Newer
Older
Presentations / Drell_Yan / ASweek_01_2017 / mchrzasz.tex
@Marcin Chrzaszcz Marcin Chrzaszcz on 14 Feb 2017 26 KB preesntations for K*mumu meeting
\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}

\usepackage[english]{babel} 
\usepackage{polski}         


\usetheme[
	bullet=circle,		% Other option: square
	bigpagenumber,		% circled page number on lower right
	topline=true,			% colored bar at the top of the frame 
	shadow=false,			% Shading for beamer blocks
	watermark=BG_lower,	% png file for the watermark
	]{Flip}

%\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}
                            

\usepackage[lf]{berenis}
\usepackage[LY1]{fontenc}
\usepackage[utf8]{inputenc}

%\usepackage{emerald}
\usefonttheme{professionalfonts}
\usepackage[no-math]{fontspec}		
\defaultfontfeatures{Mapping=tex-text}	% This seems to be important for mapping glyphs properly

\setmainfont{Gillius ADF}			% Beamer ignores "main font" in favor of sans font
\setsansfont{Gillius ADF}			% This is the font that beamer will use by default
% \setmainfont{Gill Sans Light}		% Prettier, but harder to read

\setbeamerfont{title}{family=\fontspec{Gillius ADF}}

\input t1augie.fd

%\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
%\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
% \newcommand{\handwriting}{}	% If you prefer no special handwriting font or don't have augie

%% Gill Sans doesn't look very nice when boldfaced
%% This is a hack to use Helvetica instead
%% Usage: \textbf{\forbold some stuff}
%\newcommand{\forbold}{\fontspec{Arial}}

\usepackage{graphicx}
\usepackage[export]{adjustbox}

\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{colortbl}
\usepackage{mathrsfs} 			% For Weinberg-esque letters
\usepackage{cancel}				% For "SUSY-breaking" symbol
\usepackage{slashed}            % for slashed characters in math mode
\usepackage{bbm}                % for \mathbbm{1} (unit matrix)
\usepackage{amsthm}				% For theorem environment
\usepackage{multirow}			% For multi row cells in table
\usepackage{arydshln} 			% For dashed lines in arrays and tables
\usepackage{siunitx}
\usepackage{xhfill}
\usepackage{grffile}
\usepackage{textpos}
\usepackage{subfigure}
\usepackage{tikz}

%\usepackage{hepparticles}    
\usepackage[italic]{hepparticles}     

\usepackage{hepnicenames} 

% Drawing a line
\tikzstyle{lw} = [line width=20pt]
\newcommand{\topline}{%
  \tikz[remember picture,overlay] {%
    \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
             -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}



% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\usepackage{tikzfeynman}		% For Feynman diagrams
\usetikzlibrary{arrows,shapes}
\usetikzlibrary{trees}
\usetikzlibrary{matrix,arrows} 				% For commutative diagram
% http://www.felixl.de/commu.pdf
\usetikzlibrary{positioning}				% For "above of=" commands
\usetikzlibrary{calc,through}				% For coordinates
\usetikzlibrary{decorations.pathreplacing}  % For curly braces
% http://www.math.ucla.edu/~getreuer/tikz.html
\usepackage{pgffor}							% For repeating patterns

\usetikzlibrary{decorations.pathmorphing}	% For Feynman Diagrams
\usetikzlibrary{decorations.markings}
\tikzset{
	% >=stealth', %%  Uncomment for more conventional arrows
	vector/.style={decorate, decoration={snake}, draw},
	provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
	antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
	fermion/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
	fermionbar/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
	fermionnoarrow/.style={draw=gray},
	gluon/.style={decorate, draw=black,
		decoration={coil,amplitude=4pt, segment length=5pt}},
	scalar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	scalarbar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
	scalarnoarrow/.style={dashed,draw=black},
	electron/.style={draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
}

% TIKZ - for block diagrams, 
% from http://www.texample.net/tikz/examples/control-system-principles/
% \usetikzlibrary{shapes,arrows}
\tikzstyle{block} = [draw, rectangle, 
minimum height=3em, minimum width=6em]




\usetikzlibrary{backgrounds}
\usetikzlibrary{mindmap,trees}	% For mind map
\newcommand{\degree}{\ensuremath{^\circ}}
\newcommand{\E}{\mathrm{E}}
\newcommand{\Var}{\mathrm{Var}}
\newcommand{\Cov}{\mathrm{Cov}}
\newcommand\Ts{\rule{0pt}{2.6ex}}       % Top strut
\newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut

\graphicspath{{images/}}	% Put all images in this directory. Avoids clutter.

% SOME COMMANDS THAT I FIND HANDY
% \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
\newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
\newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
\newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
\newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
\newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
%% "\alert" is already a beamer pre-defined
\newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%

\def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}

\usepackage{gmp}
\usepackage[final]{feynmp-auto}

\usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
\bibliography{bib}
\setbeamertemplate{bibliography item}[text]

\makeatletter\let\frametextheight\beamer@frametextheight\makeatother

% suppress frame numbering for backup slides
% you always need the appendix for this!
\newcommand{\backupbegin}{
	\newcounter{framenumberappendix}
	\setcounter{framenumberappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
	\addtocounter{framenumberappendix}{-\value{framenumber}}
	\addtocounter{framenumber}{\value{framenumberappendix}} 
}


\definecolor{links}{HTML}{2A1B81}
%\hypersetup{colorlinks,linkcolor=,urlcolor=links}

% For shapo's formulas:
\def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\newcommand{\lsim}{\mathop{\lsi}}
\newcommand{\gsim}{\mathop{\gsi}}
\newcommand{\wt}{\widetilde}
%\newcommand{\ol}{\overline}
\newcommand{\Tr}{\rm{Tr}}
\newcommand{\tr}{\rm{tr}}
\newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
\newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
\newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
\newcommand{\eV}{\rm{eV}}
\newcommand{\keV}{\rm{keV}}
\newcommand{\GeV}{\rm{GeV}}
\newcommand{\TeV}{\rm{TeV}}
\newcommand{\im}{\rm{Im}}
\newcommand{\disp}{\displaystyle}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\ba{\begin{eqnarray}}
\def\ea{\end{eqnarray}}
\def\d{\partial}
\def\l{\left(}
\def\r{\right)}
\def\la{\langle}
\def\ra{\rangle}
\def\e{{\rm e}}
\def\Br{{\rm Br}}


\usepackage{pbsi}
\usepackage[T1]{fontenc}

\def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace}      


\author{ {M. Chrzaszcz, K. M\"{u}eller}, A. Weiden  }
\institute{UZH}
\title[Low Mass Drell-Yan at 7,8 and 13  $\rm TeV$]{Low Mass Drell-Yan at 7,8 and 13  $\rm TeV$ }


\begin{document}
\tikzstyle{every picture}+=[remember picture]

{
\setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
\begin{frame}[c]%{\phantom{title page}} 
\begin{center}
\begin{center}
	\begin{columns}
		\begin{column}{0.75\textwidth}
			\flushright \bfseries \Huge {Low Mass Drell-Yan Status Report }
		\end{column}
                \begin{column}{0.02\textwidth}
                  {~}
                  \end{column}
                \begin{column}{0.23\textwidth}
                 % \hspace*{-1.cm}
                  \vspace*{-3mm}
                  \includegraphics[width=0.6\textwidth]{lhcb-logo}
                  \end{column}
	        
	\end{columns}
\end{center}
	\quad
	\vspace{3em}
\begin{columns}
\begin{column}{0.44\textwidth}
\flushright \vspace{-1.8em} { \Large Marcin Chrzaszcz\\\vspace{-0.1em} Katharina M\"{u}eller\\\vspace{-0.1em} Andreas  Weiden}

\end{column}
\begin{column}{0.53\textwidth}
\includegraphics[height=1.3cm]{uzh-transp}
\end{column}
\end{columns}

\vspace{1em}
%		\footnotesize\textcolor{gray}{With N. Serra, B. Storaci\\Thanks to the theory support from M. Shaposhnikov, D. Gorbunov}\normalsize\\
\vspace{0.5em}

	\textcolor{normal text.fg!50!Comment}{Analysis and Software Week, CERN\\February 1, 2017}
\end{center}
\end{frame}
}


\begin{frame}\frametitle{Introduction to Drell-Yan}

\begin{columns}
\column{2.5in}
\begin{itemize}
\item Drell-Yan are process of two quark anihilations in which neutral current couples to two leptons.
\item The cross section of this process depends on two components:
\begin{itemize}
\item Hard scattering process $\color{OrangeRed}{\Rrightarrow}$ NNLO pQCD.
\item Parton Distribution Function (PDF).
\end{itemize}
\item Measurement of the cross section have a high sensitivity to the PDF
\item Due to unique coverage $2<y<5$ LHCb probes the $Q^2-x$ region not covered by other experiments.

\end{itemize}

\column{2.5in}
\includegraphics[width=0.95\textwidth]{images/feynmanDiagram_DrellYan_wRad.png}\\
\includegraphics[width=0.85\textwidth]{images/Q2_x.png}

\end{columns}


\end{frame}


\begin{frame}\frametitle{Selection}
\begin{itemize}
\item Analysis based on 2011, 2012 data set. Now adding 2016.
\item Trigger: 
\begin{itemize}
\item \texttt{L0\_L0DiMuonDecision}, 
\item \texttt{Hlt1DiMuonHighMassDecision},
\item \texttt{Hlt2DiMuonDY(3,4)Decision}
\end{itemize}
\item Stripping: 
\begin{itemize}
\item \texttt{StrippingDY2MuMuLine(3,4)}
\end{itemize}
\item Selection: 
\begin{itemize}
\item $2<\eta^{\mu}<4.5$,
\item $p^{\mu} > 10~\GeV$,
\item $p_T^{\mu} > 3~\GeV$,
\item $\chi^{2,\mu\mu}_{vtx}<5$,
\item $10< m(\mu\mu) < 120~\GeV$.
\end{itemize} 
\end{itemize}
\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Isolation}
\begin{itemize}
\item Drell-Yan unfortunately do not peak in mass $\twoheadrightarrow$ need another variable to control the purity.
\item Instead we define an isolation variable:
\begin{align*}
\mu_{ {\rm{iso}}} = \log(p_T^{ cone}(\mu, 0.5) - p_T^{ cone}(\mu, 0.1))
\end{align*}
\item For two muons we take the maximum of the two isolations:
\begin{align*}
\mu\mu_{ {\rm{iso}}} = \max( \mu_{ {\rm{iso}}}^+, \mu_{ {\rm{iso}}}^-)
\end{align*}
\end{itemize}
\begin{center}
\begin{columns}
\column{0.5\textwidth}
\includegraphics[angle=-90,width=0.9\textwidth]{images/Z0_iso.pdf}
\column{0.5\textwidth}
\includegraphics[width=0.8\textwidth]{images/isolation.png}
\end{columns}

\end{center}
\end{frame}


	\begin{frame}
		\frametitle{Isolation as a function of mass}
		Normalized log(isolation) in selected mass bins:
			\begin{figure}
				\includegraphics[angle=-90,width=.52\linewidth]{{images/full_isolation_mass_selected_MC_2012_Down}}
				\includegraphics[angle=-90,width=.52\linewidth]{{images/full_isolation_mass_selected_Data_2012_Down}}
			\end{figure}

		Backgrounds smear the isolation in data, especially away from resonances ({\color{orange}orange}). In MC very small mass-dependency, which we need to study.

		Even at $Z$ peak ({\color{SkyBlue} blue} and {\color{PineGreen}green}), isolation bulk wider in data than in MC. 
	\end{frame}

\begin{frame}
\frametitle{Explanation of variables}
		\vspace{-1em}
		\begin{figure}
			\includegraphics[width=.8\linewidth]{images/bulk_variables.png}
		\end{figure}
		\[1 / \text{bulk fraction} = \frac{\int {\color{blue}isolated}}{\int {\color{red}bulk}}\]
	\end{frame}



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


\begin{frame}{Mass dependency of bulk}
		MC, 2012
	
			\centering
			\begin{figure}
				\includegraphics[angle=-90,width=.52\linewidth]{images/MC_isolation_mass_bulk_fraction}
				\includegraphics[angle=-90,width=.52\linewidth]{images/MC_isolation_mass_bulk_mean}
			\end{figure}
		Large mass-dependence of bulk fraction, but smaller mass-dependence of bulk mean.
		
		Difference between {\color{orange}MagUp} and {\color{pink}MagDown} to be investigated.
	\end{frame}
	
	\begin{frame}
		\frametitle{Effect of rapidity}
		\framesubtitle{$Z$-peak}
		Strong dependency of bulk fraction of rapidity.
	
			\begin{figure}
				\includegraphics[angle=-90,width=.7\linewidth]{images/Z_isolation_rapidity_bulk_fraction}
			\end{figure}
		
		1 / bulk fraction under-estimated in MC.
	\end{frame}
	
	\begin{frame}
		\frametitle{Effect of rapidity}
		\framesubtitle{$Z$-peak}
	
			\begin{figure}
				\includegraphics[angle=-90,width=.52\linewidth]{images/Z_isolation_rapidity_bulk_mean}
				\includegraphics[angle=-90,width=.52\linewidth]{images/Z_isolation_rapidity_bulk_std}
			\end{figure}
		
		MC and data bulk mean and width agree at $Z$-peak. Data shows some dependency of bulk width for high $y$, MC not.
	\end{frame}

	\begin{frame}
		\frametitle{Effect of rapidity}
		\framesubtitle{Full mass-range}
		\vspace{-0.4em}
			\begin{figure}
				\includegraphics[angle=-90,width=.7\linewidth]{images/full_rapidity_mass_selected_MC_2012_Down}
			\end{figure}

		Rapidity distribution is not the same for different mass-bins (different regions in $x$). Working on finding out if mass dependence is given by this (to be finished by next week). 
	\end{frame}



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                                                                     
\begin{frame}\frametitle{Backgrounds}                                                                                                                        
\begin{itemize}                                                                                                                                              
\item There are two sources of backgrounds:                                                                                                                  
\begin{itemize}                                                                                                                                              
\item Heavy flavour decays.                                                                                                                                  
\item Mis-ID.                                                                                                                                                
\end{itemize}                                                                                                                                                
\item For fitting the $\mu\mu_{iso}$ we need to know both the signal and background distribution.                                                            
\item Background templates can be determined from data                                                                                                       
\begin{itemize}                                                                                                                                              
\item Heavy flavour decays:\\                                                                                                                                
$\looparrowright$ Requiring the $\chi^{2,\mu\mu}_{vtx}>16$\\                                                                                                 
$\looparrowright$ For cross-check $\rm IP>5~\rm mm$                                                                                                          
\item Miss-ID:\\                                                                                                                                             
$\looparrowright$ Require that both muons have the same sign.\\                                                                                              
$\looparrowright$ For cross-check take the minimum bias stripping line.                                                                                      
\end{itemize}                                                                                                                                                
                                                                                                                                                             
                                                                                                                                                             
\end{itemize}                                                                                                                                                
                                                                                                                                                             
                                                                                                                                                             
                                                                                                                                                             
\end{frame} 




                                                                                                                                                             
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                                                                     
\begin{frame}\frametitle{Cross section calculations}                                                                                                         
\begin{itemize}                                                                                                                                              
\item To calculate the cross section the luminosity will be used:                                                                                            
\end{itemize}                                                                                                                                                
\begin{align*}                                                                                                                                               
\sigma= \dfrac{ {\color{OliveGreen}{\varrho}} f^{{\rm MIG}}}{{\color{OliveGreen}{\mathcal{L}}}  {\color{OliveGreen}{  \varepsilon^{{\rm SEL}}}}} \sum \dfrac{1}{\varepsilon^{{\rm TRIG}} \varepsilon^{{\rm MUID}}  {\color{OliveGreen}{\varepsilon^{{\rm GEC}}}} \varepsilon^{{\rm TRACK}}},                                                                                                                          
\end{align*}                                                                                                                                                 
where\\                                                                                                                                                      
\begin{itemize}                                                                                                                                              
\item $ {\color{OliveGreen}{\varrho}}$ signal fraction from the fit.                                                                                                                
\item $f^{{\rm MIG}}$ correction to bin-bin migration.                                                                                                       
\item $ {\color{OliveGreen}{\mathcal{L}}}$ integrated luminosity.                                                                                                                   
\item $ {\color{OliveGreen}{\varepsilon^{{\rm SEL}}}}$ efficiency on the vertex requirement.                                                                                        
\item $\varepsilon^{{\rm MUID}}$ muon identification efficiency.                                                                                             
\item $ {\color{OliveGreen}{\varepsilon^{{\rm GEC}}}}$ global event cut efficiency.                                                                                                 
\item $\varepsilon^{{\rm TRACK}}$ tracking efficiency.                                                                                                       
\end{itemize}                                                                                                                                                
                                                                                                                                                             
                                                                                                                                                             
\end{frame} 



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                                                                     
\begin{frame}\frametitle{$  {\color{OliveGreen}{\varepsilon^{{\rm SEL}}}}$}
\ARROW Evaluated using MC sample:\\{~}\\

\begin{center}
\begin{tabular}{|c|c|}
\hline
$2011$ MagDown & $0.21320 \pm 0.00014$ \\
$2011$ MagUp & $0.21306 \pm 0.00014$ \\
$2012$ MagDown & $0.20402 \pm 0.00013$ \\
$2012$ MagUp & $0.20372 \pm 0.00013$ \\
\hline
\end{tabular}
\end{center}

\ARROW Good agreement between polarities!\\
\ARROW $2012$ efficiency is lower than the $2011$.\\
\ARROW Will merge the polarities:
\begin{center}
\begin{tabular}{|c|c|}
\hline
$2011$  & $0.21313 \pm 0.00010$ \\
$2012$  & $0.20387 \pm 0.00009$ \\

\hline
\end{tabular}
\end{center}



\end{frame} 



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                                                                     
\begin{frame}\frametitle{$  {\color{OliveGreen}{\varepsilon^{{\rm GEC}}}}$}
\ARROW Evaluated on data directly, by fitting the $\Gamma( {\rm SPDHits})$ to data:\\{~}\\
\begin{columns}
\column{0.1in}
{~}\\
\column{0.45\textwidth}
\ARROW $2011$ data:
\includegraphics[width=0.95\textwidth]{{images/spdhits_11_y_2_4.5_10500_60000}.png}
\column{0.45\textwidth}
\ARROW $2012$ data:
\includegraphics[width=0.95\textwidth]{{images/spdhits_12_y_2_4.5_10500_60000}.png}

\end{columns}




\end{frame} 


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                                                                     
\begin{frame}\frametitle{$  {\color{OliveGreen}{\varepsilon^{{\rm GEC}}}}$}
\ARROW Testing the $y - M_{\mu\mu}$ dependence:\\{~}\\
\begin{columns}
\column{0.1in}
{~}\\
\column{0.45\textwidth}
\ARROW $2011$ data\\  $y \in(2,2.25)$\\ $M_{\mu\mu} \in (10.5,12)~\GeV$ :
\includegraphics[width=0.95\textwidth]{{images/spdhits_11_y_2_2.25_10500_12000}.png}
\column{0.45\textwidth}
\ARROW $2012$ data\\  $y \in(2,2.25)$\\ $M_{\mu\mu} \in (10.5,12)~\GeV$ :
\includegraphics[width=0.95\textwidth]{{images/spdhits_12_y_2_2.25_10500_12000}.png}
\end{columns}

\ARROW We didn't observe a variation of the efficiency as a function of $M_{\mu\mu}$ and $y$. 

\end{frame} 




%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                                                                     
\begin{frame}\frametitle{$  {\color{OliveGreen}{\varepsilon^{{\rm GEC}}}}$}
\ARROW Proposed systematic:{~}\\
\begin{columns}
\column{0.1in}
{~}\\
\column{0.45\textwidth}
\ARROW $2011$ data:
\includegraphics[width=0.95\textwidth]{{images/eff11}.png}
\column{0.45\textwidth}
\ARROW $2012$ data:
\includegraphics[width=0.95\textwidth]{{images/eff12}.png}
\end{columns}
{~}\\
\ARROW Suggest the RMS as small systematic.

\end{frame} 





	\begin{frame}
		\frametitle{Conclusions}
		\begin{itemize}
			\item MC isolation template describes data at $Z$-peak reasonably well
			\item But some differences (mainly in $y$) exist, so have to take templates from data (MC can still serve as cross-check)
			\item Templates show a mass-dependence in MC (especially bulk fraction)
			\item Different mass-regions have different rapidity distributions
			\item Needs to be determined if mass-dependence is driven by rapidity-dependence
			\item 2016 MC requested 
		\end{itemize}
	\end{frame}
	

	
	\begin{frame}{Mass dependency of bulk}
		MC vs data, 2012
	
			\centering
			\begin{figure}
				\includegraphics[angle=-90,width=.52\linewidth]{images/full_isolation_mass_bulk_mean}
				\includegraphics[angle=-90,width=.52\linewidth]{images/full_isolation_mass_bulk_std}
			\end{figure}
		Near the $Z$-peak and the $\Upsilon$-peak good agreement.

		Small mass-dependency even in MC ($value\%$).
	\end{frame}
	
	\begin{frame}
	\frametitle{Effect of multiplicity}
	Isolation should, in general, be dependent on multiplicity. First, check if multiplicity is mass dependent.

	\begin{figure}
	\includegraphics[angle=-90,width=.52\linewidth]{images/full_nTracks_mass_selected_MC_2012_Down}
	\includegraphics[angle=-90,width=.52\linewidth]{images/full_nSPD_mass_selected_MC_2012_Down}
	\end{figure}
	
	No mass dependency of multiplicity ($nTracks$ and $nSPD$) in MC
	\end{frame}
	
	\begin{frame}
	\frametitle{Effect of multiplicity}
	At $Z$-peak ($ 60 < M_{\mu\mu} < 120 GeV/c^2$)
	
	Isolation not independent of $nTracks$:
	

	\begin{figure}
	\includegraphics[angle=-90,width=.52\linewidth]{images/Z_isolation_nTracks_bulk_mean}
	\includegraphics[angle=-90,width=.52\linewidth]{images/Z_isolation_nTracks_bulk_std}
	\end{figure}
	
	
	In data, width and mean of bulk dependent on $nTracks$, in MC only mean.
	\end{frame}
	
	\begin{frame}
	\frametitle{Effect of multiplicity}
	At $Z$-peak ($ 60 < M_{\mu\mu} < 120 GeV/c^2$).
	
	Bulk width not independent of $nSPD$:
	

	\begin{figure}
	\includegraphics[angle=-90,width=.52\linewidth]{Z_isolation_nSPD_bulk_mean}
	\includegraphics[angle=-90,width=.52\linewidth]{Z_isolation_nSPD_bulk_std}
	\end{figure}
	
	Mean of bulk agrees in data and MC.
	
	\end{frame}

	\begin{frame}
		\frametitle{Multiplicity reweighting}
		{\color{orange}Data}, {\color{PineGreen}MC befor reweighting}, {\color{SkyBlue}MC after reweighting}
	
		\begin{figure}
			\includegraphics[angle=-90,width=.9\linewidth]{multiplicity_reweighting_md_MC}
		\end{figure}
	\end{frame}



\backupbegin   

\begin{frame}\frametitle{Backup}
\topline 

\end{frame}

\backupend			

\end{document}