% This program can be redistributed and/or modified under the terms % of the GNU Public License, version 3. % % Seth Brown, Ph.D. % sethbrown@drbunsen.org % % Compiled with XeLaTeX % Dependencies: % Fontin Sans font (http://www.exljbris.com/fontinsans.fsrtml) % \documentclass{beamer} \usepackage{pgf} \usepackage{cancel} \usepackage{tikz} \usepackage{times} \usepackage[T1]{fontenc} %\usepackage[mathscr]{eucal} %\usepackage{mathptmx} %\usepackage{mathrsfs} \usepackage{hyperref} \usepackage{color} \usepackage{graphicx} \usepackage{wasysym} \usepackage{ulem} % \usepackage{pgfpagfes} % \setbeameroption{show notes on second screen} %\pgfpagesuselayout{4 on 1}[a4paper,border shrink=5mm,landscape] \usepackage{xcolor} \usepackage{xcolor,multirow} %\usepackage[table]{xcolor} %\usepackage[dvipsnames]{xcolor} %\usepackage{amsfonts} %\usepackage{amsmath} % \usepackage[amssymb]{SIunits} %\usepackage{natbib} %\usepackage{amssymb} \usepackage{hepparticles} \usepackage{hepnicenames} \usepackage{hepunits} \usepackage{tikz} \usepackage[english]{babel} %%\usepackage{lmodern} %\usepackage{feynmp} % suppress navigation bar \beamertemplatenavigationsymbolsempty \usepackage[mathscr]{eucal} \usepackage{mathrsfs} \mode<presentation> { \usetheme{bunsen} \setbeamercovered{transparent} \setbeamertemplate{items}[circle] } \newcommand{\Simley}[1]{% \begin{tikzpicture}[scale=0.15] \newcommand*{\SmileyRadius}{1.0}% \draw [fill=brown!10] (0,0) circle (\SmileyRadius)% outside circle %node [yshift=-0.22*\SmileyRadius cm] {\tiny #1}% uncomment this to see the smile factor ; \pgfmathsetmacro{\eyeX}{0.5*\SmileyRadius*cos(30)} \pgfmathsetmacro{\eyeY}{0.5*\SmileyRadius*sin(30)} \draw [fill=cyan,draw=none] (\eyeX,\eyeY) circle (0.15cm); \draw [fill=cyan,draw=none] (-\eyeX,\eyeY) circle (0.15cm); \pgfmathsetmacro{\xScale}{2*\eyeX/180} \pgfmathsetmacro{\yScale}{1.0*\eyeY} \draw[color=red, domain=-\eyeX:\eyeX] plot ({\x},{ -0.1+#1*0.15 % shift the smiley as smile decreases -#1*1.75*\yScale*(sin((\x+\eyeX)/\xScale))-\eyeY}); \end{tikzpicture}% }% % set fonts \usepackage{amsfonts} \usepackage{amsmath} \usepackage{verbatim} \usepackage{fancyvrb} \DefineVerbatimEnvironment{code}{Verbatim}{fontsize=\small} \DefineVerbatimEnvironment{example}{Verbatim}{fontsize=\small} \usepackage{listings} \usepackage{courier} \lstset{ basicstyle=\footnotesize\ttfamily, % Standardschrift %numbers=left, % Ort der Zeilennummern numberstyle=\tiny, % Stil der Zeilennummern %stepnumber=2, % Abstand zwischen den Zeilennummern numbersep=5pt, % Abstand der Nummern zum Text tabsize=2, % Groesse von Tabs extendedchars=true, % breaklines=true, % Zeilen werden Umgebrochen keywordstyle=\color{red}, frame=b, % keywordstyle=[1]\textbf, % Stil der Keywords % keywordstyle=[2]\textbf, % % keywordstyle=[3]\textbf, % % keywordstyle=[4]\textbf, \sqrt{\sqrt{}} % stringstyle=\color{white}\ttfamily, % Farbe der String showspaces=false, % Leerzeichen anzeigen ? showtabs=false, % Tabs anzeigen ? xleftmargin=17pt, framexleftmargin=17pt, framexrightmargin=5pt, framexbottommargin=4pt, %backgroundcolor=\color{lightgray}, showstringspaces=false % Leerzeichen in Strings anzeigen ? } %\DeclareCaptionFont{blue}{\color{blue}} %\captionsetup[lstlisting]{singlelinecheck=false, labelfont={blue}, textfont={blue}} \usepackage{caption} \DeclareCaptionFont{white}{\color{white}} \DeclareCaptionFormat{listing}{\colorbox[cmyk]{0.43, 0.35, 0.35,0.01}{\parbox{\textwidth}{\hspace{15pt}#1#2#3}}} \captionsetup[lstlisting]{format=listing,labelfont=white,textfont=white, singlelinecheck=false, margin=0pt, font={bf,footnotesize}} \usetikzlibrary{arrows} \usetikzlibrary{shapes} %\usepackage{gfsartemisia-euler} %\usepackage[T1]{fontenc} \setbeamerfont{frametitle}{size=\LARGE,series=\bfseries} \tikzstyle{decision} = [diamond, draw, fill=gray!20, text width=4.5em, text badly centered, node distance=3cm, inner sep=0pt] \tikzstyle{block} = [rectangle, draw, fill=blue!10, text width=5em, text centered, rounded corners, minimum height=2em] \tikzstyle{line} = [draw, -latex'] \tikzstyle{cloud} = [draw, ellipse,fill=red!10, node distance=3cm, minimum height=2em] \tikzstyle{every picture}+=[remember picture] \renewcommand{\PKs}{{\HepParticle{K}{S}{}\xspace}} % color definitions \usepackage{color} \definecolor{uipoppy}{RGB}{225, 64, 5} \definecolor{uipaleblue}{RGB}{96,123,139} \definecolor{uiblack}{RGB}{0, 0, 0} % caption styling %\DeclareCaptionFont{uiblack}{\color{uiblack}} %\DeclareCaptionFont{uipoppy}{\color{uipoppy}} %\captionsetup{labelfont={uipoppy},textfont=uiblack} % see the macros.tex file for definitions \include{macros } % title slide definition \title{Breaking the \cancel{habbit} unfolding, Chapter 1} %\subtitle{a bias report} \author{ Marcin Chrz\k{a}szcz$^{1,2}$ , Nicola Serra$^{1}$ } \institute[UTH, IFJ] { %\begin{tiny} $ ^1$ University of Zurich , $ ^2$ Institute of Nuclear Physics, Krakow, %\end{tiny}smallsmall } \date{ \today } %-------------------------------------------------------------------- % Introduction %-------------------------------------------------------------------- \begin{document} \setbeamertemplate{background} {\includegraphics[width=\paperwidth,height=\paperheight]{frontpage_bg_mine}} \setbeamertemplate{footline}[default] \begin{frame} \vspace{1.1cm} \begin{columns} \column{2.75in} \titlepage \begin{center} \includegraphics[height=1.0cm ]{pic/uzh.jpg} % \hspace{0.5cm} % \includegraphics[height=1.5cm]{pic/babar.jpg} \hspace{1cm} \includegraphics[height=1.0cm]{pic/ifj.png} \hspace{1cm} %\includegraphics[height=1.0cm]{pic/SNS.jpg} \end{center} \vspace{10cm} \column{2.0in} \end{columns} \end{frame} %-------------------------------------------------------------------- % OUTLINE %-------------------------------------------------------------------- \section[Outline]{} \begin{frame} \tableofcontents \end{frame} %------------------------------------------------------------------- % Introduction %------------------------------------------------------------------- % % Set the background for the rest of the slides. % Insert infoline \setbeamertemplate{background} {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}} \setbeamertemplate{footline}[bunsentheme] \title{Update on analysis} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \setbeamertemplate{background} {\includegraphics[width=\paperwidth,height=\paperheight]{slide_bg}} \setbeamertemplate{footline}[bunsentheme] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%2>%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{$\PKstar\mu\mu$ unfolding} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Unfolding modification} \begin{equation} M_i = \dfrac{\sum_j^n f_i(\cos \theta_{l~j}, \cos \theta_{k~j}, \phi_{j})}{n} \end{equation} This goes with the unfolding to: \begin{equation} M_i = \dfrac{\sum_j^n w_j f_i(\cos \theta_{l~j}, \cos \theta_{k~j}, \phi_{j})}{\sum_j^n w_j} \end{equation}, where $w_j= \dfrac{1}{eff(\cos \theta_{l~j}, \cos \theta_{k~j}, \phi_{j})}$ \textref {M.Chrz\k{a}szcz, N.Serra 2014} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55 \begin{frame}\frametitle{Breaking the \cancel{habbit} unfolding} Let's put small modification: \begin{equation} w_j \to \overline{w_j}= \dfrac{1}{eff(\cos \theta_{l~j}, \cos \theta_{k~j}, \phi_{j})} \times corr(\cos \theta_{l~j}, \cos \theta_{k~j}, \phi_{j}) \end{equation} Unfortunately God didn't allowed me sneak peak into his cards so I don't know $corr(\cos \theta_{l}, \cos \theta_{k}, \phi)$, but let's try out some functions and see what happens :) \textref {M.Chrz\k{a}szcz, N.Serra 2014} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55 \begin{frame}\frametitle{Corr1 functions} \begin{columns} \column{2in} \includegraphics[width=\linewidth]{corr/Corr1_cosk.png}\\ \includegraphics[width=\linewidth]{corr/Corr1_cosl.png}\\ \column{2.5in} $ corr1(\cos_l, \cos_k,\phi)= 1+ 0.032 \cos_l - 0.032 \cos_k + 0.01 \phi $ \includegraphics[width=0.8\linewidth]{corr/Corr1_phi.png}\\ \end{columns} \textref {M.Chrz\k{a}szcz, N.Serra 2014} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Corr2 functions} \begin{columns} \column{2in} \includegraphics[width=0.85\linewidth]{corr/corr21.png}\\ \includegraphics[width=0.85\linewidth]{corr/corr22.png}\\ \column{2.5in} $ corr2(\cos_l, \cos_k,\phi)= -0.02 \cos_l^2 + 0.02 \cos_k^2 - 0.015 \phi^2+ 1 $ \includegraphics[width=0.75\linewidth]{corr/corr23.png}\\ \end{columns} \textref {M.Chrz\k{a}szcz, N.Serra 2014} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Corr3 functions} \begin{columns} \column{2in} \includegraphics[width=0.85\linewidth]{corr/corr31.png}\\ \includegraphics[width=0.85\linewidth]{corr/corr32.png}\\ \column{2.5in} $ corr3(\cos_l, \cos_k,\phi)= 0.02 \cos_l \cos_k + 0.01 \cos_k \phi - 0.01 \phi \cos_l + 1 $ \includegraphics[width=0.75\linewidth]{corr/corr33.png}\\ \end{columns} \textref {M.Chrz\k{a}szcz, N.Serra 2014} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Corr4 functions} \begin{columns} \column{2in} \includegraphics[width=0.85\linewidth]{corr/corr41.png}\\ \includegraphics[width=0.85\linewidth]{corr/corr42.png}\\ \column{2.5in} $ corr3(\cos_l, \cos_k,\phi)= 0.01 \cos_k \cos_l \phi + 1 $ \includegraphics[width=0.75\linewidth]{corr/corr43.png}\\ \end{columns} \textref {M.Chrz\k{a}szcz, N.Serra 2014} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Corr1- MM} Much better then I expected :) \begin{tiny} \begin{center} \begin{tabular}{ l l l l l l l l l } \hline \multicolumn{8}{c}{Mean of the pull} \\ \hline $q^2$ & $S_3$ & $S_4$ & $S_5$ & $S_{6s}$ & $S_{6c}$ & $S_7$ & $S_8$ \\ \hline \hline 0 & \scalebox{0.5}{$0.0085 \pm 0.026(0.3)$} & \scalebox{0.5}{$0.13 \pm 0.027(4.6)$} & \scalebox{0.5}{$-0.025 \pm 0.027(-0.92)$} & \scalebox{0.5}{$0.46 \pm 0.027(17)$} & \scalebox{0.5}{$-0.13 \pm 0.028(-4.7)$} & \scalebox{0.5}{$0.029 \pm 0.028(1)$} & \scalebox{0.5}{$-0.66 \pm 0.027(-25)$} \\ \hline 1 & \scalebox{0.5}{$0.0094 \pm 0.028(0.33)$} & \scalebox{0.5}{$0.078 \pm 0.028(2.8)$} & \scalebox{0.5}{$-0.02 \pm 0.028(-0.73)$} & \scalebox{0.5}{$0.24 \pm 0.028(8.5)$} & \scalebox{0.5}{$-0.075 \pm 0.028(-2.7)$} & \scalebox{0.5}{$-0.016 \pm 0.026(-0.63)$} & \scalebox{0.5}{$-0.39 \pm 0.028(-14)$} \\ \hline 2 & \scalebox{0.5}{$-0.02 \pm 0.027(-0.72)$} & \scalebox{0.5}{$0.027 \pm 0.026(1)$} & \scalebox{0.5}{$-0.024 \pm 0.027(-0.91)$} & \scalebox{0.5}{$0.18 \pm 0.027(6.8)$} & \scalebox{0.5}{$-0.024 \pm 0.027(-0.89)$} & \scalebox{0.5}{$-0.067 \pm 0.027(-2.5)$} & \scalebox{0.5}{$-0.39 \pm 0.028(-14)$} \\ \hline 3 & \scalebox{0.5}{$0.013 \pm 0.028(0.46)$} & \scalebox{0.5}{$-0.0089 \pm 0.027(-0.32)$} & \scalebox{0.5}{$0.055 \pm 0.026(2.1)$} & \scalebox{0.5}{$0.12 \pm 0.027(4.7)$} & \scalebox{0.5}{$0.11 \pm 0.027(3.9)$} & \scalebox{0.5}{$-0.018 \pm 0.028(-0.63)$} & \scalebox{0.5}{$-0.43 \pm 0.027(-16)$} \\ \hline 4 & \scalebox{0.5}{$-0.0054 \pm 0.029(-0.18)$} & \scalebox{0.5}{$-0.066 \pm 0.027(-2.4)$} & \scalebox{0.5}{$0.037 \pm 0.028(1.3)$} & \scalebox{0.5}{$0.22 \pm 0.027(8.1)$} & \scalebox{0.5}{$0.099 \pm 0.027(3.7)$} & \scalebox{0.5}{$-0.1 \pm 0.026(-3.8)$} & \scalebox{0.5}{$-0.41 \pm 0.026(-15)$} \\ \hline 5 & \scalebox{0.5}{$0.06 \pm 0.027(2.2)$} & \scalebox{0.5}{$-0.069 \pm 0.026(-2.6)$} & \scalebox{0.5}{$-0.013 \pm 0.028(-0.49)$} & \scalebox{0.5}{$0.21 \pm 0.027(7.8)$} & \scalebox{0.5}{$0.093 \pm 0.027(3.5)$} & \scalebox{0.5}{$-0.083 \pm 0.028(-3)$} & \scalebox{0.5}{$-0.41 \pm 0.028(-15)$} \\ \hline 6 & \scalebox{0.5}{$0.0064 \pm 0.026(0.25)$} & \scalebox{0.5}{$-0.051 \pm 0.027(-1.9)$} & \scalebox{0.5}{$-0.029 \pm 0.028(-1)$} & \scalebox{0.5}{$0.26 \pm 0.028(9.2)$} & \scalebox{0.5}{$0.14 \pm 0.027(5.1)$} & \scalebox{0.5}{$-0.081 \pm 0.027(-3)$} & \scalebox{0.5}{$-0.45 \pm 0.028(-16)$} \\ \hline %7 & \scalebox{0.5}{$0.22 \pm 0.027(8)$} & \scalebox{0.5}{$-0.34 \pm 0.028(-12)$} & \scalebox{0.5}{$-0.43 \pm 0.026(-16)$} & \scalebox{0.5}{$2.4 \pm 0.029(82)$} & \scalebox{0.5}{$0.66 \pm 0.027(24)$} & \scalebox{0.5}{$-0.24 \pm 0.028(-8.6)$} & \scalebox{0.5}{$-0.51 \pm 0.027(-19)$} & 8 & \scalebox{0.5}{$0.023 \pm 0.027(0.85)$} & \scalebox{0.5}{$-0.031 \pm 0.028(-1.1)$} & \scalebox{0.5}{$0.0042 \pm 0.028(0.15)$} & \scalebox{0.5}{$0.21 \pm 0.026(7.8)$} & \scalebox{0.5}{$0.12 \pm 0.028(4.2)$} & \scalebox{0.5}{$-0.13 \pm 0.027(-4.8)$} & \scalebox{0.5}{$-0.48 \pm 0.026(-18)$} \\ \hline 9 & \scalebox{0.5}{$-0.017 \pm 0.027(-0.63)$} & \scalebox{0.5}{$-0.015 \pm 0.026(-0.56)$} & \scalebox{0.5}{$-0.0052 \pm 0.026(-0.2)$} & \scalebox{0.5}{$0.27 \pm 0.027(10)$} & \scalebox{0.5}{$0.046 \pm 0.026(1.7)$} & \scalebox{0.5}{$-0.12 \pm 0.026(-4.4)$} & \scalebox{0.5}{$-0.5 \pm 0.026(-19)$} \\ \hline 10 & \scalebox{0.5}{$-0.054 \pm 0.027(-2)$} & \scalebox{0.5}{$-0.056 \pm 0.026(-2.2)$} & \scalebox{0.5}{$0.036 \pm 0.026(1.4)$} & \scalebox{0.5}{$0.16 \pm 0.028(5.7)$} & \scalebox{0.5}{$0.077 \pm 0.028(2.8)$} & \scalebox{0.5}{$-0.034 \pm 0.027(-1.3)$} & \scalebox{0.5}{$-0.39 \pm 0.028(-14)$} \\ \hline 11 & \scalebox{0.5}{$0.023 \pm 0.027(0.88)$} & \scalebox{0.5}{$0.021 \pm 0.027(0.8)$} & \scalebox{0.5}{$-0.011 \pm 0.027(-0.41)$} & \scalebox{0.5}{$0.14 \pm 0.027(5)$} & \scalebox{0.5}{$0.042 \pm 0.027(1.6)$} & \scalebox{0.5}{$-0.098 \pm 0.028(-3.5)$} & \scalebox{0.5}{$-0.3 \pm 0.027(-11)$} \\ \hline \hline \end{tabular} \end{center} \end{tiny} \textref {M.Chrz\k{a}szcz, N.Serra 2014} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Corr2- MM} Much better then I expected :) \begin{tiny} \begin{center} \begin{tabular}{ l l l l l l l l l } \hline \multicolumn{8}{c}{Mean of the pull} \\ \hline $q^2$ & $S_3$ & $S_4$ & $S_5$ & $S_{6s}$ & $S_{6c}$ & $S_7$ & $S_8$ \\ \hline \hline 0 & \scalebox{0.5}{$-0.21 \pm 0.026(-8.1)$} & \scalebox{0.5}{$0.061 \pm 0.026(2.3)$} & \scalebox{0.5}{$-0.016 \pm 0.026(-0.63)$} & \scalebox{0.5}{$0.048 \pm 0.026(1.8)$} & \scalebox{0.5}{$-0.0062 \pm 0.027(-0.23)$} & \scalebox{0.5}{$-0.012 \pm 0.028(-0.44)$} & \scalebox{0.5}{$0.0091 \pm 0.026(0.36)$} \\ \hline 1 & \scalebox{0.5}{$-0.12 \pm 0.028(-4.5)$} & \scalebox{0.5}{$0.032 \pm 0.027(1.2)$} & \scalebox{0.5}{$-0.0071 \pm 0.026(-0.27)$} & \scalebox{0.5}{$0.02 \pm 0.027(0.75)$} & \scalebox{0.5}{$-0.086 \pm 0.027(-3.2)$} & \scalebox{0.5}{$-0.03 \pm 0.025(-1.2)$} & \scalebox{0.5}{$0.021 \pm 0.027(0.79)$} \\ \hline 2 & \scalebox{0.5}{$-0.15 \pm 0.027(-5.8)$} & \scalebox{0.5}{$-0.013 \pm 0.026(-0.49)$} & \scalebox{0.5}{$0.011 \pm 0.026(0.44)$} & \scalebox{0.5}{$-0.039 \pm 0.026(-1.5)$} & \scalebox{0.5}{$-0.032 \pm 0.027(-1.2)$} & \scalebox{0.5}{$-0.066 \pm 0.027(-2.5)$} & \scalebox{0.5}{$0.018 \pm 0.028(0.64)$} \\ \hline 3 & \scalebox{0.5}{$-0.15 \pm 0.027(-5.6)$} & \scalebox{0.5}{$0.025 \pm 0.026(0.96)$} & \scalebox{0.5}{$0.016 \pm 0.027(0.58)$} & \scalebox{0.5}{$-0.062 \pm 0.027(-2.3)$} & \scalebox{0.5}{$0.037 \pm 0.026(1.4)$} & \scalebox{0.5}{$0.026 \pm 0.027(0.96)$} & \scalebox{0.5}{$-0.016 \pm 0.027(-0.6)$} \\ \hline 4 & \scalebox{0.5}{$-0.12 \pm 0.028(-4.5)$} & \scalebox{0.5}{$-0.024 \pm 0.026(-0.92)$} & \scalebox{0.5}{$0.045 \pm 0.027(1.6)$} & \scalebox{0.5}{$0.0075 \pm 0.026(0.29)$} & \scalebox{0.5}{$0.015 \pm 0.027(0.53)$} & \scalebox{0.5}{$-0.036 \pm 0.026(-1.4)$} & \scalebox{0.5}{$0.037 \pm 0.026(1.4)$} \\ \hline 5 & \scalebox{0.5}{$-0.095 \pm 0.027(-3.6)$} & \scalebox{0.5}{$-0.032 \pm 0.026(-1.2)$} & \scalebox{0.5}{$0.014 \pm 0.026(0.52)$} & \scalebox{0.5}{$-0.013 \pm 0.026(-0.48)$} & \scalebox{0.5}{$-0.0093 \pm 0.027(-0.35)$} & \scalebox{0.5}{$-0.013 \pm 0.026(-0.51)$} & \scalebox{0.5}{$0.042 \pm 0.027(1.6)$} \\ \hline 6 & \scalebox{0.5}{$-0.17 \pm 0.025(-6.5)$} & \scalebox{0.5}{$0.008 \pm 0.027(0.3)$} & \scalebox{0.5}{$0.012 \pm 0.027(0.45)$} & \scalebox{0.5}{$0.029 \pm 0.027(1.1)$} & \scalebox{0.5}{$0.0072 \pm 0.027(0.27)$} & \scalebox{0.5}{$-0.0012 \pm 0.026(-0.046)$} & \scalebox{0.5}{$0.011 \pm 0.027(0.42)$} \\ \hline %7 & \scalebox{0.5}{$0.078 \pm 0.026(3)$} & \scalebox{0.5}{$-0.3 \pm 0.026(-11)$} & \scalebox{0.5}{$-0.34 \pm 0.026(-13)$} & \scalebox{0.5}{$2.1 \pm 0.028(73)$} & \scalebox{0.5}{$0.47 \pm 0.026(18)$} & \scalebox{0.5}{$-0.17 \pm 0.027(-6.1)$} & \scalebox{0.5}{$0.0051 \pm 0.027(0.19)$} \\ \hline 8 & \scalebox{0.5}{$-0.13 \pm 0.026(-5.1)$} & \scalebox{0.5}{$-0.0077 \pm 0.027(-0.28)$} & \scalebox{0.5}{$0.05 \pm 0.027(1.9)$} & \scalebox{0.5}{$-0.03 \pm 0.026(-1.2)$} & \scalebox{0.5}{$-0.012 \pm 0.028(-0.44)$} & \scalebox{0.5}{$-0.046 \pm 0.026(-1.7)$} & \scalebox{0.5}{$0.031 \pm 0.026(1.2)$} \\ \hline 9 & \scalebox{0.5}{$-0.15 \pm 0.026(-5.7)$} & \scalebox{0.5}{$-0.0083 \pm 0.026(-0.32)$} & \scalebox{0.5}{$0.03 \pm 0.026(1.2)$} & \scalebox{0.5}{$0.044 \pm 0.027(1.6)$} & \scalebox{0.5}{$-0.07 \pm 0.026(-2.7)$} & \scalebox{0.5}{$-0.022 \pm 0.026(-0.84)$} & \scalebox{0.5}{$-0.045 \pm 0.026(-1.7)$} \\ \hline 10 & \scalebox{0.5}{$-0.15 \pm 0.025(-5.8)$} & \scalebox{0.5}{$-0.032 \pm 0.025(-1.3)$} & \scalebox{0.5}{$0.059 \pm 0.026(2.2)$} & \scalebox{0.5}{$-0.072 \pm 0.028(-2.6)$} & \scalebox{0.5}{$-0.029 \pm 0.027(-1.1)$} & \scalebox{0.5}{$0.064 \pm 0.027(2.4)$} & \scalebox{0.5}{$0.014 \pm 0.027(0.51)$} \\ \hline 11 & \scalebox{0.5}{$-0.067 \pm 0.026(-2.6)$} & \scalebox{0.5}{$0.017 \pm 0.026(0.65)$} & \scalebox{0.5}{$-0.015 \pm 0.026(-0.56)$} & \scalebox{0.5}{$-0.051 \pm 0.026(-1.9)$} & \scalebox{0.5}{$-0.0086 \pm 0.026(-0.33)$} & \scalebox{0.5}{$-0.018 \pm 0.028(-0.67)$} & \scalebox{0.5}{$0.017 \pm 0.027(0.62)$} \\ \hline \hline \end{tabular} \end{center} \end{tiny} \textref {M.Chrz\k{a}szcz, N.Serra 2014} \end{frame} \begin{frame}\frametitle{Corr3- MM} Much better then I expected :) \begin{tiny} \begin{center} \begin{tabular}{ l l l l l l l l l } \hline \multicolumn{8}{c}{Mean of the pull} \\ \hline $q^2$ & $S_3$ & $S_4$ & $S_5$ & $S_{6s}$ & $S_{6c}$ & $S_7$ & $S_8$ \\ \hline \hline 0 & \scalebox{0.5}{$-0.021 \pm 0.026(-0.81)$} & \scalebox{0.5}{$0.041 \pm 0.026(1.5)$} & \scalebox{0.5}{$0.009 \pm 0.027(0.34)$} & \scalebox{0.5}{$0.043 \pm 0.026(1.6)$} & \scalebox{0.5}{$0.13 \pm 0.028(4.8)$} & \scalebox{0.5}{$-0.0072 \pm 0.028(-0.26)$} & \scalebox{0.5}{$0.044 \pm 0.026(1.7)$} \\ \hline 1 & \scalebox{0.5}{$-0.014 \pm 0.028(-0.51)$} & \scalebox{0.5}{$0.03 \pm 0.027(1.1)$} & \scalebox{0.5}{$0.022 \pm 0.027(0.82)$} & \scalebox{0.5}{$0.015 \pm 0.028(0.53)$} & \scalebox{0.5}{$0.078 \pm 0.028(2.8)$} & \scalebox{0.5}{$-0.037 \pm 0.025(-1.4)$} & \scalebox{0.5}{$0.057 \pm 0.027(2.1)$} \\ \hline 2 & \scalebox{0.5}{$-0.037 \pm 0.027(-1.4)$} & \scalebox{0.5}{$-0.0013 \pm 0.027(-0.048)$} & \scalebox{0.5}{$-0.015 \pm 0.027(-0.54)$} & \scalebox{0.5}{$-0.052 \pm 0.026(-2)$} & \scalebox{0.5}{$0.1 \pm 0.027(3.8)$} & \scalebox{0.5}{$-0.051 \pm 0.026(-1.9)$} & \scalebox{0.5}{$0.022 \pm 0.028(0.78)$} \\ \hline 3 & \scalebox{0.5}{$-0.015 \pm 0.027(-0.55)$} & \scalebox{0.5}{$0.036 \pm 0.028(1.3)$} & \scalebox{0.5}{$-0.039 \pm 0.027(-1.4)$} & \scalebox{0.5}{$-0.072 \pm 0.027(-2.7)$} & \scalebox{0.5}{$0.17 \pm 0.027(6.2)$} & \scalebox{0.5}{$-0.0044 \pm 0.028(-0.15)$} & \scalebox{0.5}{$-0.024 \pm 0.027(-0.9)$} \\ \hline 4 & \scalebox{0.5}{$-0.00047 \pm 0.029(-0.017)$} & \scalebox{0.5}{$-0.012 \pm 0.027(-0.43)$} & \scalebox{0.5}{$0.0099 \pm 0.028(0.35)$} & \scalebox{0.5}{$-0.002 \pm 0.026(-0.076)$} & \scalebox{0.5}{$0.17 \pm 0.028(6.2)$} & \scalebox{0.5}{$-0.062 \pm 0.027(-2.3)$} & \scalebox{0.5}{$0.0086 \pm 0.027(0.32)$} \\ \hline 5 & \scalebox{0.5}{$0.046 \pm 0.027(1.7)$} & \scalebox{0.5}{$-0.02 \pm 0.026(-0.76)$} & \scalebox{0.5}{$-0.04 \pm 0.027(-1.5)$} & \scalebox{0.5}{$-0.012 \pm 0.027(-0.44)$} & \scalebox{0.5}{$0.13 \pm 0.027(4.8)$} & \scalebox{0.5}{$-0.04 \pm 0.027(-1.5)$} & \scalebox{0.5}{$-0.0056 \pm 0.027(-0.21)$} \\ \hline 6 & \scalebox{0.5}{$-0.013 \pm 0.026(-0.52)$} & \scalebox{0.5}{$0.041 \pm 0.027(1.5)$} & \scalebox{0.5}{$-0.033 \pm 0.028(-1.2)$} & \scalebox{0.5}{$-0.0019 \pm 0.027(-0.068)$} & \scalebox{0.5}{$0.15 \pm 0.027(5.4)$} & \scalebox{0.5}{$-0.034 \pm 0.027(-1.3)$} & \scalebox{0.5}{$-0.021 \pm 0.028(-0.75)$} \\ \hline %7 & \scalebox{0.5}{$0.25 \pm 0.027(9.1)$} & \scalebox{0.5}{$-0.27 \pm 0.027(-10)$} & \scalebox{0.5}{$-0.41 \pm 0.027(-16)$} & \scalebox{0.5}{$2.1 \pm 0.029(73)$} & \scalebox{0.5}{$0.65 \pm 0.027(24)$} & \scalebox{0.5}{$-0.19 \pm 0.028(-7)$} & \scalebox{0.5}{$-0.053 \pm 0.028(-1.9)$} \\ \hline 8 & \scalebox{0.5}{$0.039 \pm 0.026(1.5)$} & \scalebox{0.5}{$0.01 \pm 0.028(0.36)$} & \scalebox{0.5}{$-0.027 \pm 0.028(-0.96)$} & \scalebox{0.5}{$-0.024 \pm 0.026(-0.9)$} & \scalebox{0.5}{$0.12 \pm 0.027(4.3)$} & \scalebox{0.5}{$-0.092 \pm 0.026(-3.5)$} & \scalebox{0.5}{$-0.036 \pm 0.027(-1.3)$} \\ \hline 9 & \scalebox{0.5}{$-0.01 \pm 0.027(-0.38)$} & \scalebox{0.5}{$0.0024 \pm 0.027(0.09)$} & \scalebox{0.5}{$-0.018 \pm 0.026(-0.68)$} & \scalebox{0.5}{$0.022 \pm 0.028(0.79)$} & \scalebox{0.5}{$0.068 \pm 0.027(2.6)$} & \scalebox{0.5}{$-0.069 \pm 0.026(-2.6)$} & \scalebox{0.5}{$-0.078 \pm 0.026(-3)$} \\ \hline 10 & \scalebox{0.5}{$-0.017 \pm 0.027(-0.62)$} & \scalebox{0.5}{$-0.015 \pm 0.026(-0.57)$} & \scalebox{0.5}{$0.012 \pm 0.027(0.46)$} & \scalebox{0.5}{$-0.074 \pm 0.028(-2.6)$} & \scalebox{0.5}{$0.1 \pm 0.027(3.8)$} & \scalebox{0.5}{$-0.003 \pm 0.027(-0.11)$} & \scalebox{0.5}{$-0.043 \pm 0.029(-1.5)$} \\ \hline 11 & \scalebox{0.5}{$0.032 \pm 0.026(1.2)$} & \scalebox{0.5}{$0.024 \pm 0.026(0.91)$} & \scalebox{0.5}{$-0.04 \pm 0.026(-1.5)$} & \scalebox{0.5}{$-0.066 \pm 0.027(-2.5)$} & \scalebox{0.5}{$0.098 \pm 0.027(3.7)$} & \scalebox{0.5}{$-0.043 \pm 0.028(-1.6)$} & \scalebox{0.5}{$-0.0018 \pm 0.028(-0.064)$} \\ \hline \hline \end{tabular} \end{center} \end{tiny} \textref {M.Chrz\k{a}szcz, N.Serra 2014} \end{frame} \begin{frame}\frametitle{Corr4- MM} Much better then I expected :) \begin{tiny} \begin{center} \begin{tabular}{ l l l l l l l l l } \hline \multicolumn{8}{c}{Mean of the pull} \\ \hline $q^2$ & $S_3$ & $S_4$ & $S_5$ & $S_{6s}$ & $S_{6c}$ & $S_7$ & $S_8$ \\ \hline \hline 0 & \scalebox{0.5}{$-0.019 \pm 0.026(-0.71)$} & \scalebox{0.5}{$0.048 \pm 0.027(1.8)$} & \scalebox{0.5}{$0.018 \pm 0.027(0.67)$} & \scalebox{0.5}{$0.059 \pm 0.027(2.2)$} & \scalebox{0.5}{$-0.015 \pm 0.028(-0.55)$} & \scalebox{0.5}{$0.061 \pm 0.027(2.2)$} & \scalebox{0.5}{$0.012 \pm 0.027(0.44)$} \\ \hline 1 & \scalebox{0.5}{$-0.014 \pm 0.028(-0.51)$} & \scalebox{0.5}{$0.043 \pm 0.027(1.6)$} & \scalebox{0.5}{$0.013 \pm 0.027(0.49)$} & \scalebox{0.5}{$0.024 \pm 0.028(0.86)$} & \scalebox{0.5}{$-0.038 \pm 0.028(-1.4)$} & \scalebox{0.5}{$0.024 \pm 0.026(0.94)$} & \scalebox{0.5}{$0.037 \pm 0.027(1.3)$} \\ \hline 2 & \scalebox{0.5}{$-0.03 \pm 0.027(-1.1)$} & \scalebox{0.5}{$-0.0021 \pm 0.027(-0.076)$} & \scalebox{0.5}{$-0.01 \pm 0.027(-0.39)$} & \scalebox{0.5}{$-0.017 \pm 0.027(-0.61)$} & \scalebox{0.5}{$-0.016 \pm 0.027(-0.58)$} & \scalebox{0.5}{$0.013 \pm 0.027(0.49)$} & \scalebox{0.5}{$0.027 \pm 0.028(0.98)$} \\ \hline 3 & \scalebox{0.5}{$-0.007 \pm 0.027(-0.26)$} & \scalebox{0.5}{$0.03 \pm 0.028(1.1)$} & \scalebox{0.5}{$-0.036 \pm 0.027(-1.3)$} & \scalebox{0.5}{$-0.074 \pm 0.027(-2.8)$} & \scalebox{0.5}{$0.041 \pm 0.027(1.5)$} & \scalebox{0.5}{$0.08 \pm 0.028(2.9)$} & \scalebox{0.5}{$-0.0083 \pm 0.027(-0.31)$} \\ \hline 4 & \scalebox{0.5}{$0.00089 \pm 0.029(0.031)$} & \scalebox{0.5}{$-0.021 \pm 0.027(-0.77)$} & \scalebox{0.5}{$0.0032 \pm 0.028(0.11)$} & \scalebox{0.5}{$0.0031 \pm 0.026(0.12)$} & \scalebox{0.5}{$0.012 \pm 0.027(0.44)$} & \scalebox{0.5}{$0.019 \pm 0.026(0.71)$} & \scalebox{0.5}{$0.034 \pm 0.027(1.3)$} \\ \hline 5 & \scalebox{0.5}{$0.044 \pm 0.028(1.6)$} & \scalebox{0.5}{$-0.022 \pm 0.026(-0.82)$} & \scalebox{0.5}{$-0.041 \pm 0.027(-1.5)$} & \scalebox{0.5}{$-0.014 \pm 0.027(-0.53)$} & \scalebox{0.5}{$-0.029 \pm 0.027(-1.1)$} & \scalebox{0.5}{$0.041 \pm 0.027(1.5)$} & \scalebox{0.5}{$0.042 \pm 0.028(1.5)$} \\ \hline 6 & \scalebox{0.5}{$-0.011 \pm 0.026(-0.42)$} & \scalebox{0.5}{$0.041 \pm 0.027(1.5)$} & \scalebox{0.5}{$-0.045 \pm 0.028(-1.6)$} & \scalebox{0.5}{$0.011 \pm 0.027(0.41)$} & \scalebox{0.5}{$-0.0089 \pm 0.027(-0.33)$} & \scalebox{0.5}{$0.067 \pm 0.027(2.5)$} & \scalebox{0.5}{$0.036 \pm 0.027(1.3)$} \\ \hline %7 & \scalebox{0.5}{$0.25 \pm 0.027(9.1)$} & \scalebox{0.5}{$-0.26 \pm 0.027(-9.9)$} & \scalebox{0.5}{$-0.42 \pm 0.027(-16)$} & \scalebox{0.5}{$2.1 \pm 0.029(73)$} & \scalebox{0.5}{$0.47 \pm 0.027(18)$} & \scalebox{0.5}{$-0.077 \pm 0.028(-2.8)$} & \scalebox{0.5}{$0.029 \pm 0.028(1)$} \\ \hline 8 & \scalebox{0.5}{$0.05 \pm 0.026(1.9)$} & \scalebox{0.5}{$0.0021 \pm 0.028(0.074)$} & \scalebox{0.5}{$-0.025 \pm 0.028(-0.91)$} & \scalebox{0.5}{$-0.023 \pm 0.026(-0.87)$} & \scalebox{0.5}{$-0.024 \pm 0.028(-0.85)$} & \scalebox{0.5}{$0.022 \pm 0.026(0.82)$} & \scalebox{0.5}{$0.026 \pm 0.026(0.98)$} \\ \hline 9 & \scalebox{0.5}{$-0.0064 \pm 0.027(-0.23)$} & \scalebox{0.5}{$0.012 \pm 0.027(0.44)$} & \scalebox{0.5}{$-0.0075 \pm 0.026(-0.28)$} & \scalebox{0.5}{$0.029 \pm 0.027(1.1)$} & \scalebox{0.5}{$-0.087 \pm 0.027(-3.2)$} & \scalebox{0.5}{$0.036 \pm 0.027(1.3)$} & \scalebox{0.5}{$-0.02 \pm 0.026(-0.76)$} \\ \hline 10 & \scalebox{0.5}{$-0.019 \pm 0.027(-0.71)$} & \scalebox{0.5}{$-0.0051 \pm 0.025(-0.2)$} & \scalebox{0.5}{$0.0081 \pm 0.026(0.31)$} & \scalebox{0.5}{$-0.077 \pm 0.028(-2.7)$} & \scalebox{0.5}{$-0.03 \pm 0.027(-1.1)$} & \scalebox{0.5}{$0.11 \pm 0.027(4.1)$} & \scalebox{0.5}{$0.013 \pm 0.028(0.46)$} \\ \hline 11 & \scalebox{0.5}{$0.027 \pm 0.026(1)$} & \scalebox{0.5}{$0.032 \pm 0.027(1.2)$} & \scalebox{0.5}{$-0.038 \pm 0.027(-1.4)$} & \scalebox{0.5}{$-0.048 \pm 0.026(-1.8)$} & \scalebox{0.5}{$-0.021 \pm 0.027(-0.77)$} & \scalebox{0.5}{$0.019 \pm 0.028(0.69)$} & \scalebox{0.5}{$0.035 \pm 0.027(1.3)$} \\ \hline \hline \end{tabular} \end{center} \end{tiny} \textref {M.Chrz\k{a}szcz, N.Serra 2014} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Reverse Engineering Unfolding} \begin{frame}\frametitle{Reverse Engineering- Corr1} \begin{itemize} \item Let's try to understand if we can understand why this happens: \item Let's calculate what should I expect with the unfolding \item This is up to normalization! \begin{itemize} \item $M_5=0.4 S_5 \to M_5=0.00512 S_3 + 0.4 S_5 - 0.002 S_7$ \item $M_8=0.32 S_8 \to M_8=0.0016 S_4 + 0.00512 S_7 + 0.32 S_8$ \item $M_7=0.4 S_7 \to M_7=0.002 S_5 + 0.4 S_7 + 0.00512 S_8$ \item $M_3=0.32 S_3 \to M_3=0.32 S_3 - 0.0008 S_9$ \end{itemize} \item The way you can look at this is that i just shown you how our unfolding matrix works like. \end{itemize} \textref {M.Chrz\k{a}szcz, N.Serra 2014} \end{frame} \begin{frame}\frametitle{Reverse Engineering- Corr2} \begin{itemize} \item Let's try to understand if we can understand why this happens: \item Let's calculate what should I expect with the unfolding \item This is up to normalization! \begin{itemize} \item $M_5=0.4 S_5 \to M_5= 0.4 S_5$ \item $M_8=0.32 S_8 \to M_8=0.32 S_5$ \item $M_7=0.4 S_7 \to M_7=0.4 S_7$ \item $M_3=0.32 S_3 \to M_3=-0.0036 + 0.0012 Fl + 0.32 S_3$ \end{itemize} \item The way you can look at this is that i just shown you how our unfolding matrix works like. \end{itemize} \textref {M.Chrz\k{a}szcz, N.Serra 2014} \end{frame} \begin{frame}\frametitle{Summary} \begin{itemize} \item What can i say; this is just COOL :) \item Need to do a comparison with fitting for completeness. \item Start looking at $\PB \to \PJpsi \PKstar$ \item Do we have enough MC for it? \end{itemize} \textref {M.Chrz\k{a}szcz, N.Serra 2014} \end{frame} \end{document}