% This program can be redistributed and/or modified under the terms % of the GNU Public License, version 3. % % Seth Brown, Ph.D. % sethbrown@drbunsen.org % % Compiled with XeLaTeX % Dependencies: % Fontin Sans font (http://www.exljbris.com/fontinsans.html) % \documentclass{beamer} \usepackage{pgf} \usepackage{times} \usepackage[T1]{fontenc} %\usepackage[mathscr]{eucal} %\usepackage{mathptmx} %\usepackage{mathrsfs} \usepackage{hyperref} % \usepackage{pgfpagfes} % \setbeameroption{show notes on second screen} %\pgfpagesuselayout{4 on 1}[a4paper,border shrink=5mm,landscape] \usepackage{xcolor} %\usepackage[dvipsnames]{xcolor} %\usepackage{amsfonts} %\usepackage{amsmath} % \usepackage[amssymb]{SIunits} %\usepackage{natbib} %\usepackage{amssymb} \usepackage{hepparticles} \usepackage{hepnicenames} \usepackage{hepunits} \usepackage{tikz} \usepackage[polish]{babel} %\usepackage{lmodern} \usepackage{feynmp} % suppress navigation bar \beamertemplatenavigationsymbolsempty \usepackage[mathscr]{eucal} \usepackage{mathrsfs} \mode<presentation> { \usetheme{bunsen} \setbeamercovered{transparent} \setbeamertemplate{items}[circle] } % set fonts \usepackage{amsfonts} \usepackage{amsmath} \usepackage{verbatim} \usepackage{eepic} \usetikzlibrary{arrows} \usetikzlibrary{shapes} %\usepackage{gfsartemisia-euler} %\usepackage[T1]{fontenc} \setbeamerfont{frametitle}{size=\LARGE,series=\bfseries} \tikzstyle{decision} = [diamond, draw, fill=gray!20, text width=4.5em, text badly centered, node distance=3cm, inner sep=0pt] \tikzstyle{block} = [rectangle, draw, fill=blue!10, text width=5em, text centered, rounded corners, minimum height=2em] \tikzstyle{line} = [draw, -latex'] \tikzstyle{cloud} = [draw, ellipse,fill=red!10, node distance=3cm, minimum height=2em] \tikzstyle{every picture}+=[remember picture] \renewcommand{\PKs}{{\HepParticle{K}{S}{}\xspace}} % color definitions \usepackage{color} \definecolor{uipoppy}{RGB}{225, 64, 5} \definecolor{uipaleblue}{RGB}{96,123,139} \definecolor{uiblack}{RGB}{0, 0, 0} % see the macros.tex file for definitions \include{macros} % title slide definition \title{ $\tau$ Physics at $\tau$ - $c$ factory } \author{Alberto Lusiani, Marcin Chrz\k{a}szcz} \institute[SNS, INFN, IFJ] \date{30th November 2012} %-------------------------------------------------------------------- % Introduction %-------------------------------------------------------------------- \begin{document} \setbeamertemplate{background} {\includegraphics[width=\paperwidth,height=\paperheight]{frontpage_bg_mine}} \setbeamertemplate{footline}[default] \begin{frame} \vspace{1.1cm} \begin{columns} \column{2.75in} \titlepage \begin{center} \includegraphics[height=1.5cm,keepaspectratio ]{pic/SNS.png} \hspace{1cm} \includegraphics[height=1.5cm]{pic/INFN.png} \hspace{1cm} \includegraphics[height=1.4cm]{pic/ifj.png} \end{center} \vspace{10cm} \column{2.0in} \end{columns} \end{frame} \section[Outline]{} \begin{frame} \tableofcontents \end{frame} %------------------------------------------------------------------- % Section 1 %------------------------------------------------------------------- % % Set the background for the rest of the slides. % Insert infoline \setbeamertemplate{background} {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}} \setbeamertemplate{footline}[bunsentheme] \section{$\Upsilon(4S)$ vs $\Psi(3770)$ in $\tau$ sector} \begin{frame}\frametitle{$\Upsilon(4S)$ vs $\Psi(3770)$ in $\tau$ sector} \begin{columns} \column{2.2in} \only<1>{ \begin{block}{} \circled{1} $\tau \overline{\tau}$ cross section \begin{itemize} \item $\sigma_{\tau \overline{\tau}}(m_{\tau \overline{\tau}})=0.1 nb$ \item $\sigma_{\tau \overline{\tau}}(\Upsilon(4S))=0.9 nb$ \item $\sigma_{\tau \overline{\tau}}(\Upsilon(2S))=2.5 nb$ \item $\sigma_{\tau \overline{\tau} MAX}(4.25 \GeV)=3.5 nb$ \end{itemize} \hspace{1cm} \colorbox{white}{\color{blue} $\sigma_{\tau \overline{\tau}}=\dfrac{4 \Pi \alpha^{2}}{3s} \dfrac{3\beta -\beta^{2}}{2}$,} \hspace{1cm} {\newline $\beta$ velocity of $\tau$ } \end{block} } \only<2>{ \begin{block}{} \circled{2} SuperB $75 ab^{-1}$: \begin{itemize} \item Number of $\tau \overline{\tau}$ produced: $0.9nb \times 75 ab^{-1} = 6.8 \times 10^{10}$ \end{itemize} \circled{3} $\tau - c$ factory $7.5 ab^{-1} $: \begin{itemize} \item Number of $\tau \overline{\tau}$ produced: $3 \times 7.5 ab^{-1} = 2.3 \times 10^{10}$ \end{itemize} \end{block} } \column{3.25in} \only<1>{ \includegraphics[scale=0.32 ]{pic/tau_cross.png} } \only<2>{ \includegraphics[scale=0.22 ]{pic/tau_cross2.png} } \end{columns} \textref{A.Lusiani, M.Chrz\k{a}szcz 2012} \end{frame} \section{Lepton Flavour Violation(LFV)} \begin{frame}\frametitle{Current Status of LFV} \begin{block}{} \circled{1} Theoretical considerations: \begin{itemize} \item LFV predicted in many NP models(SUSY, Majorana neutrinos). \item In SM negligibly small $\mathcal{B}<10^{-54}$ \footnote{T.P Cheng, L.Li, Phys. Rev. Lett. 45 (1980) 1908}. \item Any observation clear sign of NP. \end{itemize} \circled{2} Experimental status: \begin{itemize} \item Limits for LFV channels set by BaBar, Belle and Cleo in range of $10^{-7} - 10^{-8}$ depending on the decay channel. \item Most promising channels: $\tau \to \mu \gamma$ and $\tau \to 3 \mu$. \end{itemize} \end{block} \textref{A.Lusiani, M.Chrz\k{a}szcz 2012} \end{frame} \subsection{$\tau \to \mu \gamma$ at $\tau -c$ factory } \begin{frame}\frametitle{$\tau \to \mu \gamma$ at $\tau -c$ factory } SM background for $\tau \to \mu \gamma$ : \begin{itemize} \item $\tau \to \mu \gamma \nu_{\mu} \nu_{\tau}$ \item $\tau \to \pi \pi^{0} \nu_{\tau}$ \item $\tau\tau \to \mu \nu_{\mu} \nu_{\tau} + \pi \pi^{0} \nu_{\tau} \to \mu \gamma \pi^{+}\gamma \mu_{\nu} \nu_{\tau}\nu_{\overline{\tau}}$ \item Initial state radiation: $e^{+} e^{-} \to \tau \overline{\tau} \gamma$ \item Initial state radiation: $e^{+} e^{-} \to \mu \overline{\mu} \gamma$ \end{itemize} ISR strongly suppress the the sensitivity in $\mathcal{B}$ factories. \textref{A.Lusiani, M.Chrz\k{a}szcz 2012} \end{frame} \begin{frame}\frametitle{Suppression ISR at charm threshold} \begin{columns} \column{0.3in} \column{0.8in} \color{red}{$E_{\gamma}$ FSR} \hspace{1cm} \color{black}{$E_{\gamma} \tau \to \mu \gamma$} \\ ISR vanishes for $E \approx 4 GeV $ \column{4.5in} \begin{center} \includegraphics[scale=0.2 ]{pic/ISF.png} \end{center} \end{columns} \textref{A.Lusiani, M.Chrz\k{a}szcz 2012} \end{frame} \begin{frame}\frametitle{Expected sensitivity for $\tau \to \mu \gamma$} From MC studies \footnote{A.V. Bobrov, A.E Boundar, arxiv: 1206.1909} one can estimate the background in the $\mathcal{c} - \tau$ factory using KK2F with TAUOLA generator. \begin{center} \includegraphics[scale=0.18 ]{pic/idiots.png} \end{center} A full data set of $7.5 ab^{-1}$ is sufficient to put an exclusion limit on $\tau \to \mu \gamma$ of order of $10^{-9}$. \textref{A.Lusiani, M.Chrz\k{a}szcz 2012} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{QCD probe} \begin{frame}\frametitle{Probe QCD} \begin{itemize} \item Using analytical constraints and the Operator Product Expansion one can compute ration between harmonic and leptonic decays: \newline $R_{\tau} \equiv \dfrac{\Gamma( \tau \to \nu hadrons(\gamma)) }{\Gamma( \tau \to e \nu_{\tau} \nu_{e})} = R_{\tau, V} + R_{\tau, A}+ R_{\tau, S}$ \item Which can be further devided to contributions coming form different quarks and currents: $R_{\tau} \equiv \dfrac{\Gamma( \tau \to \nu hadrons(\gamma)) }{\Gamma( \tau \to e \nu_{\tau} \nu_{e})} = R_{\tau, V} + R_{\tau, A}+ R_{\tau, S}$ \item Theoretical prediction can be wrote in a form: $R_{\tau, V+A}=N_{c} \vert V_{ud} \vert^{2} S_{EW}(1+\delta_{P}+\delta_{NP})$ \footnote{W.A. Rolke and A.M. Lopez, Nucl. Instr. Meth. in Phys. Res. A458, 745 (2001).} \item Biggest correction comes from $\delta_{P}$. \end{itemize} \textref{A.Lusiani, M.Chrz\k{a}szcz 2012} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \section{CP Violation} \begin{frame}\frametitle{CP Violation} \begin{itemize} \item CP violation in $\tau$ sector is becoming a popular subject in light that the CKM matrix cannot explain matter-antimatter asymmetry. \item Much more decay modes than in $\mu$ sector. \item Possible contributions from charge Higgs at loop level. \end{itemize} The most promising channel is: $\tau \to K_{s} \pi \nu$ \begin{enumerate} \item SM in 3rd loops generates asymmetry. \item Numerical studies showed that NP can contribute in $1\%$ \item Expected sensitivity with full data set is expected to be of the order of $0.01\%$ \end{enumerate} \textref{A.Lusiani, M.Chrz\k{a}szcz 2012} \end{frame} \end{document}