Newer
Older
Presentations / Analysis_and_soft / Drell_yan / mchrzasz.tex
@mchrzasz mchrzasz on 4 Mar 2016 18 KB added lots of presentations
\documentclass[11 pt,xcolor={dvipsnames,svgnames,x11names,table}]{beamer}

\usepackage[english]{babel} 
\usepackage{polski}         


\usetheme[
	bullet=circle,		% Other option: square
	bigpagenumber,		% circled page number on lower right
	topline=true,			% colored bar at the top of the frame 
	shadow=false,			% Shading for beamer blocks
	watermark=BG_lower,	% png file for the watermark
	]{Flip}

%\logo{\kern+1.em\includegraphics[height=1cm]{SHiP-3_LightCharcoal}}
                            

\usepackage[lf]{berenis}
\usepackage[LY1]{fontenc}
\usepackage[utf8]{inputenc}

\usepackage{emerald}
\usefonttheme{professionalfonts}
\usepackage[no-math]{fontspec}		
\defaultfontfeatures{Mapping=tex-text}	% This seems to be important for mapping glyphs properly

\setmainfont{Gillius ADF}			% Beamer ignores "main font" in favor of sans font
\setsansfont{Gillius ADF}			% This is the font that beamer will use by default
% \setmainfont{Gill Sans Light}		% Prettier, but harder to read

\setbeamerfont{title}{family=\fontspec{Gillius ADF}}

\input t1augie.fd

%\newcommand{\handwriting}{\fontspec{augie}} % From Emerald City, free font
%\newcommand{\handwriting}{\usefont{T1}{fau}{m}{n}} % From Emerald City, free font
% \newcommand{\handwriting}{}	% If you prefer no special handwriting font or don't have augie

%% Gill Sans doesn't look very nice when boldfaced
%% This is a hack to use Helvetica instead
%% Usage: \textbf{\forbold some stuff}
%\newcommand{\forbold}{\fontspec{Arial}}

\usepackage{graphicx}
\usepackage[export]{adjustbox}

\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{colortbl}
\usepackage{mathrsfs} 			% For Weinberg-esque letters
\usepackage{cancel}				% For "SUSY-breaking" symbol
\usepackage{slashed}            % for slashed characters in math mode
\usepackage{bbm}                % for \mathbbm{1} (unit matrix)
\usepackage{amsthm}				% For theorem environment
\usepackage{multirow}			% For multi row cells in table
\usepackage{arydshln} 			% For dashed lines in arrays and tables
\usepackage{siunitx}
\usepackage{xhfill}
\usepackage{grffile}
\usepackage{textpos}
\usepackage{subfigure}
\usepackage{tikz}

%\usepackage{hepparticles}    
\usepackage[italic]{hepparticles}     

\usepackage{hepnicenames} 

% Drawing a line
\tikzstyle{lw} = [line width=20pt]
\newcommand{\topline}{%
  \tikz[remember picture,overlay] {%
    \draw[crimsonred] ([yshift=-23.5pt]current page.north west)
             -- ([yshift=-23.5pt,xshift=\paperwidth]current page.north west);}}



% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
\usepackage{tikzfeynman}		% For Feynman diagrams
\usetikzlibrary{arrows,shapes}
\usetikzlibrary{trees}
\usetikzlibrary{matrix,arrows} 				% For commutative diagram
% http://www.felixl.de/commu.pdf
\usetikzlibrary{positioning}				% For "above of=" commands
\usetikzlibrary{calc,through}				% For coordinates
\usetikzlibrary{decorations.pathreplacing}  % For curly braces
% http://www.math.ucla.edu/~getreuer/tikz.html
\usepackage{pgffor}							% For repeating patterns

\usetikzlibrary{decorations.pathmorphing}	% For Feynman Diagrams
\usetikzlibrary{decorations.markings}
\tikzset{
	% >=stealth', %%  Uncomment for more conventional arrows
	vector/.style={decorate, decoration={snake}, draw},
	provector/.style={decorate, decoration={snake,amplitude=2.5pt}, draw},
	antivector/.style={decorate, decoration={snake,amplitude=-2.5pt}, draw},
	fermion/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{>}}}},
	fermionbar/.style={draw=gray, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=gray]{<}}}},
	fermionnoarrow/.style={draw=gray},
	gluon/.style={decorate, draw=black,
		decoration={coil,amplitude=4pt, segment length=5pt}},
	scalar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	scalarbar/.style={dashed,draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{<}}}},
	scalarnoarrow/.style={dashed,draw=black},
	electron/.style={draw=black, postaction={decorate},
		decoration={markings,mark=at position .55 with {\arrow[draw=black]{>}}}},
	bigvector/.style={decorate, decoration={snake,amplitude=4pt}, draw},
}

% TIKZ - for block diagrams, 
% from http://www.texample.net/tikz/examples/control-system-principles/
% \usetikzlibrary{shapes,arrows}
\tikzstyle{block} = [draw, rectangle, 
minimum height=3em, minimum width=6em]




\usetikzlibrary{backgrounds}
\usetikzlibrary{mindmap,trees}	% For mind map
\newcommand{\degree}{\ensuremath{^\circ}}
\newcommand{\E}{\mathrm{E}}
\newcommand{\Var}{\mathrm{Var}}
\newcommand{\Cov}{\mathrm{Cov}}
\newcommand\Ts{\rule{0pt}{2.6ex}}       % Top strut
\newcommand\Bs{\rule[-1.2ex]{0pt}{0pt}} % Bottom strut

\graphicspath{{images/}}	% Put all images in this directory. Avoids clutter.

% SOME COMMANDS THAT I FIND HANDY
% \renewcommand{\tilde}{\widetilde} % dinky tildes look silly, dosn't work with fontspec
\newcommand{\comment}[1]{\textcolor{comment}{\footnotesize{#1}\normalsize}} % comment mild
\newcommand{\Comment}[1]{\textcolor{Comment}{\footnotesize{#1}\normalsize}} % comment bold
\newcommand{\COMMENT}[1]{\textcolor{COMMENT}{\footnotesize{#1}\normalsize}} % comment crazy bold
\newcommand{\Alert}[1]{\textcolor{Alert}{#1}} % louder alert
\newcommand{\ALERT}[1]{\textcolor{ALERT}{#1}} % loudest alert
%% "\alert" is already a beamer pre-defined
\newcommand*{\Scale}[2][4]{\scalebox{#1}{$#2$}}%

\def\Put(#1,#2)#3{\leavevmode\makebox(0,0){\put(#1,#2){#3}}}

\usepackage{gmp}
\usepackage[final]{feynmp-auto}

\usepackage[backend=bibtex,style=numeric-comp,firstinits=true]{biblatex}
\bibliography{bib}
\setbeamertemplate{bibliography item}[text]

\makeatletter\let\frametextheight\beamer@frametextheight\makeatother

% suppress frame numbering for backup slides
% you always need the appendix for this!
\newcommand{\backupbegin}{
	\newcounter{framenumberappendix}
	\setcounter{framenumberappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
	\addtocounter{framenumberappendix}{-\value{framenumber}}
	\addtocounter{framenumber}{\value{framenumberappendix}} 
}


\definecolor{links}{HTML}{2A1B81}
%\hypersetup{colorlinks,linkcolor=,urlcolor=links}

% For shapo's formulas:
\def\lsi{\raise0.3ex\hbox{$<$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\def\gsi{\raise0.3ex\hbox{$>$\kern-0.75em\raise-1.1ex\hbox{$\sim$}}}
\newcommand{\lsim}{\mathop{\lsi}}
\newcommand{\gsim}{\mathop{\gsi}}
\newcommand{\wt}{\widetilde}
%\newcommand{\ol}{\overline}
\newcommand{\Tr}{\rm{Tr}}
\newcommand{\tr}{\rm{tr}}
\newcommand{\eqn}[1]{&\hspace{-0.7em}#1\hspace{-0.7em}&}
\newcommand{\vev}[1]{\rm{$\langle #1 \rangle$}}
\newcommand{\abs}[1]{\rm{$\left| #1 \right|$}}
\newcommand{\eV}{\rm{eV}}
\newcommand{\keV}{\rm{keV}}
\newcommand{\GeV}{\rm{GeV}}
\newcommand{\TeV}{\rm{TeV}}

\newcommand{\im}{\rm{Im}}
\newcommand{\disp}{\displaystyle}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\ba{\begin{eqnarray}}
\def\ea{\end{eqnarray}}
\def\d{\partial}
\def\l{\left(}
\def\r{\right)}
\def\la{\langle}
\def\ra{\rangle}
\def\e{{\rm e}}
\def\Br{{\rm Br}}



\author{ {\fontspec{Trebuchet MS}Marcin Chrz\k{a}szcz} (Universit\"{a}t Z\"{u}rich)}
\institute{UZH}
\title[Drell-Yan status update]{Drell-Yan status update}


\begin{document}
\tikzstyle{every picture}+=[remember picture]

{
\setbeamertemplate{sidebar right}{\llap{\includegraphics[width=\paperwidth,height=\paperheight]{bubble2}}}
\begin{frame}[c]%{\phantom{title page}} 
\begin{center}
\begin{center}
	\begin{columns}
		\begin{column}{0.75\textwidth}
			\flushright\fontspec{Trebuchet MS}\bfseries \Huge {Low Mass Drell-Yan Status Report }
		\end{column}
                \begin{column}{0.02\textwidth}
                  {~}
                  \end{column}
                \begin{column}{0.23\textwidth}
                 % \hspace*{-1.cm}
                  \vspace*{-3mm}
                  \includegraphics[width=0.6\textwidth]{lhcb-logo}
                  \end{column}
	        
	\end{columns}
\end{center}
	\quad
	\vspace{3em}
\begin{columns}
\begin{column}{0.44\textwidth}
\flushright \vspace{-1.8em} {\fontspec{Trebuchet MS} \Large Marcin ChrzÄ…szcz\\\vspace{-0.1em} Katharina M\"{u}eller Nicola Chiapolini}

\end{column}
\begin{column}{0.53\textwidth}
\includegraphics[height=1.3cm]{uzh-transp}
\end{column}
\end{columns}

\vspace{1em}
%		\footnotesize\textcolor{gray}{With N. Serra, B. Storaci\\Thanks to the theory support from M. Shaposhnikov, D. Gorbunov}\normalsize\\
\vspace{0.5em}

	\textcolor{normal text.fg!50!Comment}{Analysis and software week, CERN\\January 27, 2015}
\end{center}
\end{frame}
}

\begin{frame}\frametitle{Introduction to Drell-Yan}

\begin{columns}
\column{2.5in}
\begin{itemize}
\item Drell-Yan are process of two quark anihilations in which neutral coupling to two leptons.
\item The cross section of this process depends on two components:
\begin{itemize}
\item Hard scattering process $\color{OrangeRed}{\Rrightarrow}$ NNLO pQCD.
\item Parton Distribution Function (PDF).
\end{itemize}
\item Measurement of the cross section have a high sensitivity to the PDF
\item Due to unique coverage $2<y<5$ LHCb probes the $Q^2-x$ region not covered by other experiments.

\end{itemize}

\column{2.5in}
\includegraphics[width=0.95\textwidth]{images/feynmanDiagram_DrellYan_wRad.png}\\
\includegraphics[width=0.85\textwidth]{images/Q2_x.png}

\end{columns}


\end{frame}




\begin{frame}\frametitle{Selection}
\begin{itemize}
\item Analysis based on 2011 and 2012 data set. 
\item Plan to measure them separately as well as the ratio (cancellation of systematics).
\item Trigger: 
\begin{itemize}
\item \texttt{L0\_L0DiMuonDecision}, 
\item \texttt{Hlt1DiMuonHighMassDecision},
\item \texttt{Hlt2DiMuonDY(3,4)Decision}
\end{itemize}
\item Stripping: 
\begin{itemize}
\item \texttt{StrippingDY2MuMuLine(3,4)}
\end{itemize}
\item Selection: 
\begin{itemize}
\item $2<\eta^{\mu}<4.5$,
\item $p^{\mu} > 10~\GeV$,
\item $p_T^{\mu} > 3~\GeV$,
\item $\chi^{2,\mu\mu}_{vtx}<5$,
\item $10< m(\mu\mu) < 120~\GeV$.
\end{itemize} 
\end{itemize}
\end{frame}




\begin{frame}\frametitle{The Goal}
$\Rrightarrow$ Since there is no normalization channel, we will use the integrated luminosity for cross section calculations\\
$\Rrightarrow$ The measurement will be performed in the bins of dimuon mass and pseudo-rapidity:
\begin{center}
\includegraphics[width=0.7\textwidth]{images/table.png}
\end{center}

\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Isolation}
\begin{itemize}
\item Drell-Yan unfortunately do not peak in mass $\twoheadrightarrow$ need another variable to control the purity.
\item Instead we define an isolation variable:
\begin{align*}
\mu_{ {\rm{iso}}} = \log(p_T^{ cone}(\mu, 0.5) - p_T^{ cone}(\mu, 0.1))
\end{align*}
\item For two muons we take the maximum of the two isolations:
\begin{align*}
\mu\mu_{ {\rm{iso}}} = \max( \mu_{ {\rm{iso}}}^+, \mu_{ {\rm{iso}}}^-)
\end{align*}
\end{itemize}
\begin{center}
\begin{columns}
\column{0.5\textwidth}
\includegraphics[angle=-90,width=0.9\textwidth]{images/Z0_iso.pdf}
\column{0.5\textwidth}
\includegraphics[width=0.8\textwidth]{images/iso.png}
\end{columns}

\end{center}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Isolation mass dependence}
\begin{itemize}
\item Unfortunately the $\mu\mu_{iso}$ is showing some mass dependence:
\end{itemize}
\begin{center}
\includegraphics[width=0.75\textwidth]{images/DY.png}
\end{center}


\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Signal template}
\begin{columns}
\column{2.7in}
\begin{itemize}
\only<1>{
\item We do not want to use MC for determination of the signal $\mu\mu_{iso}$ template.
\item We adopted a data driven procedure:
\begin{itemize}
\item The template is taken from data and scaled to account for $\mu\mu_{iso}$ mass dependence.
\end{itemize}
\item Possibility 1:
\begin{itemize}
\item Take the \textit{Splot} $\PZ \to \mu \mu$ from data and multiply it by the scale factor determined from minimalising the $\chi^2$ between MC $\PZ$ and DY in particular region.

\end{itemize}
}
\only<2>{
\item Possibility 2:
\begin{itemize}
\item Use a second decay from data: $\PUpsilon \to \mu \mu$. 
\item The template for a given mass range ($M_{\min}, M_{\max}$) is choose as:
\begin{tiny}
\begin{align*}
{\rm{Temp}}(M) =  {\rm{Temp}}^{\PUpsilon} \frac{(M_{\PZ} -M_{\PUpsilon} - (M- M_{\PUpsilon} ))}{M_{\PZ} -M_{\PUpsilon}}\\  + {\rm{Temp}}^{\PZ} \frac{M- M_{\PUpsilon} }{M_{\PZ} -M_{\PUpsilon}}
\end{align*}
\end{tiny}

\item Then the new obtained template is scaled in the same way as the previous one.

\end{itemize}
}



\end{itemize}

\column{2.3in}
\only<1>{
\includegraphics[width=0.9\textwidth]{images/result_Z0.png}\\
\includegraphics[width=0.9\textwidth]{{images/3.0_3.25_10500.0_12000.0Nicola}.png}
}
\only<2>{
\includegraphics[width=0.9\textwidth]{images/result_upsilon.png}\\
\includegraphics[width=0.9\textwidth]{{images/3.0_3.25_10500.0_12000.0Me}.png}
}


\end{columns}


\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}\frametitle{Signal template - Summary}
\begin{itemize}
\item We are investigating the impact on the analysis for the different approaches
\item For now it looks like the results do not change with using different signal templates.
\item Because templates are data driven we need to ensure a large statistics in each of the $m_{\mu\mu},~y$ bins, because of this the last $y$ bin is larger then the rest.
\end{itemize}
\begin{center}
\includegraphics[width=0.5\textwidth]{images/scalef.png}
\end{center}
\end{frame}




%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Backgrounds}
\begin{itemize}
\item There are two sources of backgrounds:
\begin{itemize}
\item Heavy flavour decays.
\item Mis-ID.
\end{itemize}
\item For fitting the $\mu\mu_{iso}$ we need to know both the signal and background distribution.
\item Background templates can be determined from data
\begin{itemize}
\item Heavy flavour decays:\\
$\looparrowright$ Requiring the $\chi^{2,\mu\mu}_{vtx}>16$\\
$\looparrowright$ For cross-check $\rm IP>5~\rm mm$
\item Miss-ID:\\
$\looparrowright$ Require that both muons have the same sign.\\
$\looparrowright$ For cross-check take the minimum bias stripping line.
\end{itemize}


\end{itemize}



\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Over all fits}
\begin{columns}
\column{3in}
\begin{itemize}
\item Using the above 3 mentioned templates the fits converge without any problems.
\item The higher one goes in mass the cleaner the signal is.

\end{itemize}
%\includegraphics[angle=-90,width=0.45\textwidth]{{images/Fits/12000_15000_y_bin_3.5_4.5_12}.pdf}
\begin{small}
{~}{~}{~}\begin{tabular}{|c|c|}
\hline
Mass bin & Purity \\ \hline
$[40,60]~\GeV$ & $0.879 \pm 0.019$\\ 
$[30,40]~\GeV$ & $0.754 \pm 0.015$\\ 
$[25,30]~\GeV$ & $0.657 \pm 0.011$\\
$[20,25]~\GeV$ & $0.507 \pm 0.008$\\
$[17.5,20]~\GeV$ & $0.402 \pm 0.007$\\
$[15,17.5]~\GeV$ & $0.316 \pm 0.006$\\ \hline

\end{tabular}
\end{small}
\column{2in}
\includegraphics[angle=-90,width=0.9\textwidth]{{images/Fits/12000_15000_y_bin_2_2.25_12}.pdf}\\
\includegraphics[angle=-90,width=0.9\textwidth]{{images/Fits/15000_20000_y_bin_3.5_4.5_12}.pdf}

\end{columns}




\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Cross section calculations}
\begin{itemize}
\item To calculate the cross section the luminosity will be used:
\end{itemize}
\begin{align*}
\sigma= \dfrac{\varrho f^{{\rm MIG}}}{\mathcal{L} \varepsilon^{{\rm SEL}}} \sum \dfrac{1}{\varepsilon^{{\rm TRIG}} \varepsilon^{{\rm MUID}} \varepsilon^{{\rm GEC}} \varepsilon^{{\rm TRACK}}},
\end{align*}
where\\
\begin{itemize}
\item $\varrho$ signal fraction from the fit.
\item $f^{{\rm MIG}}$ correction to bin-bin migration.
\item $\mathcal{L}$ integrated luminosity.
\item $\varepsilon^{{\rm SEL}}$ efficiency on the vertex requirement.
\item $\varepsilon^{{\rm MUID}}$ muon identification efficiency.
\item $\varepsilon^{{\rm GEC}}$ global event cut efficiency.
\item $\varepsilon^{{\rm TRACK}}$ tracking efficiency.
\end{itemize}


\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Luminosity}
\begin{itemize}
\item Thanks to our colleagues the error on the luminosity in LHCb is $1.16(1.71)\%$ for 2012(2011) data.
\item For the $8~\TeV$ data we removed:  111802-111890 , 126124-126160, 129530-129539 runs.
\item Lost $14.68~\rm pb^{-1}$ of data in total.
\item For the $7~\TeV$ data we removed: 101401, 101403-101415 runs.
\item Lost $8.23~\rm pb^{-1}$.
\end{itemize}



\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Trigger efficiency}
\begin{itemize}
\item We take the trigger efficiency from MC. We are using the dimuon trigger that were always well simulated.
\item We performed a cross check using tag and probe method that ensures the luminosity is correctly simulated. 
\end{itemize}
\begin{center}
\includegraphics[width=0.75\textwidth]{images/trigger.png}
\end{center}
\begin{itemize}
\item An systematic uncertainty of $0.01$ is assigned.
\end{itemize}

\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Muon Identification}
\begin{itemize}
\item Only muon ID requirement in this analysis is the \texttt{isMuon}.
\item The efficiency is taken from MC.
\item Has been cross-checked that it agrees in \href{https://cds.cern.ch/record/1709688/files/LHCb-INT-2014-030.pdf}{\texttt{LHCb-INT-2014-030}}

\end{itemize}
\begin{center}
\includegraphics[width=0.65\textwidth]{images/MUID.png}\\
\includegraphics[width=0.65\textwidth]{images/MUID2.png}
\end{center}
\begin{itemize}
\item The systematics is $0.005$ (needs to be checked for the low $p_T$).
\end{itemize}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Global even cut efficiency}
\begin{itemize}
\item There is a SPD cut for the dimuon trigger: SPD<900.
\item A data driven method is used to estimate the cut.
\end{itemize}
\begin{center}
\includegraphics[width=0.6\textwidth]{images/GEC.png}\\
\includegraphics[width=0.6\textwidth]{images/GEC2.png}
\end{center}
\begin{itemize}
\item No dependence is observed of the $M_{\mu\mu}$ and the $y$ in data.
\item Similar to the $\PW$ and $\PZ$ analysis. 
\end{itemize}
\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}\frametitle{Conclusions}
\begin{itemize}
\item Analysis is well advanced!
\item The analysis note is beeing written as we speak:\\ \url{svn+ssh://svn.cern.ch/reps/lhcbdocs/Users/mchrzasz/DY_ANANote}
\item $+30$ pages!
\item To do list:
\begin{itemize}
\item Calculate the theory predictions for $8~\TeV$ data.
\item Missing systematics: bin-bin migration, templates determination.
\item Hopefully the ANA note in WG review soon!
\end{itemize}
\end{itemize}
\end{frame}





\backupbegin   

\begin{frame}\frametitle{Backup}


\end{frame}

\backupend			

\end{document}