Newer
Older
Presentations / Magnet_Stations / 26_10_2016 / mchrzasz.tex
@mchrzasz mchrzasz on 26 Sep 2016 16 KB addfed magnet station slides -a
\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}

\usepackage[english]{babel}
\usepackage{polski}


\usetheme[
	bullet=circle,		% Other option: square
	bigpagenumber,		% circled page number on lower right
	topline=true,			% colored bar at the top of the frame
	shadow=false,			% Shading for beamer blocks
	watermark=BG_lower,	% png file for the watermark
	]{Flip}

%\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}


\usepackage[lf]{berenis}
\usepackage[LY1]{fontenc}
\usepackage[utf8]{inputenc}

\usepackage{emerald}
\usefonttheme{professionalfonts}
\usepackage[no-math]{fontspec}
\defaultfontfeatures{Mapping=tex-text}	% This seems to be important for mapping glyphs properly

\setmainfont{Gillius ADF}			% Beamer ignores "main font" in favor of sans font
\setsansfont{Gillius ADF}			% This is the font that beamer will use by default
% \setmainfont{Gill Sans Light}		% Prettier, but harder to read

\setbeamerfont{title}{family=\fontspec{Gillius ADF}}

\input t1augie.fd

%\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
%\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
% \newcommand{\handwriting}{}	% If you prefer no special handwriting font or don't have augie

%% Gill Sans doesn't look very nice when boldfaced
%% This is a hack to use Helvetica instead
%% Usage: \textbf{\forbold some stuff}
%\newcommand{\forbold}{\fontspec{Arial}}

\usepackage{graphicx}
\usepackage[export]{adjustbox}

\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{colortbl}
\usepackage{mathrsfs} 			% For Weinberg-esque letters
\usepackage{cancel}				% For "SUSY-breaking" symbol
\usepackage{slashed}            % for slashed characters in math mode
\usepackage{bbm}                % for \mathbbm{1} (unit matrix)
\usepackage{amsthm}				% For theorem environment
\usepackage{multirow}			% For multi row cells in table
\usepackage{arydshln} 			% For dashed lines in arrays and tables
\usepackage{siunitx}
\usepackage{xhfill}
\usepackage{grffile}
\usepackage{textpos}
\usepackage{subfigure}
\usepackage{tikz}

%\usepackage{hepparticles}
\usepackage[italic]{hepparticles}

\usepackage{hepnicenames}

% Drawing a line
\tikzstyle{lw} = [line width=20pt]
\newcommand{\topline}{%
  \tikz[remember picture,overlay] {%
    \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
             -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}



% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\usepackage{tikzfeynman}		% For Feynman diagrams
\usetikzlibrary{arrows,shapes}
\usetikzlibrary{trees}
\usetikzlibrary{matrix,arrows} 				% For commutative diagram
% http://www.felixl.de/commu.pdf
\usetikzlibrary{positioning}				% For "above of=" commands
\usetikzlibrary{calc,through}				% For coordinates
\usetikzlibrary{decorations.pathreplacing}  % For curly braces
% http://www.math.ucla.edu/~getreuer/tikz.html
\usepackage{pgffor}							% For repeating patterns

\usetikzlibrary{decorations.pathmorphing}	% For Feynman Diagrams
\usetikzlibrary{decorations.markings}
\tikzset{
	% >=stealth', %%  Uncomment for more conventional arrows
	vector/.style={decorate, decoration={snake}, draw},
	provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
	antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
	fermion/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
	fermionbar/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
	fermionnoarrow/.style={draw=gray},
	gluon/.style={decorate, draw=black,
		decoration={coil,amplitude=4pt, segment length=5pt}},
	scalar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	scalarbar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
	scalarnoarrow/.style={dashed,draw=black},
	electron/.style={draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
}

% TIKZ - for block diagrams,
% from http://www.texample.net/tikz/examples/control-system-principles/
% \usetikzlibrary{shapes,arrows}
\tikzstyle{block} = [draw, rectangle,
minimum height=3em, minimum width=6em]




\usetikzlibrary{backgrounds}
\usetikzlibrary{mindmap,trees}	% For mind map
\newcommand{\degree}{\ensuremath{^\circ}}
\newcommand{\E}{\mathrm{E}}
\newcommand{\TeV}{\mathrm{TeV}}
\newcommand{\Var}{\mathrm{Var}}
\newcommand{\Cov}{\mathrm{Cov}}
\newcommand\Ts{\rule{0pt}{2.6ex}}       % Top strut
\newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut

\graphicspath{{images/}}	% Put all images in this directory. Avoids clutter.

% SOME COMMANDS THAT I FIND HANDY
% \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
\newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
\newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
\newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
\newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
\newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
%% "\alert" is already a beamer pre-defined
\newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%

\def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}

\usepackage{gmp}
\usepackage[final]{feynmp-auto}

\usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
\bibliography{bib}
\setbeamertemplate{bibliography item}[text]

\makeatletter\let\frametextheight\beamer@frametextheight\makeatother

% suppress frame numbering for backup slides
% you always need the appendix for this!
\newcommand{\backupbegin}{
	\newcounter{framenumberappendix}
	\setcounter{framenumberappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
	\addtocounter{framenumberappendix}{-\value{framenumber}}
	\addtocounter{framenumber}{\value{framenumberappendix}}
}


\definecolor{links}{HTML}{2A1B81}
%\hypersetup{colorlinks,linkcolor=,urlcolor=links}

% For shapo's formulas:
\def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\newcommand{\lsim}{\mathop{\lsi}}
\newcommand{\gsim}{\mathop{\gsi}}
\newcommand{\wt}{\widetilde}
%\newcommand{\ol}{\overline}
\newcommand{\Tr}{\rm{Tr}}
\newcommand{\tr}{\rm{tr}}
\newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
\newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
\newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
\newcommand{\eV}{\rm{eV}}
\newcommand{\keV}{\rm{keV}}
\newcommand{\GeV}{\rm{GeV}}
\newcommand{\im}{\rm{Im}}
\newcommand{\disp}{\displaystyle}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\ba{\begin{eqnarray}}
\def\ea{\end{eqnarray}}
\def\d{\partial}
\def\l{\left(}
\def\r{\right)}
\def\la{\langle}
\def\ra{\rangle}
\def\e{{\rm e}}
\def\Br{{\rm Br}}
\def\fixme{FIXME}



\def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace}
\def\ARROWR{{\color{WildStrawberry}{$\Rrightarrow$}}\xspace}

\author{ {\fontspec{Trebuchet MS}Marcin Chrz\k{a}szcz} (Universit\"{a}t Z\"{u}rich)}
\institute{UZH}
\title[Magnet Stations for LHCb]{Magnet Stations for LHCb}


\begin{document}
\tikzstyle{every picture}+=[remember picture]

{
\setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
\begin{frame}[c]%{\phantom{title page}}
\begin{center}
\begin{center}
	\begin{columns}
		\begin{column}{0.75\textwidth}
			\flushright\fontspec{Trebuchet MS}\bfseries \Huge {Magnet Stations\\ for LHCb}
		\end{column}
                \begin{column}{0.02\textwidth}
                  {~}
                  \end{column}
                \begin{column}{0.23\textwidth}
                 % \hspace*{-1.cm}
                  \vspace*{-3mm}
                  \includegraphics[width=0.6\textwidth]{lhcb-logo}
                  \end{column}

	\end{columns}
\end{center}
	\quad
	\vspace{3em}
\begin{columns}
\begin{column}{0.99\textwidth}
\flushright \vspace{-1.8em} {\fontspec{Trebuchet MS} Marcin ChrzÄ…szcz, Marc-Oliver Bettler, Igor Babuschkin,\\ Maurizio Martinelli, Christ Parkes, Marco Gersabeck}

\end{column}
%\begin{column}{0.53\textwidth}
%\includegraphics[height=1.3cm]{uzh-transp}
%\end{column}
\end{columns}

\vspace{1em}
%		\footnotesize\textcolor{gray}{With N. Serra, B. Storaci\\Thanks to the theory support from M. Shaposhnikov, D. Gorbunov}\normalsize\\
\vspace{0.5em}

	\textcolor{normal text.fg!50!Comment}{MS meeting, September 26, 2016}
\end{center}
\end{frame}
}





\begin{frame}\frametitle{Where our tracks are?}
\begin{columns}
\column{0.1in}
{~}\\
\column{3in}
\ARROW The upstream tracks have rather poor momentum resolution: $\frac{\Delta p}{p} \sim 15\%$. \\
\ARROW The particles die after short and sad (for physics) life in the magnet yoke. \\
\ARROW If one put chambers in the magnet stations, one could record the particles before they death.\\
\ARROW This will not increase the material budget of the rest of the detector.

\column{2in}
\includegraphics[width=0.95\textwidth]{images/sketch.png}\\
\includegraphics[width=0.95\textwidth]{images/magnet.png}



\end{columns}
\end{frame}



\begin{frame}\frametitle{Physics interest}
\begin{small}
\begin{columns}
\column{0.1in}
{~}\\
\column{3in}
\ARROW We have enormous amount of channels where we have slow particles:
\begin{itemize}
\item $\PDstar \to \PD \pi$.
\item $\PLambda_c(2595, 2625) \to \PLambda_c \pi \pi$.
\item All the $\PB^{\ast \ast}$ decays! $\leftarrowtail$ huge community interests!!!
\item As well other states: $\Sigma_b \to \PLambda_b \pi$.
\item Little is known about the excited $\PBs$ states as well.
\item $\tau \to 3 \mu$.

\end{itemize}


\column{2in}
\includegraphics[width=0.95\textwidth]{images/charmS.png}\\



\end{columns}
\end{small}
\end{frame}






\begin{frame}{$\tau$ production}
	\begin{minipage}{\textwidth}
        \begin{itemize}                                                                                              
          \item $\Ptau$'s in LHCb come from five main sources:                                                       
            \end{itemize}                                                                                            
            \begin{center}                                                                                           
                                                                                                                     
                                                                                                                     
\begin{tabular}{| c | c | c | }                                                                                      
\hline                                                                                                               
  Mode & $7~\TeV$ & $8~\TeV$ \\ \hline                                                                               
  Prompt $\PDs\to\Ptau$  & $71.1\pm3.0\,\%$ & $72.4\pm2.7\,\%$ \\                                                    
  Prompt $\PDplus\to\Ptau$  & $4.1\pm0.8\,\%$  & $4.2\pm0.7\,\%$ \\                                                  
  Non-prompt $\PDs\to\Ptau$ & $9.0\pm2.0\,\%$ & $8.5\pm1.7\,\%$ \\                                                   
  Non-prompt $\PDplus\to\Ptau$ &  $0.18\pm0.04\,\%$  & $0.17\pm0.04\,\%$ \\                                          
  $X_{\Pbottom}\to\Ptau$   & $15.5\pm2.7\,\%$  & $14.7\pm2.3\,\%$ \\ \hline                                          
                                                                                                                     
\end{tabular}                                                                                                        
             \end{center}                                                                                            
                                                                                                                     
                                                                                                                     \ARROW For this study I simulated the $\tau$'s coming from $\rm c$\\
%\ARROW For now limited statistics simulated ($ \mathcal{O}(100)$).                                                                                                                    
     
	
	
	
	\end{minipage}
		\vspace*{2.cm}
\end{frame}



\begin{frame}{$\tau$ simulation}
	\begin{minipage}{\textwidth}
\ARROW $9~\%$ of the $\tau$ that are produced in LHCb acceptance ($\eta <5$) have a muon that ends in the magnet tracking stations!
      {~}\\{~}\\
      \only<1>{
      \begin{columns}
      \column{0.5\textwidth}
	  \includegraphics[width=0.9\textwidth]{images/tauxy.png}    
      
      
      
      \column{0.5\textwidth}
      \includegraphics[width=0.9\textwidth]{images/tauyz.png}  
      
      \end{columns}
      
      \ARROW Rather uniform distribution.
	}
	\only<2>{	
	\begin{columns}
      \column{0.5\textwidth}
	  \includegraphics[width=0.9\textwidth]{images/taupz.png}    
      
      
      
      \column{0.5\textwidth}
      \includegraphics[width=0.9\textwidth]{images/taupy.png}  
      
      \end{columns}
      {~}\\
\ARROW If we exclude the $\pm 150 \rm cm$ regions we loose $14\%$. 	
	
	}
	
	\end{minipage}
		\vspace*{2.cm}
\end{frame}



\begin{frame}{$\tau$ decay model}
	\begin{minipage}{\textwidth}


\ARROW $\tau$ are decayed with PHSP.\\
\ARROW Might be worth in looking at the specific models:\\
{~}\\
	
\includegraphics[width=0.3\textwidth]{images/radlr_emm.pdf}
\includegraphics[width=0.3\textwidth]{images/vllll_mmm.pdf}	
\includegraphics[width=0.3\textwidth]{images/vllrr_mmm.pdf}	
	
	\end{minipage}
		\vspace*{2.cm}
\end{frame}



\begin{frame}{$\PDstar$ simulation}
	\begin{minipage}{\textwidth}
\ARROW $10~\%$ of the $\tau$ that are produced in LHCb acceptance have a muon that ends in the tracking stations!
      {~}\\{~}\\
      \only<1>{
      \begin{columns}
      \column{0.5\textwidth}
	  \includegraphics[width=0.9\textwidth]{images/Dstarxy.png}    
      
      
      
      \column{0.5\textwidth}
      \includegraphics[width=0.9\textwidth]{images/Dstaryz.png}  
      
      \end{columns}
      
      \ARROW Clearly different behaviour than $\mu$.
	}
	\only<2>{	
	\begin{columns}
      \column{0.5\textwidth}
	  \includegraphics[width=0.9\textwidth]{images/Dstarpz.png}    
      
      
      
      \column{0.5\textwidth}
      \includegraphics[width=0.9\textwidth]{images/Dstarpy.png}  
      
      \end{columns}
      {~}\\
\ARROW If we exclude the $\pm 150 \rm cm$ regions we loose $17\%$. 	
	
	}
	
	
	\end{minipage}
		\vspace*{2.cm}
\end{frame}





\begin{frame}{$\PLambda_c^{\ast}$ simulation}
	\begin{minipage}{\textwidth}
	{~}\\
\ARROW $19~\%$ of the $\tau$ that are produced in LHCb acceptance have a muon that ends in the tracking stations!
      {~}\\{~}\\
      \only<1>{
      \begin{columns}
      \column{0.5\textwidth}
	  \includegraphics[width=0.9\textwidth]{images/Lcxy.png}    
      
      
      
      \column{0.5\textwidth}
      \includegraphics[width=0.9\textwidth]{images/LCyz.png}  
      
      \end{columns}
      
      \ARROW Clearly different behaviour than $\mu$.\\
      \ARROW We have two slow pions. The efficiency looks like factorizes :)
	
	}
	\only<2>{	
	\begin{columns}
      \column{0.5\textwidth}
	  \includegraphics[width=0.9\textwidth]{images/Lcpz.png}    
      
      
      
      \column{0.5\textwidth}
      \includegraphics[width=0.9\textwidth]{images/Lcpy.png}  
      
      \end{columns}
      {~}\\
\ARROW If we exclude the $\pm 150 \rm cm$ regions we loose $16\%$. 	
	}
	\end{minipage}
		\vspace*{2.cm}
\end{frame}



\begin{frame}{Summary}
	\begin{minipage}{\textwidth}

\ARROW Using 3 benchmark channels we see there is quite a lot to be gain!\\
\ARROW This is just tip of the ice berg. \\
\ARROW We need to strengthen the physics program: ex. $\PLambdac(2595)$ decays via intermediate states like $\PSigmac$ which allows polarization measurements.\\
\ARROW Will add multi bodies to the studies.\\
\ARROW $\PB^{\ast \ast} \to \PK \PB$ will allow constrained the final state measurements.\\
\ARROW The length of this detector can be optimised based on our ''golden channels''. 
	
	\end{minipage}
		\vspace*{2.cm}
\end{frame}







\backupbegin

\begin{frame}\frametitle{Backup}
\topline

\end{frame}

\backupend

\end{document}