\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer} \usepackage[english]{babel} \usepackage{polski} \usetheme[ bullet=circle, % Other option: square bigpagenumber, % circled page number on lower right topline=true, % colored bar at the top of the frame shadow=false, % Shading for beamer blocks watermark=BG_lower, % png file for the watermark ]{Flip} %\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}} \usepackage[lf]{berenis} \usepackage[LY1]{fontenc} \usepackage[utf8]{inputenc} %\usepackage{emerald} \usefonttheme{professionalfonts} \usepackage[no-math]{fontspec} \defaultfontfeatures{Mapping=tex-text} % This seems to be important for mapping glyphs properly \setmainfont{Gillius ADF} % Beamer ignores "main font" in favor of sans font \setsansfont{Gillius ADF} % This is the font that beamer will use by default % \setmainfont{Gill Sans Light} % Prettier, but harder to read \setbeamerfont{title}{family=\fontspec{Gillius ADF}} \input t1augie.fd %\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font %\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font % \newcommand{\handwriting}{} % If you prefer no special handwriting font or don't have augie %% Gill Sans doesn't look very nice when boldfaced %% This is a hack to use Helvetica instead %% Usage: \textbf{\forbold some stuff} %\newcommand{\forbold}{\fontspec{Arial}} \usepackage{graphicx} \usepackage[export]{adjustbox} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{colortbl} \usepackage{mathrsfs} % For Weinberg-esque letters \usepackage{cancel} % For "SUSY-breaking" symbol \usepackage{slashed} % for slashed characters in math mode \usepackage{bbm} % for \mathbbm{1} (unit matrix) \usepackage{amsthm} % For theorem environment \usepackage{multirow} % For multi row cells in table \usepackage{arydshln} % For dashed lines in arrays and tables \usepackage{siunitx} \usepackage{xhfill} \usepackage{grffile} \usepackage{textpos} \usepackage{subfigure} \usepackage{tikz} %\usepackage{hepparticles} \usepackage[italic]{hepparticles} \usepackage{hepnicenames} % Drawing a line \tikzstyle{lw} = [line width=20pt] \newcommand{\topline}{% \tikz[remember picture,overlay] {% \draw[crimsonred] ([yshift=-23.5pt]current page.north west) -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}} % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % \usepackage{tikzfeynman} % For Feynman diagrams \usetikzlibrary{arrows,shapes} \usetikzlibrary{trees} \usetikzlibrary{matrix,arrows} % For commutative diagram % http://www.felixl.de/commu.pdf \usetikzlibrary{positioning} % For "above of=" commands \usetikzlibrary{calc,through} % For coordinates \usetikzlibrary{decorations.pathreplacing} % For curly braces % http://www.math.ucla.edu/~getreuer/tikz.html \usepackage{pgffor} % For repeating patterns \usetikzlibrary{decorations.pathmorphing} % For Feynman Diagrams \usetikzlibrary{decorations.markings} \tikzset{ % >=stealth', %% Uncomment for more conventional arrows vector/.style={decorate, decoration={snake}, draw}, provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw}, antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw}, fermion/.style={draw=gray, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}}, fermionbar/.style={draw=gray, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}}, fermionnoarrow/.style={draw=gray}, gluon/.style={decorate, draw=black, decoration={coil,amplitude=4pt, segment length=5pt}}, scalar/.style={dashed,draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}}, scalarbar/.style={dashed,draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}}, scalarnoarrow/.style={dashed,draw=black}, electron/.style={draw=black, postaction={decorate}, decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}}, bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw}, } % TIKZ - for block diagrams, % from http://www.texample.net/tikz/examples/control-system-principles/ % \usetikzlibrary{shapes,arrows} \tikzstyle{block} = [draw, rectangle, minimum height=3em, minimum width=6em] \usetikzlibrary{backgrounds} \usetikzlibrary{mindmap,trees} % For mind map \newcommand{\degree}{\ensuremath{^\circ}} \newcommand{\E}{\mathrm{E}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\Cov}{\mathrm{Cov}} \newcommand\Ts{\rule{0pt}{2.6ex}} % Top strut \newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut \graphicspath{{images/}} % Put all images in this directory. Avoids clutter. % SOME COMMANDS THAT I FIND HANDY % \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec \newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild \newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold \newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold \newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert \newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert %% "\alert" is already a beamer pre-defined \newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}% \def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}} \usepackage{gmp} \usepackage[final]{feynmp-auto} \usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex} \bibliography{bib} \setbeamertemplate{bibliography item}[text] \makeatletter\let\frametextheight\beamer@frametextheight\makeatother % suppress frame numbering for backup slides % you always need the appendix for this! \newcommand{\backupbegin}{ \newcounter{framenumberappendix} \setcounter{framenumberappendix}{\value{framenumber}} } \newcommand{\backupend}{ \addtocounter{framenumberappendix}{-\value{framenumber}} \addtocounter{framenumber}{\value{framenumberappendix}} } \definecolor{links}{HTML}{2A1B81} %\hypersetup{colorlinks,linkcolor=,urlcolor=links} % For shapo's formulas: \def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}} \def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}} \newcommand{\lsim}{\mathop{\lsi}} \newcommand{\gsim}{\mathop{\gsi}} \newcommand{\wt}{\widetilde} %\newcommand{\ol}{\overline} \newcommand{\Tr}{\rm{Tr}} \newcommand{\tr}{\rm{tr}} \newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&} \newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}} \newcommand{\abs}[1]{\rm{$\left| #1 \right|$}} \newcommand{\eV}{\rm{eV}} \newcommand{\keV}{\rm{keV}} \newcommand{\GeV}{\rm{GeV}} \newcommand{\TeV}{\rm{TeV}} \newcommand{\im}{\rm{Im}} \newcommand{\disp}{\displaystyle} \def\be{\begin{equation}} \def\ee{\end{equation}} \def\ba{\begin{eqnarray}} \def\ea{\end{eqnarray}} \def\d{\partial} \def\l{\left(} \def\r{\right)} \def\la{\langle} \def\ra{\rangle} \def\e{{\rm e}} \def\Br{{\rm Br}} \usepackage{pbsi} \usepackage[T1]{fontenc} \def\ARROW{{\color{JungleGreen}{$\Rrightarrow$}}\xspace} \author{ {M. Chrzaszcz, K. M\"{u}eller}, A. Weiden } \institute{UZH} \title[Low Mass Drell-Yan at 7,8 and 13 $\rm TeV$]{Low Mass Drell-Yan at 7,8 and 13 $\rm TeV$ } \begin{document} \tikzstyle{every picture}+=[remember picture] { \setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}} \begin{frame}[c]%{\phantom{title page}} \begin{center} \begin{center} \begin{columns} \begin{column}{0.75\textwidth} \flushright \bfseries \Huge {Low Mass Drell-Yan Status Report } \end{column} \begin{column}{0.02\textwidth} {~} \end{column} \begin{column}{0.23\textwidth} % \hspace*{-1.cm} \vspace*{-3mm} \includegraphics[width=0.6\textwidth]{lhcb-logo} \end{column} \end{columns} \end{center} \quad \vspace{3em} \begin{columns} \begin{column}{0.44\textwidth} \flushright \vspace{-1.8em} { \Large Marcin Chrzaszcz\\\vspace{-0.1em} Katharina M\"{u}eller\\\vspace{-0.1em} Andreas Weiden} \end{column} \begin{column}{0.53\textwidth} \includegraphics[height=1.3cm]{uzh-transp} \end{column} \end{columns} \vspace{1em} % \footnotesize\textcolor{gray}{With N. Serra, B. Storaci\\Thanks to the theory support from M. Shaposhnikov, D. Gorbunov}\normalsize\\ \vspace{0.5em} \textcolor{normal text.fg!50!Comment}{Analysis and Software Week, CERN\\February 1, 2017} \end{center} \end{frame} } \begin{frame}\frametitle{Introduction to Drell-Yan} \begin{columns} \column{2.5in} \begin{itemize} \item Drell-Yan are process of two quark anihilations in which neutral current couples to two leptons. \item The cross section of this process depends on two components: \begin{itemize} \item Hard scattering process $\color{OrangeRed}{\Rrightarrow}$ NNLO pQCD. \item Parton Distribution Function (PDF). \end{itemize} \item Measurement of the cross section have a high sensitivity to the PDF \item Due to unique coverage $2<y<5$ LHCb probes the $Q^2-x$ region not covered by other experiments. \end{itemize} \column{2.5in} \includegraphics[width=0.95\textwidth]{images/feynmanDiagram_DrellYan_wRad.png}\\ \includegraphics[width=0.85\textwidth]{images/Q2_x.png} \end{columns} \end{frame} \begin{frame}\frametitle{Selection} \begin{itemize} \item Analysis based on 2011, 2012 data set. Now adding 2016. \item Trigger: \begin{itemize} \item \texttt{L0\_L0DiMuonDecision}, \item \texttt{Hlt1DiMuonHighMassDecision}, \item \texttt{Hlt2DiMuonDY(3,4)Decision} \end{itemize} \item Stripping: \begin{itemize} \item \texttt{StrippingDY2MuMuLine(3,4)} \end{itemize} \item Selection: \begin{itemize} \item $2<\eta^{\mu}<4.5$, \item $p^{\mu} > 10~\GeV$, \item $p_T^{\mu} > 3~\GeV$, \item $\chi^{2,\mu\mu}_{vtx}<5$, \item $10< m(\mu\mu) < 120~\GeV$. \end{itemize} \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Isolation} \begin{itemize} \item Drell-Yan unfortunately do not peak in mass $\twoheadrightarrow$ need another variable to control the purity. \item Instead we define an isolation variable: \begin{align*} \mu_{ {\rm{iso}}} = \log(p_T^{ cone}(\mu, 0.5) - p_T^{ cone}(\mu, 0.1)) \end{align*} \item For two muons we take the maximum of the two isolations: \begin{align*} \mu\mu_{ {\rm{iso}}} = \max( \mu_{ {\rm{iso}}}^+, \mu_{ {\rm{iso}}}^-) \end{align*} \end{itemize} \begin{center} \begin{columns} \column{0.5\textwidth} \includegraphics[angle=-90,width=0.9\textwidth]{images/Z0_iso.pdf} \column{0.5\textwidth} \includegraphics[width=0.8\textwidth]{images/isolation.png} \end{columns} \end{center} \end{frame} \begin{frame} \frametitle{Isolation as a function of mass} Normalized log(isolation) in selected mass bins: \begin{figure} \includegraphics[angle=-90,width=.52\linewidth]{{images/full_isolation_mass_selected_MC_2012_Down}} \includegraphics[angle=-90,width=.52\linewidth]{{images/full_isolation_mass_selected_Data_2012_Down}} \end{figure} Backgrounds smear the isolation in data, especially away from resonances ({\color{orange}orange}). In MC very small mass-dependency, which we need to study. Even at $Z$ peak ({\color{SkyBlue} blue} and {\color{PineGreen}green}), isolation bulk wider in data than in MC. \end{frame} \begin{frame} \frametitle{Explanation of variables} \vspace{-1em} \begin{figure} \includegraphics[width=.8\linewidth]{images/bulk_variables.png} \end{figure} \[1 / \text{bulk fraction} = \frac{\int {\color{blue}isolated}}{\int {\color{red}bulk}}\] \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Mass dependency of bulk} MC, 2012 \centering \begin{figure} \includegraphics[angle=-90,width=.52\linewidth]{images/MC_isolation_mass_bulk_fraction} \includegraphics[angle=-90,width=.52\linewidth]{images/MC_isolation_mass_bulk_mean} \end{figure} Large mass-dependence of bulk fraction, but smaller mass-dependence of bulk mean. Difference between {\color{orange}MagUp} and {\color{pink}MagDown} to be investigated. \end{frame} \begin{frame} \frametitle{Effect of rapidity} \framesubtitle{$Z$-peak} Strong dependency of bulk fraction of rapidity. \begin{figure} \includegraphics[angle=-90,width=.7\linewidth]{images/Z_isolation_rapidity_bulk_fraction} \end{figure} 1 / bulk fraction under-estimated in MC. \end{frame} \begin{frame} \frametitle{Effect of rapidity} \framesubtitle{$Z$-peak} \begin{figure} \includegraphics[angle=-90,width=.52\linewidth]{images/Z_isolation_rapidity_bulk_mean} \includegraphics[angle=-90,width=.52\linewidth]{images/Z_isolation_rapidity_bulk_std} \end{figure} MC and data bulk mean and width agree at $Z$-peak. Data shows some dependency of bulk width for high $y$, MC not. \end{frame} \begin{frame} \frametitle{Effect of rapidity} \framesubtitle{Full mass-range} \vspace{-0.4em} \begin{figure} \includegraphics[angle=-90,width=.7\linewidth]{images/full_rapidity_mass_selected_MC_2012_Down} \end{figure} Rapidity distribution is not the same for different mass-bins (different regions in $x$). Working on finding out if mass dependence is given by this (to be finished by next week). \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Backgrounds} \begin{itemize} \item There are two sources of backgrounds: \begin{itemize} \item Heavy flavour decays. \item Mis-ID. \end{itemize} \item For fitting the $\mu\mu_{iso}$ we need to know both the signal and background distribution. \item Background templates can be determined from data \begin{itemize} \item Heavy flavour decays:\\ $\looparrowright$ Requiring the $\chi^{2,\mu\mu}_{vtx}>16$\\ $\looparrowright$ For cross-check $\rm IP>5~\rm mm$ \item Miss-ID:\\ $\looparrowright$ Require that both muons have the same sign.\\ $\looparrowright$ For cross-check take the minimum bias stripping line. \end{itemize} \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Cross section calculations} \begin{itemize} \item To calculate the cross section the luminosity will be used: \end{itemize} \begin{align*} \sigma= \dfrac{ {\color{OliveGreen}{\varrho}} f^{{\rm MIG}}}{{\color{OliveGreen}{\mathcal{L}}} {\color{OliveGreen}{ \varepsilon^{{\rm SEL}}}}} \sum \dfrac{1}{\varepsilon^{{\rm TRIG}} \varepsilon^{{\rm MUID}} {\color{OliveGreen}{\varepsilon^{{\rm GEC}}}} \varepsilon^{{\rm TRACK}}}, \end{align*} where\\ \begin{itemize} \item $ {\color{OliveGreen}{\varrho}}$ signal fraction from the fit. \item $f^{{\rm MIG}}$ correction to bin-bin migration. \item $ {\color{OliveGreen}{\mathcal{L}}}$ integrated luminosity. \item $ {\color{OliveGreen}{\varepsilon^{{\rm SEL}}}}$ efficiency on the vertex requirement. \item $\varepsilon^{{\rm MUID}}$ muon identification efficiency. \item $ {\color{OliveGreen}{\varepsilon^{{\rm GEC}}}}$ global event cut efficiency. \item $\varepsilon^{{\rm TRACK}}$ tracking efficiency. \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{$ {\color{OliveGreen}{\varepsilon^{{\rm SEL}}}}$} \ARROW Evaluated using MC sample:\\{~}\\ \begin{center} \begin{tabular}{|c|c|} \hline $2011$ MagDown & $0.21320 \pm 0.00014$ \\ $2011$ MagUp & $0.21306 \pm 0.00014$ \\ $2012$ MagDown & $0.20402 \pm 0.00013$ \\ $2012$ MagUp & $0.20372 \pm 0.00013$ \\ \hline \end{tabular} \end{center} \ARROW Good agreement between polarities!\\ \ARROW $2012$ efficiency is lower than the $2011$.\\ \ARROW Will merge the polarities: \begin{center} \begin{tabular}{|c|c|} \hline $2011$ & $0.21313 \pm 0.00010$ \\ $2012$ & $0.20387 \pm 0.00009$ \\ \hline \end{tabular} \end{center} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{$ {\color{OliveGreen}{\varepsilon^{{\rm GEC}}}}$} \ARROW Evaluated on data directly, by fitting the $\Gamma( {\rm SPDHits})$ to data:\\{~}\\ \begin{columns} \column{0.1in} {~}\\ \column{0.45\textwidth} \ARROW $2011$ data: \includegraphics[width=0.95\textwidth]{{images/spdhits_11_y_2_4.5_10500_60000}.png} \column{0.45\textwidth} \ARROW $2012$ data: \includegraphics[width=0.95\textwidth]{{images/spdhits_12_y_2_4.5_10500_60000}.png} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{$ {\color{OliveGreen}{\varepsilon^{{\rm GEC}}}}$} \ARROW Testing the $y - M_{\mu\mu}$ dependence:\\{~}\\ \begin{columns} \column{0.1in} {~}\\ \column{0.45\textwidth} \ARROW $2011$ data\\ $y \in(2,2.25)$\\ $M_{\mu\mu} \in (10.5,12)~\GeV$ : \includegraphics[width=0.95\textwidth]{{images/spdhits_11_y_2_2.25_10500_12000}.png} \column{0.45\textwidth} \ARROW $2012$ data\\ $y \in(2,2.25)$\\ $M_{\mu\mu} \in (10.5,12)~\GeV$ : \includegraphics[width=0.95\textwidth]{{images/spdhits_12_y_2_2.25_10500_12000}.png} \end{columns} \ARROW We didn't observe a variation of the efficiency as a function of $M_{\mu\mu}$ and $y$. \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{$ {\color{OliveGreen}{\varepsilon^{{\rm GEC}}}}$} \ARROW Proposed systematic:{~}\\ \begin{columns} \column{0.1in} {~}\\ \column{0.45\textwidth} \ARROW $2011$ data: \includegraphics[width=0.95\textwidth]{{images/eff11}.png} \column{0.45\textwidth} \ARROW $2012$ data: \includegraphics[width=0.95\textwidth]{{images/eff12}.png} \end{columns} {~}\\ \ARROW Suggest the RMS as small systematic. \end{frame} \begin{frame} \frametitle{Conclusions} \begin{itemize} \item MC isolation template describes data at $Z$-peak reasonably well \item But some differences (mainly in $y$) exist, so have to take templates from data (MC can still serve as cross-check) \item Templates show a mass-dependence in MC (especially bulk fraction) \item Different mass-regions have different rapidity distributions \item Needs to be determined if mass-dependence is driven by rapidity-dependence \item 2016 MC requested \end{itemize} \end{frame} \begin{frame}{Mass dependency of bulk} MC vs data, 2012 \centering \begin{figure} \includegraphics[angle=-90,width=.52\linewidth]{images/full_isolation_mass_bulk_mean} \includegraphics[angle=-90,width=.52\linewidth]{images/full_isolation_mass_bulk_std} \end{figure} Near the $Z$-peak and the $\Upsilon$-peak good agreement. Small mass-dependency even in MC ($value\%$). \end{frame} \begin{frame} \frametitle{Effect of multiplicity} Isolation should, in general, be dependent on multiplicity. First, check if multiplicity is mass dependent. \begin{figure} \includegraphics[angle=-90,width=.52\linewidth]{images/full_nTracks_mass_selected_MC_2012_Down} \includegraphics[angle=-90,width=.52\linewidth]{images/full_nSPD_mass_selected_MC_2012_Down} \end{figure} No mass dependency of multiplicity ($nTracks$ and $nSPD$) in MC \end{frame} \begin{frame} \frametitle{Effect of multiplicity} At $Z$-peak ($ 60 < M_{\mu\mu} < 120 GeV/c^2$) Isolation not independent of $nTracks$: \begin{figure} \includegraphics[angle=-90,width=.52\linewidth]{images/Z_isolation_nTracks_bulk_mean} \includegraphics[angle=-90,width=.52\linewidth]{images/Z_isolation_nTracks_bulk_std} \end{figure} In data, width and mean of bulk dependent on $nTracks$, in MC only mean. \end{frame} \begin{frame} \frametitle{Effect of multiplicity} At $Z$-peak ($ 60 < M_{\mu\mu} < 120 GeV/c^2$). Bulk width not independent of $nSPD$: \begin{figure} \includegraphics[angle=-90,width=.52\linewidth]{Z_isolation_nSPD_bulk_mean} \includegraphics[angle=-90,width=.52\linewidth]{Z_isolation_nSPD_bulk_std} \end{figure} Mean of bulk agrees in data and MC. \end{frame} \begin{frame} \frametitle{Multiplicity reweighting} {\color{orange}Data}, {\color{PineGreen}MC befor reweighting}, {\color{SkyBlue}MC after reweighting} \begin{figure} \includegraphics[angle=-90,width=.9\linewidth]{multiplicity_reweighting_md_MC} \end{figure} \end{frame} \backupbegin \begin{frame}\frametitle{Backup} \topline \end{frame} \backupend \end{document}