\documentclass[xcolor=svgnames]{beamer} \usepackage[utf8]{inputenc} \usepackage[english]{babel} \usepackage{polski} %\usepackage{amssymb,amsmath} %\usepackage[latin1]{inputenc} %\usepackage{amsmath} %\newcommand\abs[1]{\left|#1\right|} \usepackage{amsmath} \newcommand\abs[1]{\left|#1\right|} \usepackage{hepnicenames} \usepackage{hepunits} \usepackage{color} \usepackage{feynmp} \usepackage{pst-pdf} \usepackage{hyperref} \usepackage{xcolor} \setbeamertemplate{footline}{\insertframenumber/\inserttotalframenumber} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \definecolor{mygreen}{cmyk}{0.82,0.11,1,0.25} \usetheme{Sybila} \title[Lepton Flavour Violation at LHCb ]{Lepton Flavour Violation at LHCb} \author{Marcin Chrz\k{a}szcz$^{1,2}$ \\ \footnotesize{on behalf of the LHCb collaboration}} \institute{$^1$~University of Zurich,\\ $^2$~Institute of Nuclear Physics, Krakow \\{~}\\ International Workshop on Tau Lepton Physics 2014,\\ Aachen, Germany } \date{\today} \begin{document} % --------------------------- SLIDE -------------------------------------------- \frame[plain]{\titlepage} \author{Marcin Chrz\k{a}szcz} % ------------------------------------------------------------------------------ % --------------------------- SLIDE -------------------------------------------- \institute{~(UZH, IFJ)} % \begin{frame}\frametitle{Outline} % \begin{enumerate} % \item introduction\vspace{.5em} % \item multivariate technique\vspace{.5em} % \item normalisation\vspace{.5em} % % \item backgrounds\vspace{.5em} % \item expected sensitivity\vspace{.5em} % \item model dependence\vspace{.5em} data from Reco14Stripping20(r1) % \end{enumerate} % Major news wrt.\ the $1~fb^{-1}$ analysis are highlighted in \textcolor{mygreen}{green} % \end{frame} \begin{frame}\frametitle{Outline} \tableofcontents \end{frame} \section{LHCb detector} \begin{frame}\frametitle{LHCb detector} \begin{columns} \column{3.in} \begin{center} \includegraphics[width=0.98\textwidth]{det.jpg} \end{center} \column{2.0in} \begin{footnotesize} LHCb is a forward spectrometer: \begin{itemize} \item Excellent vertex resolution. \item Efficient trigger. \item High acceptance for $\Ptau$ and $\PB$. \item Great Particle ID \end{itemize} \end{footnotesize} \end{columns} \end{frame} \section{Lepton Flavour Violation status} \begin{frame}\frametitle{Lepton Flavour/Number Violation} \begin{small} Lepton Flavour Violation(LFV): \end{small} \begin{footnotesize} After $\Pmuon$ was discovered (1936) it was natural to think of it as an excited $\Pelectron$. \begin{columns} \column{3in} \begin{itemize} \item Expected: $B(\mu\to\Pe\gamma) \approx 10^{-4}$ \item Unless another $\Pnu$, in intermediate vector boson loop, cancels. \end{itemize} \column{2in} {~}\includegraphics[width=0.98\textwidth]{rabi.png} \end{columns} \begin{columns} \column{0.5in} {~} \column{3in} \begin{block}{I.I.Rabi:} "Who ordered that?" \end{block} \column{0.3in}{~} \column{2in} {~}\includegraphics[scale=0.08]{II_Rabi.jpg} \end{columns} \begin{itemize} \item Up to this day charged LFV is being searched for in various decay modes. \item LFV was already found in neutrino sector (oscillations). \end{itemize} \end{footnotesize} \begin{footnotesize} \begin{columns} \column{3.5in} \begin{small} Lepton Number Violation (LNV) (see J. Harrison \href{https://indico.cern.ch/event/300387/session/17/contribution/74}{\color{blue}talk}) \end{small} \begin{itemize} \item Even with LFV, lepton number can be a conserved quantity. \item Many NP models predict it violation(Majorana neutrinos) \item Searched in so called Neutrinoless double $\beta$ decays. \end{itemize} \column{1.5in} \includegraphics[width=0.73\textwidth]{Double_beta_decay_feynman.png} \end{columns} \end{footnotesize} %Double_beta_decay_feynman.png % \textref{M.Chrz\k{a}szcz 2014} \end{frame} \begin{frame} \frametitle{Status of $\color{white} \tau \to \mu \mu \mu$ in Tau 2012} \begin{columns} \begin{column}{.6\textwidth} \begin{alertblock}{current limits ($ \color{white} 90\,\%$ CL)} \begin{description} \item[BaBar] $3.3\times 10^{-8}$ \item[Belle] $2.1\times 10^{-8}$ \item[LHCb] $8.0\times 10^{-8}~(1 \invfb)$ \end{description} \end{alertblock} {~}\\ \includegraphics[width=.95\textwidth]{TauLFV_UL_2013001_old.pdf} \end{column} \begin{column}{.4\textwidth} \includegraphics[width=.45\textwidth]{275px-Nagoya_Castle.jpg}{~} \includegraphics[width=.45\textwidth]{taushodo.jpg}\\{~}\\{~}\\ \includegraphics[width=.93\textwidth]{Fig3a.png} \end{column} \end{columns} \begin{Large} Today: Update with full LHCb data sample $(3\invfb)$! \end{Large} \end{frame} \begin{frame} \section{Selection} \frametitle{Strategy} \begin{itemize} \item Blind analysis. \item Loose selection. \item Multivariate classification in: mass, PID($\mathcal{M}_{PID}$), geometry($\mathcal{M}_{3body}$). \item Binning optimisation. \item Consider 2012($8~\TeV$) and 2011($7~\TeV$) data separately. \item Relative normalisation ($\PDs\to\Pphi(\Pmu\Pmu)\Ppi$). \item Invariant mass fit for expected background in each likelihood bin: fit in $\left| m-m_{\Ptau} \right| >\unit{30}{\MeV}$. \item ``middle sidebands'' for classifier evaluation and tests: ($\unit{20}{\MeV}<\left| m-m_{\Ptau}\right| <\unit{30}{\MeV}$). \item CLs for limit calculation. \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{$\color{white} \tau$ production} \begin{itemize} \item $\Ptau$'s in LHCb come from five main sources: \end{itemize} \begin{center} \begin{tabular}{| c | c | c | } \hline Mode & $7~\TeV$ & $8~\TeV$ \\ \hline Prompt $\PDs\to\Ptau$ & $71.1\pm3.0\,\%$ & $72.4\pm2.7\,\%$ \\ Prompt $\PDplus\to\Ptau$ & $4.1\pm0.8\,\%$ & $4.2\pm0.7\,\%$ \\ Non-prompt $\PDs\to\Ptau$ & $9.0\pm2.0\,\%$ & $8.5\pm1.7\,\%$ \\ Non-prompt $\PDplus\to\Ptau$ & $0.18\pm0.04\,\%$ & $0.17\pm0.04\,\%$ \\ $X_{\Pbottom}\to\Ptau$ & $15.5\pm2.7\,\%$ & $14.7\pm2.3\,\%$ \\ \hline \end{tabular} \end{center} \begin{columns} \column{0.8\textwidth} \begin{exampleblock}{$\mathcal{B}(\PDplus\to\Ptau)$} \begin{itemize} \item There is no measurement of $\mathcal{B}(\PDplus\to\Ptau)$. \item One can calculate it from: $\mathcal{B}(\PDplus\to\Pmu\Pnum)$ + helicity suppression + phase space. \item \texttt{hep-ex:0604043}. \item $\mathcal{B}(\PDplus\to\Ptau\Pnut)=(1.0\pm0.1) \times10^{-3}$. \end{itemize} \end{exampleblock} \column{0.2\textwidth} {~} \end{columns} \end{frame} \begin{frame} \frametitle{Triggers at LHCb} \begin{itemize} \item LHCb uses complex trigger\footnote{\href{http://arxiv.org/abs/1211.3055}{\color{blue}arxiv 1211.3055}} \item $\mathcal{O}(100)$ trigger lines. \item Lines change with data taking. \item Optimized choice of triggers based on $\dfrac{s}{\sqrt{b}}$ FOM. \item Evaluated different triggers used in 2012 data taking. \item Found negligible differences in trigger efficiencies. \end{itemize} \end{frame} \section{Multivariate technique} \begin{frame} \frametitle{Geometric likelihood} \begin{itemize} \item As mentioned in LHC we have different production sources of $\Ptau$'s. \item Each source has different detector response signature. \item To maximise our performance we trained classifiers for each of the $\Ptau$ sources using: \begin{itemize} \item Kinematic properties of $\Ptau$ candidate. \item Geometric properties of $\Ptau$ candidate, like pointing angle, DOCA, Vertex $\chi^2$, flight distance. \item Isolations, for vertex and individual tracks. \end{itemize} \item After training the individual classifiers one that combines all this information in a single classifier on mixed sample of $\Ptau$'s. \item This technique is known as Blending or Ensemble learning. \item Using this approach we gain $6\%$ sensitivity! \end{itemize} \end{frame} \begin{frame} \frametitle{Performance of Blend classifier} \begin{itemize} \item Classifier prefers $\Ptau$'s from prompt $\PDs$, the dominant channel. \end{itemize} \begin{columns} \begin{column}{.49\textwidth} \begin{exampleblock}{MC response for different\newline $\color{white} \tau$ production channels} \includegraphics[width=.98\textwidth]{./mixing.pdf} \end{exampleblock} \end{column} \begin{column}{.49\textwidth} \begin{exampleblock}{Response for $\color{white} D_s \rightarrow \phi\pi$\newline data and MC} \includegraphics[width=.98\textwidth]{./dataMC.pdf} \end{exampleblock} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{Calibration} \begin{itemize} \item Assume all differences between $\Ptau\to\Pmu\Pmu\Pmu$ and $\PDs\to\Pphi\Ppi$ come from kinematics (mass, resonance, decay time), which is correct in MC. \item Get correction $\PDs\leadsto\Ptau$ from MC. \item Apply corrections to $\PDs\to\Pphi\Ppi$ on data. \end{itemize} \begin{columns} \begin{column}{.45\textwidth} \includegraphics[width=.95\textwidth]{m3body_2012.pdf} \end{column} \begin{column}{.45\textwidth} \begin{itemize} \item $\PDs\to\Pphi\Ppi$ well modelled in MC. % \item[$\rightarrow$] i.e.\ also badly pointing non-prompt $\PDs$ \end{itemize} \end{column} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 % PID \begin{frame} \frametitle{PID} \begin{itemize} \item Classifier trained on inclusive MC sample. \item Using information from: RICH, Calorimeters, Muon system and tracking. \item Correct for the MC efficiency using control channel: $\PDs \to \Pphi(\Pmu\Pmu) \Ppi$ and $\PB \to \PJpsi(\Pmu\Pmu) \PK$ \end{itemize} \begin{columns} \begin{column}{.45\textwidth} \includegraphics[width=.95\textwidth]{mPID_2012.pdf} \end{column} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame} \frametitle{Binning optimisation} \begin{itemize} \item Events are distributed among $\mathcal{M}_{3body}, \mathcal{M}_{PID}$ plane. \item In 2D we group the events in groups(bins) \item Bins are optimised using $CL_s$ method. \item The lowest bins are rejected, because they do not contribute to the limit sensitivity. \item In rest of the bins a fit to mass side-bands is performed in order to estimate number of expected background in signal window. \end{itemize} \begin{columns} \column{2.5in} \center{2011}\\ \includegraphics[width=.85\textwidth]{2D_2011.pdf} \column{2.5in} \center{2012}\\ \includegraphics[width=.85\textwidth]{2D_2012.pdf} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Mass shape} \begin{itemize} \item Double-Gaussian with fixed fraction ($70\,\%$ inner Gaussian). \item Fix fraction to ease calibration. \item Correct mass by MC:\newline $\sigma_{data}^{\Ptau} = \frac{\sigma_{MC}^{\Ptau}}{\sigma_{MC}^{\PDs}}\times\sigma_{data}^{\PDs}$ \end{itemize} \includegraphics[width=.44\textwidth]{./Ds_data_2011.pdf} \includegraphics[width=.44\textwidth]{./Ds_data_2012.pdf} {\footnotesize{ \begin{tabular}{|c|c|c|} \hline Calibrated $\Ptau$ Mass shape & 7~TeV & 8~TeV\\ \hline Mean ($\MeV$) & $1779.1 \pm 0.1$ & $1779.0 \pm 0.1$\\ \hline $\sigma_1$ ($\MeV$) & $7.7 \pm 0.1$ & $7.6 \pm 0.1$\\ \hline $\sigma_2$ ($\MeV$) & $12.0 \pm 0.8$ & $11.5 \pm 0.5$\\ \hline \end{tabular} } } \end{frame} \section{Normalisation} \begin{frame} \frametitle{Relative normalisation} $\mathcal{B}(\Ptau\to\Pmu\Pmu\Pmu) = \frac{\mathcal{B}(\PDs\to\Pphi\Ppi)}{\mathcal{B}(\PDs\to\Ptau\Pnut)} \times f_{\PDs}^{\Ptau} \times \frac{\varepsilon_\text{norm} }{\varepsilon_\text{sig} } \times \frac{N_\text{sig}}{N_\text{norm}} = \alpha\times N_\text{sig}$ \begin{itemize} \item where $\varepsilon$ stands for trigger, reconstruction, selection efficiency. \item $f_{\PDs}^{\Ptau}$ is the fraction of $\Ptau$ coming from $\PDs$. \item $\text{norm}$ = normalisation channel $\PDs\to\Pphi\Ppi$ \newline i.e.\ $(83\pm3)\,\%$ for 2012. \end{itemize} \includegraphics[width=.47\textwidth]{./Ds_data_2011.pdf} \includegraphics[width=.47\textwidth]{./Ds_data_2012.pdf} \end{frame} \section{Backgrounds} \begin{frame} \frametitle{Misidentification} \begin{columns} \column{3in} \begin{itemize} \item Most dominant: $\PDplus\to\PK\Ppi\Ppi$. \item Also seen $\PDplus\to\Ppi\Ppi\Ppi$ and $\PDs\to\Ppi\Ppi\Ppi$. \item All contained in the lowest $\mathcal{M}_{PID}$ bin. % \item Experience from last round: cut away \\low ProbNNmu range % \item Check remaining data under \\$\PK\Ppi\Ppi$ hypothesis for $\PDplus$ peak % \item[$\Rightarrow$] misid safely contained in ``trash'' bin \end{itemize} \column{2in} \includegraphics[width=.95\textwidth]{./WMH.pdf} \end{columns} \includegraphics[width=.45\textwidth]{./trash.pdf}{~}{~}{~}{~}{~}{~}{~}{~}{~}{~}{~}{~}{~}{~} \includegraphics[width=.45\textwidth]{./mPID_2012.pdf} \end{frame} \begin{frame} \frametitle{Dangerous backgrounds} \begin{columns} \column{3in} \begin{itemize} \item $\Pphi\to\Pmu\Pmu + X$: narrow veto on dimuon mass. \item $\PDs\to\Peta(\Pmu\Pmu\Pphoton)\Pmu\Pnum$: not so easy: \begin{itemize} \item Model it \item \underline{Remove it} with dimuon mass cut: \begin{itemize} \item Fits better understood. \item Sensitivity unchanged when removing veto. \item Smaller uncertainty on expected background. \end{itemize} \end{itemize} \end{itemize} \column{2in} \includegraphics[width=.95\textwidth]{./etaMass.pdf}\\ \includegraphics[width=.95\textwidth]{./etaDalitz.pdf} \end{columns} \end{frame} \begin{frame} \frametitle{Remaining backgrounds} \begin{itemize} \item Fit exponential to invariant mass spectrum in each likelihood bin. \item Don't use blinded region ( $\pm \unit{30}{\MeV}$ ). \item[$\rightarrow$] Compatible results blinding only $\pm \unit{20}{\MeV}$\footnote{partially used in classifier development} \end{itemize} {\begin{center} Example of most sensitive regions in 2011 and 2012 \includegraphics[width=0.9\textwidth]{./fits.png} \end{center}} \end{frame} \section{Model dependence} \begin{frame} \frametitle{Model dependence} \begin{itemize} \item $\Peta$ veto $\Rightarrow$ our limit not constraining to New Physics with small $m_{\APmuon\Pmuon}$. \item Model description in \href{http://arxiv.org/abs/0707.0988}{\color{blue}\texttt{arXiv:0707.0988}} by S.Turczyk. \item 5 relevant Dalitz distributions: 2 four-point operators, 1 radiative operator, 2 interference terms. \end{itemize} \only<2->{ \begin{itemize} \item With radiative distribution limit gets worse by a factor of $1.5$ (dominantly from the $\Peta$ veto). \item The other four Dalitz distributions behave nicely (within $7\,\%$). \end{itemize} \begin{center} \includegraphics[width=.5\textwidth]{./sigDalitz.pdf} \end{center} } \only<1>{ \begin{columns} \column{0.33\textwidth} \includegraphics[width=.95\textwidth]{./gammallll2.pdf}\\ \includegraphics[width=.95\textwidth]{./gammarad-llll2.pdf} \column{0.33\textwidth} \includegraphics[width=.95\textwidth]{./gammallrr2.pdf}\\ \includegraphics[width=.95\textwidth]{./gammarad-llrr2.pdf} \column{0.33\textwidth} \includegraphics[width=.95\textwidth]{./gammarad2.pdf}\\ % \begin{itemize} % \item Same models as in Z.Was \href{https://indico.cern.ch/event/300387/session/7/contribution/33}{\color{blue}talk} % \end{itemize} {~}\\ {~}\\ {~}\\ {~}\\ {~}\\ \end{columns} } \end{frame} % \begin{frame} % \frametitle{Conclusion} % \begin{columns} % \begin{column}{.55\textwidth} % \begin{itemize} % \item finally all pieces put together % \item model (in)dependence of $\Peta$ veto investigated % \item expected sensitivity computed\newline $5.6\times 10^{-8}$ % \end{itemize} % \end{column} % \begin{column}{.45\textwidth} % \includegraphics[width=\textwidth]{party-music-hd-wallpaper-1920x1200-3850.jpg} % \end{column} % \end{columns} % \end{frame} \section{Results} \begin{frame} \frametitle{Results} \begin{center} \includegraphics[width=0.7\textwidth]{banana_line.pdf} \end{center} \begin{columns} \column{0.2in}{~} \column{2in} Limits(PHSP):\\ Observed(Expected)\\ $\color{red}4.6~(5.0)\times 10^{-8}$ at $90\%$ CL\\ $\color{pink}5.6~(6.1)\times 10^{-8}$ at $95\%$ CL\\ \column{3in} \includegraphics[width=0.5\textwidth]{model.png} \end{columns} \end{frame} \begin{frame} \frametitle{"The Rule of Three"} \begin{columns} % \column{2.5in} \begin{column}{2.1in} \begin{alertblock}{ $\Ptau \to \Pmu \Pmu \Pmu$ limits ($ \color{white} 90\,\%$ CL)} \begin{description} \item[BaBar(FC)] $3.3\times 10^{-8}$ \item[Belle(FC)] $2.1\times 10^{-8}$ \item[LHCb(CLs)] $4.6\times 10^{-8}$ \item[HFAG(CLs)] $1.2 \times 10^{-8}$ \end{description} \end{alertblock} \end{column} \begin{column}{2.5in} \includegraphics[width=1\textwidth]{zom.png}\\ {~}From A.Lusiani \href{https://indico.cern.ch/event/300387/session/6/contribution/12}{\color{blue}talk} \end{column} \end{columns} {~}\\ To conclude: \begin{itemize} \item LHCb updated $\Ptau \to \Pmu \Pmu \Pmu$ with full data set. \item We are getting close to B-factories. \item Thanks to 3 experiments we have a world limit: $\mathcal{B}(\Ptau \to \Pmu \Pmu \Pmu)< 1.2 \times 10^{-8}$ at 90\% CL. \end{itemize} \end{frame} \end{document}