Newer
Older
Presentations / Kstmumu / 09_04_2015_Mom_LL_discrepancy / Systematics.tex~
@mchrzasz mchrzasz on 6 May 2015 4 KB big commit of everything
\documentclass[xcolor=svgnames]{beamer}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{polski}
%\usepackage{amssymb,amsmath}
%\usepackage[latin1]{inputenc}
%\usepackage{amsmath}
%\newcommand\abs[1]{\left|#1\right|}
\usepackage{amsmath}
\newcommand\abs[1]{\left|#1\right|}
\usepackage{hepnicenames}
\usepackage{hepunits}
\usepackage{color}



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\definecolor{mygreen}{cmyk}{0.82,0.11,1,0.25}


\usetheme{Sybila} 

\title[Acceptance issue]{Acceptance issue}
\author{Marcin Chrz\k{a}szcz$^{1}$, Nicola Serra$^{1}$}
\institute{$^1$~University of Zurich}
\date{\today}

\begin{document}
% --------------------------- SLIDE --------------------------------------------
\frame[plain]{\titlepage}
\author{Marcin Chrz\k{a}szcz{~}}
\institute{(UZH)}
% ------------------------------------------------------------------------------
% --------------------------- SLIDE --------------------------------------------
\section{Background studies}
\begin{frame}\frametitle{Reminder}
\begin{itemize}
\item In data discrepancy up to 1 sigma in the highest and lowest bins when compared new and old acceptance (mostly $F_l$).  FIXME
\item Pefromed a toy study:
\begin{itemize}
\item Took SM MC, and apply the new highest odd acceptance from Christoph.
\item Divided into $3fb^{-1}$ corresponding samples
\item Used $2~GeV^2$ binning scenario.
\item Added two weights: new and old.
\item Recomputed observables for each toy using 2 acceptances.
\item Look into the differences.
\item Results in the next silde.
\end{itemize}





\end{itemize}




\end{frame}

\begin{frame}\frametitle{Numbers Fit, expected deviations}
\begin{tiny}
\begin{tabular}{c |c | c | c| c| c| c| c|}
\hline
$0.1 - 0.98$ & $0.0476008$ &	$0.010946$ & $0.0404602$ & $0.0262259$ & $0.0233611$ & $0.0391067$ & 	$0.0120506$ \\ \hline
$1.1 - 2.5$ & $0.0216072$ & $0.0053112$ & $0.0166444$ & $0.0126303$ & $0.0130115$ & $0.015087$ &	$0.00553845$ \\ \hline	
$2.5 -4$ & $0.0124394$ & $0.00424708$ & $0.011096$ &	$0.00925205$ & $0.00799686$ & $0.00952774$ & $	0.00424132$ 	\\ \hline
$4-6$ & $0.008646$ & $0.00312367$ & $0.0079593$ & $0.00727349$ & $0.00522152$ & $0.00651302$ & $0.00311269$ \\ \hline	
$6-8$ & $0.015737$ & $0.00438532$ & $0.0100089$ & $0.0118984$ & $0.00831223$ & $0.009712$ & $0.00446352$ \\ \hline	
$15 - 17$ & $0.0088157$ & $0.00366958	$ & $0.00542786$ & $0.00523935$ & $0.00441696$ & $0.00577158$ & $0.00269092$ \\ \hline
$17 - 19$ & $0.0371101$ & $0.0181168$ & $0.0237682$ & $0.0251109$ & $0.0172123$ & $0.0175126$ & $0.0105872$ 	\\ \hline

\end{tabular}
\end{tiny}
\end{frame}

\begin{frame}\frametitle{Numbers MoM, expected deviations }
\begin{tiny}
\begin{tabular}{c |c | c | c| c| c| c| c|}
\hline


$0.1 - 0.98$ & $.01113$ &  $0.0571538	$ & $0.484421$ & $0.875222$ & $0.750888$ & $0.808388$ & $0.110309$\\ \hline	
$1.1-  2.5$ & $0.0233569$&	$0.011525$ & $0.0567316$ & $0.0374716	$ & $0.0229218$ & $0.0227525$ & $0.00966214$ 	\\ \hline
$2.5-4$ & $0.0124508$ & $0.00714531$ & $0.0274325$ & $0.0486626$ & $0.0201143$ & $0.027187$ & $	0.00653637$ 		\\ \hline
$4 - 6$ & $0.0125362$ & $0.00510912$ & $0.0490782$ & 	$0.0778953$ & $0.0117517$ & $0.0121875$ & $	0.00381904$ 	\\ \hline
$6 - 8$ & $0.0694169$ & $0.0362361$ & $00.100802$ & $0.026377$ & $0.110168$ & $0.077164$ & $0.0304819$ \\ \hline	
$15 - 17$ & $0.0647882$ & 	$0.00874876$ & $0.0129285$ & $0.0199238$ & $0.0047388$ & $0.00663897$ &	$0.00431089$ \\ \hline	
$17 - 19$ & $0.0365058$ & 	$0.0909971$ & $0.0113491$ & $0.0181383$ & $0.0414832$ & $0.0863238$ & $0.0135275$ \\ \hline

\end{tabular}
\end{tiny}
\end{frame}

\begin{frame}\frametitle{Numbers I get on data}
\begin{itemize}
\item Q2= 0.1 0.98 delta Fl = -0.044327  Error: 0.0591652  Nsigma: -0.749208
\end{itemize}

\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}\frametitle{Background conclusions}
To conclude:
\begin{itemize}
\item Preliminary.
\item There are to many hints of something being wrong.
\item I know some of you will say:"Statistically insignificant", but if you add them up you are looking at something that is starting to be significant. 
\end{itemize}
\end{frame}




              
\end{document}