- \documentclass[xcolor=svgnames]{beamer}
- \usepackage[utf8]{inputenc}
- \usepackage[english]{babel}
- \usepackage{polski}
- %\usepackage{amssymb,amsmath}
- %\usepackage[latin1]{inputenc}
- %\usepackage{amsmath}
- %\newcommand\abs[1]{\left|#1\right|}
- \usepackage{amsmath}
- \newcommand\abs[1]{\left|#1\right|}
- \usepackage{hepnicenames}
- \usepackage{hepunits}
- \usepackage{color}
-
- %% Shortcuts %%
- \newcommand{\aver}[1]{\langle #1 \rangle}
- \newcommand{\dual}[1]{\tilde{#1}}
- \newcommand{\est}[1]{\widehat{#1}}
- \newcommand{\ie}{\textit{i.e.}}
- \newcommand{\nuvec}{\vec{\nu}}
- \newcommand{\order}[1]{\mathcal{O}\left({#1}\right)}
- \newcommand{\refapp}[1]{app.~(\ref{app:#1})}
- \newcommand{\refeq}[1]{eq.~(\ref{eq:#1})}
- \newcommand{\reffig}[1]{fig.~(\ref{fig:#1})}
- \newcommand{\refsec}[1]{sec.~(\ref{sec:#1})}
- \newcommand{\reftab}[1]{tab.~(\ref{tab:#1})}
- \newcommand{\rmdx}[1]{\mbox{d} #1 \,} % differential
- \newcommand{\subd}{_{\text{d}}}
- \newcommand{\subt}{_{\text{t}}}
- \newcommand{\thvec}{\vec{\vartheta}}
- \let\oldtheta\theta
- \renewcommand{\theta}{\vartheta}
- \let\eps\varepsilon
- \newcommand{\vecest}[1]{\widehat{\vec{#1}}}
- \newcommand{\wwhat}[1]{\widehat{\widehat{#1}}}
- \newcommand{\xd}{x\subd}
- \newcommand{\xt}{x\subt}
- \newcommand{\Ekernel}{E(\xd|\xt)}
- \newcommand{\pdf}{p.d.f.{~}}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
- \definecolor{mygreen}{cmyk}{0.82,0.11,1,0.25}
-
-
- \usetheme{Sybila}
-
- \title[Extracting angular observables with the Method of Moments]{Extracting angular observables\\ with the Method of Moments}
- \author{Marcin Chrz\k{a}szcz$^{1}$ \\in collaboration with \\Frederik Beaujean, Nicola Serra and Danny van Dyk,\\{~}\\ based on \href{http://arxiv.org/abs/1503.04100}{\textit{arXiv:1503.04100}} }
- \institute{$^1$~University of Zurich}
- \date{\today}
-
- \begin{document}
- % --------------------------- SLIDE --------------------------------------------
- \frame[plain]{\titlepage}
- \author{Marcin Chrz\k{a}szcz{~}}
- \institute{(UZH)}
- % ------------------------------------------------------------------------------
- % --------------------------- SLIDE --------------------------------------------
- %\tableofcontents
- \begin{frame}
- \begin{enumerate}
- \item Motivation.
- \item Method of Moments.
- \item Systematic uncertainties.
- \item MC toy studies.
- \item Conclusions.
- \end{enumerate}
-
- \end{frame}
-
- \placelogotrue
- \section{Motivation}
- \begin{frame}\frametitle{Motivation}
-
- Likelihood(LL) fits even though widely used suffer from couple of draw backs:
- \begin{enumerate}
- \item In case of small number events LL fits suffer from convergence problems. This behaviour is well known and was observed several times in toys for $\PB \to \PKstar \Pmu \Pmu$.
- \item LL can exhibit a bias when underlying physics model is not well known, incomplete or mismodeled.
- \item The LL have problems converging when parameters of the \pdf are close to their physical boundaries.%, so-called ''boundary problem''
- \item Accessing uncertainty in LL fits sometimes requires application of computationally expensive Feldman-Cousins method.
- \end{enumerate}
-
-
-
- \end{frame}
-
-
-
- \begin{frame}\frametitle{Method of Moments}
- \begin{columns}
- \column{0.05in}{~}
- \column{2.2in}
- \begin{center} MoM addresses the above problems:\end{center}
-
- \column{2.in}
- \only<3>{
- \begin{center} Drawback:\end{center}
- }
- \end{columns}
-
-
-
- \begin{columns}
- \column{0.05in}{~}
- \column{2.2in}
- \only<1>{
- %\begin{center} MoM solves the above problems:\end{center}
- \begin{exampleblock}{Advantages of MoM}
- \begin{itemize}
- \item Probability distribution function rapidity converges towards the Gaussian distribution.
- \item MoM gives an unbias result even with small data sample.
- \item Insensitive to large class of remodelling of physics models.
- \item Is completely insensitive to boundary problems.
- \end{itemize}
- \end{exampleblock}
- }
- \only<2,3>{
- %\begin{center} MoM solves the above problems:\end{center}
- \begin{exampleblock}{Advantages of MoM}
- \begin{itemize}
- \item "For each observable, the mean value can be determined independently from all other observables.
- \item Uncertainly follows perfectly $1/\sqrt{N}$ scaling, where N is number of signal events.
- \end{itemize}
- \end{exampleblock}
- }
- \column{2.in}
- \only<3>{
-
- %\begin{center} Drawback:\end{center}
- \begin{alertblock}{Advantages of MoM}
- \begin{itemize}
- \item Estimated uncertainty in MoM is larger then the ones from LL.
- \end{itemize}
- \end{alertblock}
- }
-
- \end{columns}
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section{Method of Moments}
- \begin{frame}\frametitle{Introduction to MoM}
- Let us a define a probability density function \pdf of a decay:
- \begin{align}
- P(\nuvec, \thvec) \equiv \sum_i S_i(\nuvec) \times f_i(\thvec)
- \end{align}
- Let's assume further that there exist a dual basis: $\lbrace f_i(\thvec) \rbrace$, $\{\dual{f}_i(\thvec)\}$ that the orthogonality relation is valid:
- \begin{equation}
- \label{eq:def-ortho-rel}
- \int_\Omega \rmdx{\vec{\theta}} \dual{f}_i(\thvec) f_j(\thvec) = \delta_{ij}
- \end{equation}
- Since we want to use MoM to extract angular observables it's normal to work with Legendre polynomials. In this case we can find self-dual basis:
- \begin{equation}
- \forall_i \dual{f}_i = f_i~,
- \end{equation}
-
- just by applying the ansatz: $\dual{f}_i=\sum_i a_{ij} f_j$.
-
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- \begin{frame}\frametitle{Determination of angular observables}
- Thanks to the orthonormality relation Eq.~\ref{eq:def-ortho-rel} one can calculate the $S_i(\nuvec)$ just by doing the integration:
- \begin{align}
- S_i(\nuvec)=\int_\Omega d \thvec P(\nuvec, \thvec) \dual{f}_i(\thvec)
- \end{align}
- \pause
- We also need to integrate out the $\nuvec$ dependence:
- \begin{align}\label{eq:canonical}
- \langle S_i \rangle= \int_\Theta d \nuvec \int_\Omega d \thvec P(\nuvec, \thvec) \dual{f}_i(\thvec)
- \end{align}
- \pause
- MoM is basically performing integration in~Eq.~\ref{eq:canonical} using MC method:
- \begin{align*}
- E[S_i] \to \widehat{E[S_i]}=\dfrac{1}{N}\sum_{k=1}^{N} \dual{f}(x_k)
- \end{align*}
-
- \end{frame}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- \begin{frame}\frametitle{Uncertainty estimation}
- MoM provides also a very fast and easy way of estimating the statistical uncertainty:
- \begin{align}
- \sigma (S_i)= \sqrt{\dfrac{1}{N-1}\sum_{k=1}^N ( \dual{f}_i(x_k) - \widehat{S_i} )^2 }
- \end{align}
- and the covariance:
- \begin{equation}
- \mathrm{Cov} [S_i, S_j]=\dfrac{1}{N-1} \sum_{k=1}^N [ \widehat{S_i} - \dual{f}_i(x_k) ][ \widehat{S_j} - \dual{f}_j(x_k) ]
- \end{equation}
- %\pause
- %Thanks to the CLT both equations are satisfied.
-
-
-
- \end{frame}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \section{Systematic uncertainties}
-
-
- %\placelogofalse
-
- \begin{frame}\frametitle{Partial Waves mismodeling}
- \begin{columns}
- \column{3in}
- \only<1>
- {
-
- \begin{itemize}
- \item Let us consider a decay of $\PB \to P_1 P_2 \Pmuon \APmuon$.
- \item In terms of angular \pdf is expressed in terms of partial-wave expansion.
- \item For $\PB \to \PK \Ppi \Pmuon \APmuon$ system, S,P,D waves have been studied.
- \end{itemize}
-
- }
- \only<2>
- {
- \begin{itemize}
- \item One can write the \pdf separating the hadronic system:
- \end{itemize}
- \begin{align}
- P(\cos \theta_1, & \cos \theta_2, \theta_3) = \\ &\quad \nonumber \sum _i S_i(\nuvec, \cos \theta_2) f_i (\cos \theta_1, \theta_3)
- \end{align}
-
- }
-
- \column{2in}
- \includegraphics[width=0.9\textwidth]{images/fig-topology.pdf}
- \end{columns}
- \only<1>{
- \begin{itemize}
- \item The muon system of this kind of decays has a fixed angular dependence in terms of $\theta_1$ (lepton helicity angle) and $\theta_3$ (azimuthal angle).
- \item The hadron system can have arbitrary large angular momentum.
- \end{itemize}
- }
-
- \only<2>{
-
- \begin{itemize}
- \item $S_i(\nuvec, \cos \theta_2)$ can be further expend in terms of Legendre polynomials $p_l^{\vert m \vert }(\cos \theta_2)$:
- \end{itemize}
- \begin{align}
- S_i(\nuvec, \cos \theta_2) = \sum_{l=0}^{\inf} S_{k,l}(\nuvec ) p_l^{\vert m \vert}(\cos \theta_2)
- \end{align}
-
- \begin{small}
-
-
- \begin{itemize}
- \item Experimentally the $ S_{k,l}$ are easily accessible, but there is a theoretical difficulty as one would need to sum over infinite number of partial waves.
- \end{itemize}\end{small}
- }
- \end{frame}
-
- \placelogotrue
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
- \begin{frame}\frametitle{Detector effects}
- \begin{columns}
-
- \column{2.5in}
- \begin{itemize}
- \item Since our detectors are not a perfect devices the angular distribution observed by them are not the distributions that the physics model creates.
- \end{itemize}
- \column{2.5in}
- \includegraphics[width=0.9\textwidth]{images/Fig2b.pdf}
- \end{columns}
- \pause
- \begin{itemize}
- \item To take into account the acceptance effects one needs to simulate the a large sample of MC events.\\
- \item Try to figure out the efficiency function.
- \item Number of possibilities.
- \item Then you can just weight events:
- \end{itemize}
- \begin{align*}
- \widehat{E[S_i]}=\dfrac{1}{\sum_{k=1}^N w_k}\sum_{k=1}^{N} w_k \dual{f}(x_k),~w_k=\dfrac{1}{\epsilon(x_k)}
- \end{align*}
-
-
-
-
- \end{frame}
-
- \begin{frame}\frametitle{Unfolding matrix}
- \only<1>{
- In general one can write the distribution of events after the detector effects:
- \begin{align}
- P^{\rm{Det}}(x_d) = N \int \int dx_t~ P^{\rm{Phys}}(x_t) E(x_d \vert x_t),
- \end{align}
- where $N^{-1}=\int \int d x_t~ dx_d~ P^{\rm{Phys}}(x_t) E(x_d \vert x_t)$ and $E(x_d \vert x_t)$ denotes the efficiency $\epsilon(x_t)$ and resolution of the detector $ R(x_d\vert x_t)$:
- \begin{align}
- E(x_d \vert x_t) = \epsilon(x_t) R(x_d\vert x_t)
- \end{align}
- %\pause
- One can define the raw moments:
- \begin{align}
- Q_i^{(m)} = \int \int d x_t~ dx_d~\dual{f}_i(x_d) P^{(m)}(x_t) E(x_d \vert x_t)
- \end{align}
- \begin{align}
- M_{ij} = \begin{cases}
- 2 Q_i^{(0)} & j = 0\,,\\
- 2\left(Q_i^{(j)} - Q_i^{(0)}\right) & j \neq 0\,,\\
- \end{cases}
- \end{align}
- Once we measured the moments $Q$ in data we can invert Eq. 11 and get the $\vec{S}$: $\widehat{\vec{S}}=M^{-1} \widehat{\vec{Q}}.$
-
-
-
-
-
- }
- \end{frame}
-
-
- \section{Toy Studies}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \placelogofalse
- \begin{frame}\frametitle{Toy Validation}
- \begin{columns}
- \column{2.5in}
- \begin{itemize}
- \item All the statistics properties of MoM have been tested in numbers of TOY MC.
- \item As long as you have~$\sim 30$ events your pulls are perfectly gaussian.
- \item Uncertainty scales with $\frac{\alpha}{\sqrt{n}}$, $\alpha = \mathcal{O}(1)$.
- \item Never observed any boundary problems.
- \end{itemize}
-
- \column{2.5in}
- \includegraphics[width=0.9\textwidth]{images/pull-Q2_5_6_S5_200.png}\\
- \includegraphics[width=0.9\textwidth]{images/Q2_1_2_S5.pdf}
-
- \end{columns}
-
-
-
-
- \end{frame}
- \placelogotrue
- \begin{frame}\frametitle{Correlation of MoM with Likelihood}
-
- \begin{columns}
- \column{2.5in}
- \begin{itemize}
- \item MoM is highly correlated with LL.
- \item Despite the correlation there can be difference of the order of statistical error.
- \end{itemize}
-
- \column{2.5in}
- \includegraphics[width=0.9\textwidth]{images/S3_scat.pdf}\\
-
-
- \end{columns}
- \begin{columns}
- \column{2.5in}
- \includegraphics[width=0.9\textwidth]{images/S5_scat.pdf}
-
- \column{2.5in}
-
- \includegraphics[width=0.9\textwidth]{images/S7_scat.pdf}
-
- \end{columns}
- \end{frame}
-
- \section{Conclusions}
- \placelogotrue
- \begin{frame}\frametitle{Conclusions}
- \begin{enumerate}
- \item MoM viable alternative to LL fits.
- \item Allows LHCb to go smaller $q^2$ bins (get ready for $1~\GeV^2$ soon!).
- \item Alternative method of extracting the detector effects.
- \item Method is universally applicable, as long as an orthonormal
- basis for the \pdf exists.
- \end{enumerate}
-
- \end{frame}
-
- \begin{frame}
-
- \begin{Huge}
- BACKUP
- \end{Huge}
-
- \end{frame}
-
-
-
- \begin{frame}\frametitle{LHCb detector}
- \begin{columns}
- \column{3.in}
- \begin{center}
- \includegraphics[width=0.98\textwidth]{det.jpg}
- \end{center}
-
- \column{2.0in}
- \begin{footnotesize}
-
-
- LHCb is a forward spectrometer:
- \begin{itemize}
- \item Excellent vertex resolution.
- \item Efficient trigger.
- \item High acceptance for $\Ptau$ and $\PB$.
- \item Great Particle ID
- \end{itemize}
-
-
-
- \end{footnotesize}
- \end{columns}
-
- \end{frame}
-
-
-
-
-
- \end{document}