\documentclass[xcolor=dvipsnames,table]{beamer} \author[Paul Seyfert]{ Johannes Albrecht\inst{1}, Marta Calvi\inst{2}, Marcin Chrz\k{a}szcz\inst{3,4}, Laura Gavardi\inst{1}, Jon Harrison\inst{5}, Basem Khanji\inst{2}, George Lafferty\inst{5}, Tatiana Likhomanenko\inst{6}, Eduardo Rodrigues\inst{5}, Nicola Serra\inst{4}, \underline{Paul Seyfert\inst{7}}} \institute[Uni Heidelberg]{ \inst{1}Dortmund, \inst{2}Milano Bicocca, \inst{3}Cracow, \inst{4}Zurich, \inst{5}Manchester, \inst{6}Yandex, \inst{7}Heidelberg University } \date{\today} \subject{} \AtBeginSection[] { \begin{frame}<beamer>{} \tableofcontents[currentsection,currentsubsection] \end{frame} } \begin{document} \begin{frame} \titlepage \end{frame} \begin{frame} \begin{enumerate} \item introduction\vspace{.5em} \item multivariate technique\vspace{.5em} \item choice of triggers\vspace{.5em} \item normalisation\vspace{.5em} \item backgrounds\vspace{.5em} \item expected sensitivity\vspace{.5em} \item model dependence\vspace{.5em} \end{enumerate} Major news wrt.\ the previous analysis rounds highlighted in \textcolor{darkgreen}{green} \end{frame} \section{introduction} \begin{frame} \frametitle{Status $\Ptau\to\Pmu\Pmu\Pmu$} \begin{columns} \begin{column}{.62\textwidth} \begin{fmffile}{sm} \begin{fmfgraph*}(200,150) \fmfstraight \fmfleft{is3,is2,is1,i1,i2,i3,i4,i5,i6} \fmfright{os3,os2,os1,o1,o2,o3,o4,o5,o6} \fmf{phantom}{o1,g1} \fmf{phantom,tension=1.5}{g1,i1} \fmffreeze \fmf{photon, tension=2.,lab.side=left, lab=$\Pphoton$}{g1,g2} \fmf{fermion,lab.side=left,label=$\APmuon$}{o3,g2} \fmf{fermion,lab.side=left,label=$\Pmuon$}{g2,o5} \fmf{phantom,tension=1.5}{i6,g2} \fmffreeze \fmf{fermion,lab.side=left,label=$\Pgtm$}{i1,w1} \fmf{dashes,lab.side=right,label=$\PWminus$}{w1,w2} \fmf{fermion,lab.side=left,label=$\Pmuon$}{w2,o1} \fmfipath{p[]} \fmf{plain,tension=0,right,label={$\Pgngt\to\Pgngm$},tag=1}{w1,w2} \fmffreeze \fmfiset{p1}{vpath1(__w1,__w2)} \fmfiv{d.sh=cross,d.ang=0,d.size=5thick}{point length(p1)/2 of p1} \end{fmfgraph*} \end{fmffile} {\footnotesize{ \begin{itemize} \item charged Lepton Flavour Violation process \item possible as penguin with neutrino oscillation \item unmeasurable small \end{itemize} }} \end{column} \begin{column}{.37\textwidth} \begin{block}{current limits ($ 90\,\%$ CL)} \begin{description} \item[BaBar] $3.3\times 10^{-8}$ \item[Belle] $2.1\times 10^{-8}$ \item[LHCb] $8.0\times 10^{-8}$ \end{description} \end{block} \begin{block}{BSM predictions} \begin{description} \item[var.\ SUSY] $10^{-10}$ \item[non universal $\PZprime$] $10^{-8}$ \item[mSUGRA+seesaw] $10^{-9}$ \end{description} \end{block} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{$\Ptau$ production} \begin{itemize} \item consider five production channels (fractions at $\unit{8}{\TeV}$):\begin{itemize} \item prompt $\PDs\to\Ptau$ ($73.1\pm3.9\,\%$) \item prompt $\PDplus\to\Ptau$ ($0.42\pm0.43\,\%$) \item non-prompt $\PDs\to\Ptau$ ($9.7\pm2.1\,\%$) \item non-prompt $\PDplus\to\Ptau$ ($0.02\pm0.02\,\%$) \item $X_{\Pbottom}\to\Ptau$ (meson or baryon) ($16.8\pm3.0\,\%$) \end{itemize} \item \textcolor{darkgreen}{use $\sigma(\Pbottom\APbottom)$ at $\unit{8}{\TeV}$ from LHCb} \item \textcolor{darkgreen}{use Pythia scaling for $\sigma(\Pcharm\APcharm)$ at $\unit{8}{\TeV}$} \end{itemize} \begin{exampleblock}{$\mathcal{B}(\PDplus\to\Ptau)$} \begin{itemize} \item old analysis: used upper limit \item now: $\mathcal{B}(\PDplus\to\Pmu\Pnum)$ + helicity suppression + phase space \item \texttt{hep-ex:0604043} \item $\mathcal{B}(\PDplus\to\Ptau\Pnut)=1\pm1\times10^{-4}$ \end{itemize} \end{exampleblock} \end{frame} \begin{frame} \frametitle{Strategy} \begin{itemize} \item mostly as in many rare decay searches: \item loose stripping selection \item multivariate classification in: mass, PID, ``geometry/topology'' \item relative normalisation ($\PDs\to\Pphi(\Pmu\Pmu)\Ppi$) \item invariant mass fit for expected background in each likelihood bin\newline fit in $m-m_{\Ptau}>\unit{30}{\MeV}$ \item ``middle sidebands'' for classifier evaluation ($\unit{20}{\MeV}<m-m_{\Ptau}<\unit{30}{\MeV}$) \item CLs for limit calculation \end{itemize} \begin{block}{today} \begin{itemize} \item $\unit{3}{\reciprocal\femtobarn}$ analysis ``as is'' \item nice \& interesting things not included so far e.g.\ 2011 reanalysed \end{itemize} \end{block} \end{frame} \begin{frame} \frametitle{Datasets} \begin{itemize} \item data from \textcolor{darkgreen}{Reco14Stripping20(r1)} \item much MC\begin{itemize} \item \textcolor{darkgreen}{24M} inclusive background events ($\Pbottom\APbottom$ and $\Pcharm\APcharm$) \item \textcolor{darkgreen}{10M} exclusive background events ($\PDs\to\Peta(\Pmu\Pmu\Pphoton)\Pmu\Pnum$) \item \textcolor{darkgreen}{2M} signal events (split over 5 production channels) \end{itemize} \item[$\Rightarrow$] \textcolor{darkgreen}{generator level cuts} for improved use of computing resources \begin{itemize} \item \textcolor{darkgreen}{$\sim 14$ times more} signal statistics after stripping \item \textcolor{darkgreen}{$\sim 2$ times more} background statistics \end{itemize} \item \textcolor{darkgreen}{mix $\Ptau$ production on ntuple level} instead of reweighting. \newline$\Rightarrow$ ease up ntuple usage (no forgotten weighting, no double weighting, \dots) \end{itemize} \end{frame} \begin{frame} \frametitle{(Stripping) selection} {\footnotesize{ \begin{tabular}{|c|cc|} \hline &$\Ptau\to\Pmu\Pmu\Pmu$&$\PDs\to\Pphi\Ppi$\\ \hline $\mu^\pm$ , $ \pi^\pm$ &\multicolumn{2}{c|}{} \\ $p_T$ &\multicolumn{2}{c|}{$>300\MeV$} \\ Track $\chi^2$/ndf &\multicolumn{2}{c|}{$<3 $} \\ IP $\chi^2$/ndf &\multicolumn{2}{c|}{$>9 $} \\ \textcolor{darkgreen}{track ghost probability} &\multicolumn{2}{c|}{\textcolor{darkgreen}{$<0.3 $}} \\ \hline $\mu$ pairs &\multicolumn{2}{c|}{} \\ $m_{\mu^+\mu^-} - m_{\phi}$ & $>20\MeV$ & $<20\MeV$\\ $m_{\mu^+\mu^-}$ & $> 450\MeV$ & - \\ $m_{\mu^+\mu^+}$ & $> 250\MeV$ & - \\ \hline $\tau^\pm$ and \PDs &\multicolumn{2}{c|}{} \\ $\Delta m$ & $<400\MeV$ & $<50\MeV$\\ Vertex $\chi^2$ &\multicolumn{2}{c|}{$<15$} \\ \textcolor{darkgreen}{IP $\chi^2$} &\multicolumn{2}{c|}{$<225^1 $} \\ $\cos\alpha$ &\multicolumn{2}{c|}{$>0.99$} \\ $c\tau$ (stripping) &\multicolumn{2}{c|}{$>\unit{100}{\mu m}$} \\ &\multicolumn{2}{c|}{no PV refitting}\\ decay time (offline) &\multicolumn{2}{c|}{$> -0.01$ ns \& $< 0.025$ ns}\\ &\multicolumn{2}{c|}{PV refitting}\\ \hline \end{tabular} }} {\footnotesize{$^1$ different LoKi functor}} \end{frame} \section{multivariate technique} \begin{frame} \frametitle{``geometric likelihood''} \begin{itemize} \item classify the displaced 3-body decay properties of a signal candidate \item revisit variable choice \item revisit classification technique \item \textcolor{darkgreen}{more toolkits tried: MatrixNet, NeuroBayes}, TMVA \item \textcolor{darkgreen}{retune input variables\newline($\PBs\to\Pmu\Pmu$ isolation $\rightarrow$ Laura's BDT isolation: CERN-THESIS-2013-259)} \end{itemize} \end{frame} \begin{frame} \frametitle{setup} \begin{itemize} \item train $1/3$ signal MC against $1/2$ background MC \item variables \begin{itemize} \item $3\times$ DOCA \item vertex $\chi^2$ \item $\tau$ decay time \item $\tau$ IP$\chi^2$ \item min.\ $\mu$ IP$\chi^2$ \item $\Ptau$ pointing angle \item $\tau$ $p_T$ \item max.\ track $\chi^2$ \item $\PBs\to\Pmu\Pmu$ track isolation \item cone isolation \item \textcolor{darkgreen}{BDT isolation} \end{itemize} \end{itemize} \end{frame} \begin{frame} \frametitle{futher tweaking} \begin{itemize} \item \textcolor{darkgreen}{remove fully reconstructed 3-body decays from background sample\newline (don't expect to be able to discriminate these)} \item don't apply trigger prior to training \end{itemize} \begin{exampleblock}{``blending'' technique} \begin{itemize} \item for each signal channel we train: one BDT, three Fisher classifier, four MLPs, one FDA, and one LD classifier \item[$\Rightarrow$] 50 classifiers \item one final MatrixNet classifier using the 13 base variables and the 50 classifiers as input \newline(trained on the second $1/3$ of signal MC and the second $1/2$ of background MC) \end{itemize} \end{exampleblock} \end{frame} \begin{frame} \frametitle{performance} \begin{itemize} \item classifier prefers $\Ptau$ from prompt $\PDs$ \end{itemize} \begin{columns} \begin{column}{.48\textwidth} \begin{block}{MC response for different\newline $\Ptau$ production channels} \includegraphics[width=.95\textwidth]{./for_paul.png} \end{block} \end{column} \begin{column}{.48\textwidth} \begin{block}{response for $\PDs\to\Pphi\Ppi$\newline data and MC} \includegraphics[width=.95\textwidth]{./MN_BLEND_FLAT.png} \end{block} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{calibration} \begin{itemize} \item assume all differences between $\Ptau\to\Pmu\Pmu\Pmu$ and $\PDs\to\Pphi\Ppi$ come from kinematics (mass, resonance, decay time) \item get correction $\PDs\leadsto\Ptau$ from MC \item apply corrections to $\PDs\to\Pphi\Ppi$ on data \end{itemize} \begin{block}{validation} \begin{itemize} \item done for 2011 analysis, treating smeared MC as data \end{itemize} \end{block} \begin{columns} \begin{column}{.45\textwidth} \begin{itemize} \item $\PDs\to\Pphi\Ppi$ well modelled in MC \item until the very low likelihood end of the distribution \item[$\rightarrow$] i.e.\ also badly pointing non-prompt $\PDs$ \end{itemize} \end{column} \begin{column}{.45\textwidth} \includegraphics[width=.95\textwidth]{MN_BLEND_FLAT.png} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{PID} \begin{itemize} \item we used ProbNNmu already in the previous round of the analysis \item now use MC12TuneV2 (latest) \item two-fold reason:\begin{itemize} \item expect better performance than CombDLL variables \item ``one variable for everything'':\newline with CombDLL we needed both CombDLL($\mu-\pi$) and CombDLL($\mu-K$) \end{itemize} \end{itemize} \end{frame} \begin{frame} \frametitle{PIDCalib} \begin{itemize} \item calibration strategy: use PIDCalib \item confirm with $\PDs\to\Pphi\Ppi$ if everything is fine \end{itemize} \begin{columns} \begin{column}{.45\textwidth} cut\&fit: \begin{itemize} \item fit $\PDs\to\Pphi\Ppi$ with a TIS muon in data \item cut on ProbNNmu of one muon \item fit again \item[$\rightarrow$] ratio is ``true'' cut efficiency \end{itemize} \begin{block}{ProbNNmu>0.4} $\varepsilon=86.3\,\%$ \end{block} \end{column} \begin{column}{.45\textwidth} PIDCalib \begin{itemize} \item apply full selection (incl. trigger) to $\PDs\to\Pphi\Ppi$ MC reference sample \item avoid IsMuon bias \end{itemize} \begin{block}{ProbNNmu>0.4} $\varepsilon=89.8\,\%$ \end{block} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{?} \begin{itemize} \item first shown at \myhref{https://indico.cern.ch/event/291727/}{charming VRD meeting} \item also mentionned at last \myhref{https://indico.cern.ch/event/298021/}{LHCb week} \item many emails exchanged with Barbara Sciascia \item mistakes on user side found \item still no agreement \end{itemize} \begin{exampleblock}{phenomenologic treatment} \begin{itemize} \item correlations are small in $\PDs\to\Pphi\Ppi$ data and MC \newline $\varepsilon(\text{cut on one muon})^2 = \varepsilon(\text{cut on two muons})$ \item[$\Rightarrow$] use $c^3=(\varepsilon(\text{cut and fit})/\varepsilon(\text{PIDCalib}))^3$ as correction to PIDCalib for $\Ptau\to\Pmu\Pmu\Pmu$ \item assign error of $0.02$ for $c$ \end{itemize} \end{exampleblock} \begin{itemize} \item planned: investigate further (usage/bug/samples) \item planned: use muons from $\PDs\to\Pphi\Ppi$ directly \end{itemize} \end{frame} \begin{frame} \frametitle{binning optimisation} \begin{itemize} \item how to optimise the binning in two classifiers? \item $\unit{1}{\reciprocal\femtobarn}$ CONF note: two one-dimensional optimisations as in $\PBs\to\Pmu\Pmu$ \item $\unit{1}{\reciprocal\femtobarn}$ PAPER: iterative loop of one-dimensional optimisations\newline optimising one classifier on the sensitive range of the other classifier \item \textcolor{darkgreen}{now: optimise two-dimensions (optimise bin boundaries in both dimensions at the same time)} \item unchanged: don't use lowest likelihood bins\newline(reflection backgrounds, no sensitivity gain) \end{itemize} \end{frame} \begin{frame} \frametitle{impact of new binning optimisation} \begin{itemize} \item removal of tiny bins which contribute negligible sensitivity \item colour: limit obtained, using only this particular bin \item number: rank of that bin (1=best sensitivity bin) \end{itemize} ~ \begin{columns} \begin{column}{.5\textwidth} old analysis ~ \includegraphics[width=.95\textwidth]{./90CLonebinlimit.eps} \end{column} \begin{column}{.5\textwidth} new analysis (2011 data, not final calibration) \includegraphics[width=.95\textwidth]{./rank.eps} \end{column} \end{columns} \end{frame} \begin{frame} \frametitle{mass shape} \begin{itemize} \item double-Gaussian with fixed fraction ($70\,\%$ inner Gaussian) \item fix fraction to ease calibration:\newline $\sigma_{data}^{\Ptau} = \frac{\sigma_{MC}^{\Ptau}}{\sigma_{MC}^{\PDs}}\times\sigma_{data}^{\PDs}$ \end{itemize} \includegraphics[width=.44\textwidth]{./Ds_data_2011.pdf} \includegraphics[width=.44\textwidth]{./Ds_data_2012.pdf} {\footnotesize{ \begin{tabular}{|c|c|c|} \hline calibrated $\Ptau$ mass shape & 7~TeV & 8~TeV\\ \hline Mean ($\MeV$) & $1779.1 \pm 0.1$ & $1779.0 \pm 0.1$\\ \hline $\sigma_1$ ($\MeV$) & $7.7 \pm 0.1$ & $7.6 \pm 0.1$\\ \hline $\sigma_2$ ($\MeV$) & $12.0 \pm 0.8$ & $11.5 \pm 0.5$\\ \hline \end{tabular} } } \end{frame} \beamertemplateshadingbackground{darkgreen!30}{PineGreen!30} \section{choice of triggers} \begin{frame} \frametitle{the story} \begin{itemize} \item first look at $\PDs\to\Pphi\Ppi$ revealed: signal/background much worse in 2012 \item[$\rightarrow$] charm got more bandwidth in 2012 \item taking all events quite unsatisfactory:\begin{itemize} \item strictly speaking: we don't know why the events ended up on tape \item trigger efficiencies unstable (TIS/TPS/TOS efficiencies for lots of lines and TCKs) \item signal anyhow mostly TOS in a muon trigger \end{itemize} \item[$\Rightarrow$] if an event was background in the trigger, then don't consider it signal afterwards. \end{itemize} \end{frame} \begin{frame} \frametitle{strategy} \begin{itemize} \item back of the envelope: limit scales with $1/\varepsilon_\text{sig}$ \item back of the envelope: limit scales with $\sqrt{\varepsilon_\text{bkg}}$ \item[$\Rightarrow$] minimise $FOM=\frac{\sqrt{\varepsilon_\text{bkg}}}{\varepsilon_\text{sig}}$ \item running TCKsh and some combinatorics: $\mathcal{O}(2^{256}\approx 10^{75})$ possibilities of using HLT2 line (ignoring that there are different TCKs, TIS/TOS/TPS/DEC, \dots) \item[$\rightarrow$] be more pragmatic! \end{itemize} \begin{exampleblock}{trigger optimisation} \begin{itemize} \item sort trigger lines (Punzi FoM) \item start with events from the best trigger line and compute $FOM$ \item add events from the next trigger and recompute $FOM$ \item iterate and converge to $FOM(\text{all triggers})$ \item use all triggers until $FOM$ starts rising. \end{itemize} \end{exampleblock} \end{frame} \begin{frame} \frametitle{our triggers} {\footnotesize{ \begin{tabular}{l|c|c} & signal & normalisation \\\hline\hline L0$^1$ & \multicolumn{2}{c}{L0Muon TOS}\\\hline Hlt1$^1$ & \multicolumn{2}{c}{Hlt1TrackMuon TOS}\\\hline Hlt2 2011 & Hlt2CharmSemilepD2HMuMu TOS & Hlt2DiMuonDetached$^2$ TOS \\ & || Hlt2TriMuonTau TOS & \\\hline Hlt2 2012 & Hlt2TriMuonTau$^1$ TOS & Hlt2DiMuonDetached$^2$ TOS\\\hline \end{tabular} } } \only<1>{ \begin{block}{$^1$ triggers in 2012} \begin{itemize} \item cuts changed through 2012 \item[$\rightarrow$] \textcolor{darkgreen}{emulated two different TCKs for 2012} \end{itemize} \end{block}} \only<2>{ \begin{block}{$^2$ word on Hlt2DiMuonDetached} \begin{itemize} \item keep it simple here \item line unchanged in 2012 \item[$\rightarrow$] choice keeps Hlt2 trigger efficiency stable \item $\PDs\to\Pphi\Ppi$ anyhow doesn't behave like $\Ptau\to\Pmu\Pmu\Pmu$ in the TriMuon trigger (requires misidentification) \end{itemize} \end{block}} \end{frame} \begin{frame} \frametitle{cross check (not in the note)} \begin{itemize} \item shouldn't the multivariate classifier do better than any trigger? \item back-of-the-envelope overestimates the improvement (expect $\sim 9\,\%$ improvement) \item[$\rightarrow$] add events back to the ntuple, recalculate normalisation, redid fits \item[$\Rightarrow$] \textcolor{darkgreen}{restricting the triggers gains $\sim 3\,\%$ sensitivity wrt.\ previous round} \end{itemize} \end{frame} \beamertemplateshadingbackground{White}{White} \section{normalisation} \begin{frame} \frametitle{relative normalisation} $\mathcal{B}(\Ptau\to\Pmu\Pmu\Pmu) = \frac{\mathcal{B}(\PDs\to\Pphi\Ppi)}{\mathcal{B}(\PDs\to\Ptau\Pnut)} \times f_{\PDs}^{\Ptau} \times \frac{\varepsilon_\text{norm} }{\varepsilon_\text{sig} } \times \frac{N_\text{sig}}{N_\text{norm}} = \alpha\times N_\text{sig}$ \begin{itemize} \item where $\varepsilon$ stands for trigger, reconstruction, selection \item $\text{norm}$ = normalisation channel $\PDs\to\Pphi\Ppi$ \item $f_{\PDs}^{\Ptau}$ is the fraction of $\Ptau$ coming from $\PDs$ \newline i.e.\ $(83\pm3)\,\%$ for 2012 \end{itemize} \includegraphics[width=.47\textwidth]{./Ds_data_2011.pdf} \includegraphics[width=.47\textwidth]{./Ds_data_2012.pdf} \end{frame} \begin{frame}[allowframebreaks] \frametitle{normalisation in numbers} {\footnotesize{ $\begin{array}{c|c|c} & \rm{7~TeV} & \rm{8~TeV}\\ \hline \rm{\epsilon\mathstrut_{sig}}^{GEN} & 8.98 \pm 0.41 & 9.20 \pm 0.36\\ \hline \rm{\epsilon_{cal}}^{GEN} & 11.19 \pm 0.34 & 11.53 \pm 0.32\\ \hline \rm{\epsilon_{sig}}^{REC,isMuon,SEL} & 9.794 \pm 0.028 & 9.134 \pm 0.023 \\ \hline \rm{\epsilon_{cal}}^{REC,isMuon,SEL} & 7.187 \pm 0.022 & 6.690 \pm 0.022 \\ \hline \frac{\rm{c_{cal}}^{track}}{\rm{c_{sig}}^{track}} & 0.997 \pm 0.009 \pm 0.026 & 0.996 \pm 0.009 \pm 0.026 \\ \hline \frac{\rm{c_{cal}}^{\mu ID}}{\rm{c_{sig}}^{\mu ID}} & 0.9731 \pm 0.0031 \pm 0.0264 & 1.0071 \pm 0.0022 \pm 0.0204 \\ \hline \rm{c}^{\Pphi} & \multicolumn{2}{c}{0.98 \pm 0.01} \\ \hline \rm{c}^{\Ptau} & 1.032 \pm 0.006 & 1.026 \pm 0.006\\ \hline \rm{c}^{trash} & 1.95 \pm 0.12 & 2.05 \pm 0.12\\ \hline \rm{\epsilon\mathstrut_{sig}}^{TRIG} & 35.45 \pm 0.11 \pm 0.14 & 39.1 \pm 1.7 \pm 2.0 \\ \hline \rm{\epsilon\mathstrut_{cal}}^{TRIG} & 23.42 \pm 0.14 \pm 0.09 & 20.62 \pm 0.76 \pm 1.07 \\ \end{array}$ }} \framebreak {\footnotesize{ $\begin{array}{c|c|c} & \rm{7~TeV} & \rm{8~TeV}\\ \hline \mathcal{B}(\PDs\to\Pphi\Ppi) & \multicolumn{2}{c}{(1.317 \pm 0.099) \times 10^{-5}}\\ \hline f^{\Ptau}_{\PDs} & 0.82 \pm 0.03 & 0.83 \pm 0.03 \\ \hline \mathcal{B}(\PDs\to\Ptau\Pnut) & \multicolumn{2}{c}{0.0561 \pm 0.0024}\\ \hline \rm{\epsilon\mathstrut_{norm}}^{REC\&SEL}/ \rm{\epsilon\mathstrut_{sig}}^{REC\&SEL} & 0.897 \pm 0.061 & 0.926 \pm 0.056 \\ \hline \rm{\epsilon\mathstrut_{norm}}^{TRIG}/ \rm{\epsilon\mathstrut_{sig}}^{TRIG} & 0.6606 \pm 0.0059 & 0.527 \pm 0.041\\ \hline N_{norm} & 28,162 \pm 434 & 51,998 \pm 684\\ \hline & \\[-1.5em]\hline \alpha & (4.05 \pm 0.48) \times 10^{-9} & (1.83 \pm 0.25) \times 10^{-9}\\ \alpha^{trash} & (7.90 \pm 0.49) \times 10^{-9} & (3.75 \pm 0.27) \times 10^{-9}\\ \end{array}$ }} \end{frame} \section{backgrounds} \begin{frame} \frametitle{misidentification} \begin{itemize} \item most dominant: $\PDplus\to\PK\Ppi\Ppi$ \item experience from last round: cut away low ProbNNmu range \item check remaining data under $\PK\Ppi\Ppi$ hypothesis for $\PDplus$ peak \item[$\Rightarrow$] misid safely contained in ``trash'' bin \item \textcolor{darkgreen}{$\PDplus\to\Ppi\Ppi\Ppi$ and $\PDs\to\Ppi\Ppi\Ppi$ start to become visible in 2012} \end{itemize} \includegraphics[width=.45\textwidth]{./Dp2Kpipi_all_2012_senseBins.pdf} \includegraphics[width=.45\textwidth]{./FittoD23pi_2012.pdf} \end{frame} \begin{frame} \frametitle{evil backgrounds} \begin{itemize} \item $\Pphi\to\Pmu\Pmu + X$: narrow veto on dimuon mass \item $\PDs\to\Peta(\Pmu\Pmu\Pphoton)\Pmu\Pnum$: not so easy \begin{itemize} \item modelled in CONF note \item optimised veto in PAPER \item right now: both versions in the ANA note \end{itemize} \item baseline: veto $m_{\APmuon\Pmuon} < \unit{450}{\MeV}$ \begin{itemize} \item fits better understood \item sensitivity unchanged when removing veto \item smaller uncertainty on expected background \end{itemize} \end{itemize} \end{frame} \begin{frame} \frametitle{remaining backgrounds} \begin{itemize} \item fit exponential to invariant mass spectrum in each likelihood bin \item don't use $\pm \unit{30}{\MeV}$ in the fit \item[$\rightarrow$] compatible results blinding only $\pm \unit{20}{\MeV}$\footnote{partially used in classifier developement} \end{itemize} {\begin{center} most sensitive bins in 2011 and 2012 \includegraphics[width=.4\textwidth]{./fit2011.png} \includegraphics[width=.4\textwidth]{./fit2012.png} \end{center}} \end{frame} \section{results} \begin{frame} \frametitle{expected limit} \begin{itemize} \item still blinded \item consider nuisance parameters from background fit, signal pdf calibration, normalisation \item nuisance parameters due to $\Ptau$ production not included in signal pdf shape, yet \item limit for combined 2011+2012 analysis \end{itemize} \end{frame} \begin{frame} \frametitle{sensitivity} $\mathcal{B}(\Ptau\to\Pmu\Pmu\Pmu)<5.6 \times 10^{-8}$ at 90\% CL \includegraphics[width=.8\textwidth]{./banana.png} \end{frame} \beamertemplateshadingbackground{PineGreen!30}{White} \section{model dependence} \begin{frame} \frametitle{model dependence} \begin{itemize} \item $\Peta$ veto $\Rightarrow$ our limit not applicable to New Physics with small $m_{\APmuon\Pmuon}$ \item model independent description in \texttt{arXiv:0707.0988} \item 5 relevant Dalitz distributions: 2 four-point operators, 1 radiative operator, 2 interference terms \end{itemize} \only<2->{ \begin{itemize} \item with radiative distribution limit gets worse by $51\,\%$ (dominantly from the $\Peta$ veto) \item the other four Dalitz distributions behave nicely (within $7\,\%$) \end{itemize} } \only<1>{ \includegraphics[width=.331\textwidth]{./gammallll.eps} \includegraphics[width=.331\textwidth]{./gammallrr.eps} \includegraphics[width=.331\textwidth]{./gammarad.eps} \includegraphics[width=.331\textwidth]{./gammarad-llll.eps} \includegraphics[width=.331\textwidth]{./gammarad-llrr.eps} } \end{frame} \beamertemplateshadingbackground{White}{White} \begin{frame} \frametitle{Conclusion} \begin{columns} \begin{column}{.55\textwidth} \begin{itemize} \item finally all pieces put together \item model (in)dependence of $\Peta$ veto investigated \item expected sensitivity computed\newline $5.6\times 10^{-8}$ \end{itemize} \end{column} \begin{column}{.45\textwidth} \includegraphics[width=\textwidth]{party-music-hd-wallpaper-1920x1200-3850.jpg} \end{column} \end{columns} \end{frame} \end{document}