Newer
Older
Presentations / Tau2012 / SuperB_status_v4 / SuperB_status.tex
@mchrzasz mchrzasz on 9 Jan 2013 10 KB first commit
\documentclass[]{beamer}
\setbeamertemplate{navigation symbols}{}
\usepackage{beamerthemesplit}
\useoutertheme{infolines}
\usecolortheme{dolphin}
\usetheme{Warsaw}
\usepackage{graphicx}
\usepackage{amssymb,amsmath}
\usepackage[latin1]{inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{latexsym}
\usepackage{hyperref}
\usepackage{enumerate}
\usepackage[T1]{fontenc}
\usepackage[polish]{babel}
\usepackage{lmodern}

\usepackage{feynmp}

\logo{\includegraphics[height=1.0cm,keepaspectratio ]{pic/ifj.png}
 \includegraphics[height=1.0cm]{pic/SuperB_logo.png}
}
%\usetheme{Boadilla}

%\beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2->{15}}
\title{The SuperB factory}  
\subtitle{physics prospects and project status}
\author{Marcin Chrz\k{a}szcz}
\date{$21^{st}$ September $2012$} 

\begin{document}

{
\institute{{\scriptsize on behave of SuperB Collaboration} {\small \newline \newline \newline Institute of Nuclear Physics PAN \newline Krakow, Poland}}
\setbeamertemplate{footline}{} 
\begin{frame}
  \titlepage
\end{frame}
}

\institute{IFJ PAN}



%tutaj mamy pierwsza strone


\section[Outline]{}
\begin{frame}
\tableofcontents
\end{frame}

%normal slides
\section{Introduction}


\begin{frame}\frametitle{B factories}

B factories achived a great success over the dozen years. A natural continuation of this project are Super Flavor Factories.
\begin{exampleblock}{Super Flavor Factories} \begin{enumerate}
\item Data $75 ab^{-1}$.
\item Luminosity $10^{36} cm^{-2} s^{-1} $.
\item Flexibility to run on charm threshold with luminosity $10^{35} cm^{-2} s^{-1} $. 
\item Logitudanal polarization of electron beam $80 \% $.
\item Upgradet Babar detector.
\item Start of data taking: 2018.
\item $10ab^{-1}$ peer year.

\end{enumerate}
\end{exampleblock}

\end{frame}

\section{SuperB Infrasctructure}


\subsection{Accelerator}
\begin{frame}


\includegraphics[scale=0.35]{pic/tor_veggata_site.png}



\end{frame}


%\subsection{Accelerator}
\begin{frame}


\includegraphics[scale=0.35]{pic/acc.png}



\end{frame}

\subsection{Luminosity}
\begin{frame}\frametitle{Quest for Luminosity}

\begin{columns}[c]

	\column{3.0in}
	\includegraphics[scale=0.4]{pic/crab_off.png}

	\column{1.5in}
	
	$L \propto \dfrac{1}{\sqrt{\beta}_{y}}$, $  \Phi \approx \dfrac{\sigma_{z}}{\sigma_{x}} \dfrac{\theta}{2}$ 	
	
	
	\end{columns}
		
	
	

\end{frame}
\begin{frame}
\begin{columns}[c]

	\column{3.0in}
	\includegraphics[scale=0.4]{pic/crab_on.png}

	\column{1.5in}
	
	$L \propto \dfrac{1}{\sqrt{\beta}_{y}}$, $  \Phi \approx \dfrac{\sigma_{z}}{\sigma_{x}} \dfrac{\theta}{2}$ 	
	
	\end{columns}
		
	
	

\end{frame}

\section{Detector}
\begin{frame}\frametitle{Recycling}

SuperB detector is based on Babar.

\includegraphics[scale=7]{pic/det.jpg}


\end{frame}


\subsection{SVT}

\begin{frame}\frametitle{Silicon Vertex Tracker}

\begin{columns}[c]
	\column{3in}
	\includegraphics[scale=0.15]{pic/svt2.png}

	\begin{itemize}
	\item Five layers(1-5) of double-sided silicon strip detectors.
	\item Radial span $3-15~{\rm cm}$.
	\item Upgrade the electronics for faster readout.
	\item Additional Layer 0:
	\begin{enumerate}
	\item Radius $\approx 1.5 cm$ .
	\item Low material budget: $X_{0}=0.5\%$.
	\item Two possible technologies: Hybrid Pixels, Double Sided Strip detectors(Striplts).
	
	\end{enumerate}
		\end{itemize}	

		
	%first column	
	\column{2in}
	\newline \includegraphics[scale=0.23]{pic/svtb.png}
		
	%second column	
\end{columns}


\end{frame}







\subsection{DCH}
\begin{frame}\frametitle{Drift Chamber}


\begin{columns}[c]
	\column{3in}
	\includegraphics[scale=0.15]{pic/dich.png}

	\begin{itemize}
	\item 40 layers of $\approx 1 cm$ cells parralel to beam line.
	\item Provide momentum and $\dfrac{dE}{dx}$ for low momentum particles($p<700 MeV$).
	\item $\approx 10000$ channels
	\item Ocuupancy%($3.5 % - 5%$).

		\end{itemize}	

		
	%first column	
	\column{2in}
	R\& D:
	\begin{itemize}
	\item Geometry
	\item Gas mixture
	\item aaaa
	\end{itemize}
		
	%second column	
\end{columns}


\end{frame}


\subsection{DIRC}
\begin{frame}\frametitle{Detector of Internally Reflected Cherenkov light}


\begin{columns}[c]
	\column{2in}
	\includegraphics[scale=0.23]{pic/DIRC.png}
\newline	\includegraphics[scale=0.23]{pic/dirc2.png}

		
	%first column	
	\column{3in}
	
	\begin{itemize}
	\item Momentum range $ 0.7 - 4 GeV$
	\item Radiator: synthetic fused silica.
	\item Photon detectors outside field region.
	\item Radiatoin hard.
		
	\end{itemize}		
		
	%second column	
\end{columns}


\end{frame}


\subsection{EMC and IFR}
\begin{frame}\frametitle{Electromagnetic and hadronic calorimeter}


\begin{columns}[c]
	\column{3in}
	\includegraphics[scale=0.23]{pic/ifr.png}


		
	%first column	
	\column{2in}
	Electronamgnetic Calorimeter:
	\begin{itemize}
	\item Coverage $94\% of 4 \Pi$
	\item CsI or LYSO cristals
	\item Crystal lenght $16-17.5 X_{0}$ 
	\item Radiatoin hard.
	\end{itemize}		
	Instrumented Flux Return:
	\begin{itemize}
	\item Upgrade form TDC to BIRO
	\item Scintilators
	\item Iron reused from Babar
	\item SiPM
	\end{itemize}		
	%second column	
\end{columns}


\end{frame}


%%%%%%%%%%% uFFFFFFFFFFFFFFFFFfff detector  finished


\section{Physics}

\subsection{Rare B Physics}
\begin{frame}\frametitle{$B \rightarrow \tau \nu$}
\begin{columns}[c]
\column{3.5in}
Precise SM prediction:
\small \newline $Br(B \rightarrow l \nu) = \dfrac{G^{2}_{F} m_{B}}{8\pi} m_{l}^{2} (1-\dfrac{m_{l}^{2}}{m_{B}^{2}})f_{B}^{2}\vert V_{ub}\vert^{2} \tau_{B}$
\newline In SUSY:
\small \newline $Br(B \rightarrow l \nu) = \dfrac{G^{2}_{F} m_{B}}{8\pi} m_{l}^{2} (1-\dfrac{m_{l}^{2}}{m_{B}^{2}})f_{B}^{2}\vert V_{ub}\vert^{2} \tau_{B}(1-\dfrac{tan^{2}\beta}{1+\overline{\epsilon} tan \beta}\dfrac{m_{B}^{2}}{m_{H}^{2}})$


\column{1.5in}
\includegraphics[scale=0.2]{pic/b2taunu.png}
\newline \includegraphics[scale=0.2]{pic/higggs.png}
\end{columns}
\center \includegraphics[scale=0.16]{pic/excl.png}


\end{frame}

\subsection{TDCP}
\begin{frame}\frametitle{Time Depended CP}

Time Depended CP can be signs of new physics. One has to study set of modes:
\newline $b \rightarrow s\overline{s}c$, $b \rightarrow s$

Curent experimental results(SM -observed):
\newline $\Delta sin(2\beta)=2.7\sigma$, penguin 
\newline $\Delta sin(2\beta)=2.1\sigma$, tree

Golden modes in SuperB:
$B \rightarrow J/\psi K^{0}$, $B \rightarrow \eta ' K^{0}$, $B \rightarrow f_{0}K_{s}^{0}$
\begin{columns}[c]
\column{3.0in}
\includegraphics[scale=0.2]{pic/table.png}
\column{2.0in}
\includegraphics[scale=0.14]{pic/jpsi.png}
\newline
\newline \includegraphics[scale=0.14]{pic/jpsi2.png}
\end{columns}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{$B \rightarrow X_{s} \gamma$}
\begin{frame}\frametitle{$B \rightarrow X_{s} \gamma$}

Very important probe of new physics! Current experimental result averaged out:
$Br(B \rightarrow X_{s} \gamma ) = (3.52\pm0.23\pm0.09) 10^{-4} $

Theoretical calculations on NNLO:

$Br(B \rightarrow X_{s} \gamma ) = (3.15 \pm 0.23) 10^{-4}$

Experimently chalenging to measure the inclusive decays. THere are two ways of studing this decay:
\begin{enumerate}
\item Exlusive:
\begin{itemize}

 \item The earliest results were done suing a large number of exclusive decays, which are fully reconstructed. 
\item Erros rising from unseen modes. 
\item Obsolete for SuperB.

\end{itemize}
\item Inclusive:
\begin{itemize}
\item Use tagging to tag the other B. 
\item No requirements on $X_{s}$.
\item Disadvantage: Cut on photon energy.
\item Effort to keep the cut as small as possible

\end{itemize}
\end{enumerate}


\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{LFV}
\begin{frame}\frametitle{LFV}
\begin{itemize}
\item LFV can occure in SM due to masses of the neutrinos.
\item Any observation is evidence of new physics.
\item Most promising channels: $\tau \rightarrow l \gamma $, $\tau \rightarrow l l l$.
\newline
\includegraphics[scale=0.33]{pic/tau3mu_SUSY_r_violating-eps-converted-to.pdf}
\includegraphics[scale=0.33]{pic/tau3mu_littlest_higgs-eps-converted-to.pdf}
\includegraphics[scale=0.33]{pic/tau3mu_SUSY_seesaw-eps-converted-to.pdf}
\newline \includegraphics[scale=0.33]{pic/tau3mu_SUSY_seesaw-eps-converted-to.pdf}
\includegraphics[scale=0.33]{pic/tau3mu_SM2-eps-converted-to.pdf}
\includegraphics[scale=0.33]{pic/tau3mu_SM-eps-converted-to.pdf}

\end{itemize}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}\frametitle{$\tau \rightarrow l \gamma$ sensitivity}


\begin{columns}[c]
\column{2.5in}

\begin{itemize}
\item Better tracking resolution, increase $\Delta m - \Delta E $ box, by $65\%$.
\item Higher photon efficiency.
\item Increase of geometry acceprance.
\item Thicker signal peak.
\item Smaller boost improves performance of the fit.
\end{itemize}
\column{2.5in}

\includegraphics[scale=0.2]{pic/dm_de.png}

\end{columns}

\end{frame}





\begin{frame}\frametitle{Polarization}

\begin{columns}[c]
\column{2.0in}
SuperB will have polarized electron beam($80\%$).
One can use this infromation
\newline \newline 
Preliminary results:
Upper limit at $90\%$: $2.44\times10^{-9}$
$3 \sigma$ observation:  $5.50\times 10^{-9}$
\newline 

\column{3.0in}

\includegraphics[scale=0.23]{pic/polar.png}

\end{columns}

\end{frame}


\begin{frame}\frametitle{$\tau \rightarrow 3\mu$}
\begin{columns}[c]
\column{2.0in}
Current analysis:
\begin{itemize}
\item Calculate the trust axis.
\item Semi tag the second $ \tau $. 
\item Limit obtained($90\%$ Br($\tau \rightarrow 3\mu$) = $8.1 \times 10^{-10}$
\end{itemize}
\column{3.0in}
\includegraphics[scale=0.23]{pic/dm_de23mu.png}
\end{columns}
\end{frame}



\begin{frame}\frametitle{LFV Summary}
%!!!!!!!!!!!!!!!!!!!!!!
\includegraphics[scale=0.4]{pic/lfv_superb.png}

\end{frame}




\subsection{CP violation}
\begin{frame}\frametitle{CP violation}
\begin{itemize}
\item CP violation was never observed in $\tau$ sector. 
\item SM prediction is neglible small $O(10^{-12})l$ in $\tau^{\pm} \rightarrow K^{pm} \pi^{0} \nu$. 
\item Any obserwation is clear identification of NP.
\item Very fiew NP models can explain this:
\begin{enumerate}
\item RPV SUSY
\item Multi Higgs models
\end{enumerate}
\item SuperB can improve sensitivety 75 times compared to CLEO.
\end{itemize}

\end{frame}


\subsection{EDM}
\begin{frame}\frametitle{EDM}


EDM can be measured with single angle differential cross section $e^{+}e^{-} \rightarrow \tau^{+} \tau^{-}$.
\begin{itemize}
\item Improvement using polarized beam.
\item Achivable sensitivety: $10^{-19} ecm$

\end{itemize}


\end{frame}










\end{document}