetic particles SVT must provide the complete track information.
	\item SVT must provide the same precision of time dependent CP violation as BaBar detector with boost reduced from $\beta\gamma=0.55$ to $\beta\gamma=0.28$
	{
	\begin{itemize}
	\item $50-80 \mu m$ for exclusively reconstructed modes.
	\item $100-150 \mu m$ for inclusively reconstructed modes.
	\end{itemize}
	}
\end{enumerate}	

	
\end{frame}



\subsection{SVT Layers 1-5}
\begin{frame}\frametitle{SVT Layers 1-5} 
\begin{columns}[c]
	\column{3in}
	\includegraphics[scale=0.15]{svt2.png}

	\begin{itemize}
	\item Five layers(1-5) of double-sided silicon strip detectors.
	\item Radial span $3-15~{\rm cm}$.
		\end{itemize}	

		
	%first column	
	\column{2in}
	\newline \includegraphics[scale=0.23]{svtb.png}
\newline \includegraphics[scale=0.21]{pt.png}
	
		
	%second column	
\end{columns}



\end{frame}
\subsection{Layer0 setup}
\begin{frame}\frametitle{Layer0}
\begin{columns}[c]

	\column{2.5in}
	\begin{footnotesize}
To meet the physics requirements mentioned for SuperB an additional 6th layer was introduced (Layer0). 
Reguirements for Layer0:\begin{itemize}
	\item Radius about 1.5 cm
	\item High granuality.
	\item low material budget.
\end{itemize}
Aspects that are being considered in projecting Layer0:
\begin{enumerate}
	\item Background:
	{
	\begin{footnotesize}
	\begin{itemize}
	\item $e^{+} e^{-} -> e^{+} e^{+} e^{-} e^{-}$.
	\item Bhabha scattering.
	\item Touschek.
	\item two-photon events.
	\end{itemize}
	\end{footnotesize}
	}
	\item Sensor occupancy.
	\item Radiation hardness.
\end{enumerate}
\end{footnotesize}


	\column{2.5in}
\includegraphics[scale=0.24]{dt_vs_l0.png}
\newline \includegraphics[scale=0.18]{s_vs_l0.png}

\end{columns}


\end{frame}

\section{Options for layer0}
%\subsection{List of options}

\begin{frame}\frametitle{List of options}

\begin{enumerate}
\item Double-sided silicon strip detector (Striplets).
\item Pixel detectors:
{
\begin{itemize}
\item Hybrid pixels.
\item MAPS.

\end{itemize}

} 

\end{enumerate}
\end{frame}
\subsection{Striplets}
\begin{frame}\frametitle{Striplets}
\begin{columns}[c]
	\column{3in}
	\begin{itemize}
	\item $200 \mu m$ thick, with $50 \mu m$ readout pitch.
	\item Rotated by$\pm 45^{0}$. 
	%\item Occupancy: $0.8\%$; $4\%$ with safety factor. 
	\item Chip with 128 analog channels and 132 $ns$ time window.
	\item Signal to Noise ratio: 26 to 1.
	\item Material budget: $0.55 \% X_{0}$
	\item Cluster rate: $6.37 {MHz}$ ${cm^{-2}}$
	 

	\end{itemize}	

		
	%first column	
	\column{2in}
	\newline \includegraphics[scale=0.22]{striplets.png}

\end{columns}
\end{frame}
\begin{frame}\frametitle{SVT Test Beam}
\includegraphics[scale=0.22]{testbeam.png}
\newline DUT = Device Under Test.



\end{frame}

\begin{frame}\frametitle{SVT Test Beam}
\begin{small} Work done by: Laura Fabbri (INFN Bologna) \end{small}
\begin{columns}[c]
	\column{2.7in}
\begin{enumerate}
\begin{tiny}
\item Test done on DUT rotated by: $ 0^{o}, 15^{o}, 30^{o}, 45^{o}, 60^{o}, 70^{o}$.
\item 1 week of data taking.
\item Thresholds = 20 or 15.

\end{tiny}
%\line(1,0){300}
\end{enumerate}
{
\includegraphics[scale=0.16]{striplets2.png}
}
\begin{small}
Procedure:
\begin{itemize}
\item Alignment done by minimizing residuals, on telescope and DUT.
\item Cut on the residual: $ 56\mu m$ and fiducial cut.

\end{itemize}

\end{small}




\column{2.3in}
\includegraphics[scale=0.18]{residsx.png}
\newline \includegraphics[scale=0.18]{residsy.png}




\end{columns}


\end{frame}

\begin{frame}

\begin{columns}[c]
	\column{2.5in}

	\includegraphics[scale=0.17]{strip.png}
	\column{2.5in}
	\begin{itemize}
	\item Inactive strips not taken into account in the analysis
	 
	\end{itemize}

\end{columns}
\begin{center}
	\includegraphics[scale=0.18]{channel.png}
\end{center}


\end{frame}
\begin{frame}\frametitle{Efficiency vs angle }
		\includegraphics[scale=0.24]{eff.png}

%$\varepsilon_{u}=\frac{n_{clusters}|spUPos-intUPos|<56 \mu m}{n_{int} \subset active U region } $
%\newline
%\newline $\varepsilon= \frac{n_{clusters}|spUPos-intUPos|<56 \mu m \wedge n_{clusters}|spvPos-intVPos|<56 \mu m}{n_{int} \subset active U and V region  } $

\end{frame}

%NOW pixels

\subsection{Hybrid Pixels}
\begin{frame}\frametitle{Hybrid Pixels}
\begin{columns}[c]
	\column{2.5in}
		\begin{itemize}
\item Pixels:  50 x 50 $\mu m^{2}$ pitch. 
\item $200 \mu m$ thick.
\item Front end chip optimised to work with $100{MHz}$ ${cm^{-2}}$.
\item Organised in Mega Pixels \newline (16 Pixels).
\item Data-push readout featuring on-pixel data sparsification and time-stamp.
\item Gain = $42{mV}$ ${fC^{-1}}$.

		\end{itemize}
	\column{2.5in}
			\includegraphics[scale=0.23]{pix.png}

	
	
\end{columns}

\end{frame}

\begin{frame}\frametitle{Hybrid Pixels Test Beam Notes}
\begin{block}{Work done by:}
A.Lusiani, M.Chrzaszcz, Nicola Neri, Benjamin Oberhof, Antonio Paladino.
\end{block}


\begin{exampleblock}

\begin{itemize}

\item Several thresholds, reference threshold 1/4 of a m.i.p. at normal incidence.
\item Data took with 3 chips: $12, 53, 55$.
\item DUT rotated around at $ 0^{o}, 15^{o}, 30^{o}, 45^{o}, 60^{o}, 70^{o}$.
\item 128 pixels along x (horizontal, u-axis), 32 pixels along y (vertical, v -axis).
\item approximately parallel tracks, high momentum, negligible multiple scattering.
\end{itemize}

\end{exampleblock}

\end{frame}

\begin{frame}\frametitle{Hybrid Pixels Test Beam Results}
\begin{block}{ }
Typical resolution: $~20 \mu m$.
\end{block}
\begin{center}
 \includegraphics[scale=0.27]{res.png}
\end{center}


\end{frame}


\begin{frame}\frametitle{Angular dependence of the residual}
\begin{center}
 \includegraphics[scale=0.3]{angle.png}
\end{center}




\end{frame}


\begin{frame}\frametitle{Hybrid Pixels: Test Beam}
\begin{columns}[c]
\column{1.5in}

\begin{itemize}
\item To cross check our results, TOY MC was written.
\item Good agreement with data.

\end{itemize}

	\column{3.5in}
	
\begin{center}
 \includegraphics[scale=0.3]{sim.png}
\end{center}

\end{columns}

\end{frame}

\begin{frame}\frametitle{Hybrid Pixels Test Beam Results}
\begin{columns}[c]
\column{1.5in}

\begin{itemize}
\item To cross check our results, TOY MC was written.
\item Good agreement with data.

\end{itemize}

	\column{3.5in}
	
\begin{center}
 \includegraphics[scale=0.3]{effvsangle.png}
\end{center}

\end{columns}

\end{frame}


\begin{frame}\frametitle{Threshold Simulations}

 \includegraphics[scale=0.29]{sim2.png}

\begin{exampleblock}{Conclusion}
The next Test Beam will be done with lower threshold( 0.17 - 0.18 m.i.p).
\end{exampleblock}


\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{MAPS}
\begin{frame}\frametitle{Monolithic Active PixelS}
\begin{columns}[c]
	\column{2.5in}
		\begin{itemize}
		\item Newer, more challenging.
\item Pixels:  50 x 50 $\mu m^{2}$ pitch, $50 \mu m$ thickness. 
\item Active cooling is needed ($2 \enskip W \enskip cm^{-2}$).
\item Implemented in Deep n-well.
\item Full signal processing chain: large preamplifier, shaper, discriminator, in-pixel logic.
\end{itemize}
No TestBeam results yet. MC and lab results:

\begin{itemize}

\item Efficiency:$98 \% $.
\item 100$ns$ timestamp.
	\end{itemize}
		
	 Much more $R \& D$ to be done.
	
	\column{2.5in}
			\includegraphics[scale=0.23]{maps.png}

	
	
\end{columns}

\end{frame}

\section{Outcome}

\begin{frame}\frametitle{Summary} 
The $R \& D$ work on the SuperB SVT is well advanced.
Crucial issues for Layer0:
\begin{itemize}
\item Striplets most ready and working solution for the beginning of SuperB
data-taking.
\item $R \& D$ still needed.
\end{itemize}
Outcome of work on Hybrid Pixels:
\begin{itemize}
\item Study of the residuals and angular dependence.
\item Smaller threshold  planned for next simulations.

\end{itemize}
In the TDR(Feb 2012) both options will be presented. Final decision will follow after.
\end{frame}




\end{document}