\documentclass[]{beamer} \setbeamertemplate{navigation symbols}{} \usepackage{beamerthemesplit} \useoutertheme{infolines} \usecolortheme{dolphin} %\usetheme{Warsaw} \usetheme{progressbar} \usecolortheme{progressbar} \usefonttheme{progressbar} \useoutertheme{progressbar} \useinnertheme{progressbar} \usepackage{graphicx} %\usepackage{amssymb,amsmath} \usepackage[latin1]{inputenc} \usepackage{amsmath} \newcommand\abs[1]{\left|#1\right|} \usepackage{iwona} \usepackage{hepparticles} \usepackage{hepnicenames} \usepackage{hepunits} \progressbaroptions{imagename=images/lhcb} %\usetheme{Boadilla}f %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \definecolor{mygreen}{cmyk}{0.82,0.11,1,0.25} \setbeamertemplate{blocks}[rounded][shadow=false] \addtobeamertemplate{block begin}{\pgfsetfillopacity{0.8}}{\pgfsetfillopacity{1}} \setbeamercolor{structure}{fg=mygreen} \setbeamercolor*{block title example}{fg=mygreen!50, bg= blue!10} \setbeamercolor*{block body example}{fg= blue, bg= blue!5} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\beamersetuncovermixins{\opaqueness<1>{25}}{\opaqueness<2->{15}} \title{$\PB \to \PKstar \mu \mu$ selection} \author{\underline{Marcin Chrzaszcz}$^{1,2}$, Tatiana Likhomanenko$^{3,4}$,\\ Andrey Ustyuzhanin$^{3,4,5}$} \date{\today} \begin{document} { \institute{$^1$ University of Zurich, $^2$ Institute of Nuclear Physics, $^3$ Yandex, $^4$ Kurchatov Institute, $^5$ Imperial College} \setbeamertemplate{footline}{} \begin{frame} \logo{ \vspace{2 mm} \includegraphics[height=1cm,keepaspectratio]{images/uzh.jpg}~ \includegraphics[height=1cm,keepaspectratio]{images/ifj.png}} \titlepage \end{frame} } \institute{UZH,IFJ} %normal slides %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Reminder} {~} On last $\PKstar \mu \mu$ meeting we agreed on: \begin{center} \begin{itemize} \item Use 10 Folds. \item Use DLL instead of ProbNN. \item Use isolation inside MVA. \item Use DLL for $\mu$. \end{itemize} Remaining issues: \begin{itemize} \item Data agreement \item Use new isolation or the old one \item From me: TMVA vs MatrixNet \end{itemize} \end{center} \end{frame} \section[Outline]{} \begin{frame} \tableofcontents \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Comparison of the performance of each sub-sample from the chopping technique} \begin{frame}\frametitle{Fold comparison Background} {~} \begin{columns} \column{1.3in} \center BDT \\ \center \includegraphics[scale=.14]{images_v3/background_BDT.png} \column{1.3in} \center BDTG \\ \center \includegraphics[scale=.14]{images_v3/background_BDTG.png} \column{1.3in} \center MatrixNet \\ \center \includegraphics[scale=.14]{images_v3/background_MNoldISO.png} \end{columns} \begin{exampleblock}{Conclusion} Everything is very consistent. \end{exampleblock} \end{frame} \begin{frame}\frametitle{Fold comparison Background ZOOM} {~} \begin{columns} \column{1.3in} \center BDT \\ \center \includegraphics[scale=.14]{images_v3/background_BDTZOOM.png} \column{1.3in} \center BDTG \\ \center \includegraphics[scale=.14]{images_v3/background_BDTGZOOM.png} \column{1.3in} \center MatrixNet \\ \center \includegraphics[scale=.14]{images_v3/background_MNoldISOZOOM.png} \end{columns} \begin{exampleblock}{Conclusion} We only see statistical fluctuations within $2\sigma$. What would one expect with 10 folds. \end{exampleblock} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 \begin{frame}\frametitle{Fold comparison Sploted $\PKstar \mu \mu$} {~} \begin{columns} \column{1.3in} \center BDT \\ \center \includegraphics[scale=.14]{images_v3/splot_BDT.png} \column{1.3in} \center BDTG \\ \center \includegraphics[scale=.14]{images_v3/splot_BDTG.png} \column{1.3in} \center MatrixNet \\ \center \includegraphics[scale=.14]{images_v3/splot_MNOLDISO.png} \end{columns} \begin{exampleblock}{Conclusion} Again everything very consistent. \end{exampleblock} \end{frame} \begin{frame}\frametitle{Fold comparison Sploted $\PKstar \mu \mu$ ZOOM} {~} \begin{columns} \column{1.3in} \center BDT \\ \center \includegraphics[scale=.14]{images_v3/splot_BDTZOOM.png} \column{1.3in} \center BDTG \\ \center \includegraphics[scale=.14]{images_v3/splot_BDTGZOOM.png} \column{1.3in} \center MatrixNet \\ \center \includegraphics[scale=.14]{images_v3/splot_MNOLDISOZOOM.png} \end{columns} \begin{exampleblock}{Conclusion} Again everything very consistent with statistical fluctuations. \end{exampleblock} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Acceptance} \begin{exampleblock}{~} All the classifiers show the same behavior: only the BDT is shown here (others in the backup) \end{exampleblock} \begin{columns} \column{2.5in} \center \includegraphics[scale=.11]{img_BDT/thetal.png}\\ \column{2.5in} \center \includegraphics[scale=.11]{img_BDT/q2.png} \end{columns} %%%%%%%%%% \begin{columns} \column{1.3in} \center \includegraphics[scale=.11]{img_BDT/thetak.png} \column{1.3in} \center \includegraphics[scale=.11]{img_BDT/q2.png} \column{1.3in} \center \includegraphics[scale=.11]{images_v3/Kpimass.png} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Chopping stability I} I have tested each formula on MC following the procedure: \begin{itemize} \item Add 10 formulas to MC ntuples. \item For each formula make a cut. \item Calculate the efficiency. \end{itemize} \end{frame} \begin{frame}\frametitle{Chopping stability I, BDTG} \begin{center} \begin{tabular}{ |c|c|c| } \hline Fold & Eff.$[\%]$ & Err.$[\%]$ \\ \hline 0 & $86.86$ & $0.09$ \\ \hline 1 & $87.04$ & $0.09$ \\ \hline 2 & $87.02$ & $0.09$ \\ \hline 3 & $86.88$ & $0.09$ \\ \hline 4 & $86.94$ & $0.09$ \\ \hline 5 & $87.02$ & $0.09$ \\ \hline 6 & $87.10$ & $0.09$ \\ \hline 7 & $86.99$ & $0.09$ \\ \hline 8 & $87.14$ & $0.09$ \\ \hline 9 & $87.12$ & $0.09$ \\ \hline \hline \end{tabular} \begin{exampleblock}{Conclusion} Everything consistent with statistical fluctuations! \end{exampleblock} \end{center} \end{frame} \begin{frame}\frametitle{Chopping stability II, MatrixNet} \begin{center} \begin{tabular}{ |c|c|c| } \hline Fold & Eff.$[\%]$ & Err.$[\%]$ \\ \hline 0 & $89.56$ & $0.08$ \\ \hline 1 & $89.59$ & $0.08$ \\ \hline 2 & $89.59$ & $0.08$ \\ \hline 3 & $89.60$ & $0.08$ \\ \hline 4 & $89.56$ & $0.08$ \\ \hline 5 & $89.56$ & $0.08$ \\ \hline 6 & $89.60$ & $0.08$ \\ \hline 7 & $89.63$ & $0.08$ \\ \hline 8 & $89.65$ & $0.08$ \\ \hline 9 & $89.55$ & $0.08$ \\ \hline \hline \end{tabular} \begin{exampleblock}{Conclusion} Everything consistent with statistical fluctuations! \end{exampleblock} \end{center} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{MC Data comparison} \begin{exampleblock}{} We performed MC/Data comparison using weights provided by Sam. \end{exampleblock} \begin{columns} \column{2.5in} \center \includegraphics[scale=.14]{images_v3/iso.png}\\ \center \includegraphics[scale=.14]{images_v3/iso_NEW.png} \column{2.5in} \center \includegraphics[scale=.155]{images_v3/MN_datamc.png}\\ \begin{exampleblock}{Conclusion} \small New Isolation in slightly better agreement. \\ \small MatrixNet in similar agreement as BDT. \end{exampleblock} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Effect of new K-pi mass window on the chopping I} Due to enlarged K-pi mass window the gain of chopping is reduced (but remember, the chopping helps also in keeping the results more homogeneous) \begin{columns} \column{2.5in} \center SMALL $\PKstar$ mass. \center \includegraphics[scale=.23]{images_v3/OLD.png} \column{2.5in} \center LARGE $\PKstar$ mass. \center \includegraphics[scale=.23]{images_v3/NEW.png} \end{columns} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{Effect of new K-pi mass window on the chopping II} \footnotesize We disagree with Sam on this issue.\\ Not easy to drive conclusion on ROC curve. Numerical results from 2 vs 10 Folds training. \begin{columns} \column{2.5in} \center 10 Folds, Large $\PKstar$ mass cut. \center \center \includegraphics[scale=.155]{images_v3/MN_0p15.png} \column{2.5in} \center 2 Folds, Large $\PKstar$ mass cut. \center \center \includegraphics[scale=.155]{images_v3/MN_0p16.png} \end{columns} \begin{exampleblock}{Conclusion} One gaisn $5\%$ background rejection. \end{exampleblock} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{TMVA vs MN performance} \begin{frame}\frametitle{TMVA vs MN} \footnotesize Both classifiers show the same level of correlation in angles. Let's see their performance. \begin{columns} \column{2.5in} \center MatrixNet\\ \center \center \includegraphics[scale=.2]{images_v3/MN_0p15.png} \column{2.5in} \center BDTG \center \center \includegraphics[scale=.2]{images_v3/BDTG_0p77.png} \end{columns} \begin{exampleblock}{Conclusion} Matrix Net we gain $2.4\%$ in signal and $6.9\%$ of bck rejection. \end{exampleblock} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}\frametitle{MatrixNet numbers} \begin{center} \begin{tabular}{ |c||c|c||c|c||c|c| } \hline $q^2$ &\multicolumn{2}{|c||}{MatrixNet} &\multicolumn{2}{|c||}{BDTG} \\ \hline \hline $[GeV^2]$ & Signal & Bck & Signal & Bck \\ \hline $0.1,2$ & $484 \pm 24$ & $54 \pm 7$ & $465 \pm 24$ & $58 \pm 7$ \\ \hline $2, 4.3$ & $291 \pm 21$ & $84 \pm 8$ & $270 \pm 20$ & $98 \pm 7$ \\ \hline $4.3, 8.68$ & $823 \pm 34$ & $221 \pm 11$ & $807 \pm 34$ & $235 \pm 11$ \\ \hline $10.09, 12.86$ & $660 \pm 28$ & $138 \pm 7$ & $658 \pm 28$ & $142 \pm 8$ \\ \hline $14.18, 16$ & $481 \pm 24$ & $58 \pm 5$ & $467 \pm 24$ & $66 \pm 6$ \\ \hline $16, 19$ & $532 \pm 25$ & $60 \pm 7$ & $529 \pm 25$ & $61 \pm 7$\\ \hline $0.1, 19$ & $3252 \pm 65$ & $638 \pm 20$ & $3173 \pm 65$ & $685 \pm 20$ \\ \hline \end{tabular}\\ \end{center} %This is more then $5\sigma$ significant improvement in back of the envelope calculation. \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Conclusion} \begin{frame}\frametitle{Conclusion} \begin{enumerate} \item Agreement in the MVA distribution for different sub-samples from the chopping: chopping helps in keeping results more homogeneous! \item Effectively we can use one classifier; simplification of the analysis. \item Slightly better performance of chopping in case of Larger $\PKstar$ mass window. \item New isolation is slightly better then the $\PBs\to \mu \mu$. \item MatrixNet performed slightly better then BDT. \end{enumerate} {~} \begin{exampleblock}{From last time (in agreement with present Sam's studies)} \begin{itemize} \item ProbbNN performs better than DLL (from our studies $15\%$ less background) \item NewIso slightly better than $\PBs \to \mu \mu$ (but with better Data/MC agreement). \end{itemize} \end{exampleblock} \end{frame} %\section{TMVA vs MN performance} \begin{frame}\frametitle{~} \center \Huge BACKUP \end{frame} \begin{frame}\frametitle{} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55 \begin{frame}\frametitle{Acceptance MatrixNet} \begin{exampleblock}{~} MatrixNet \end{exampleblock} \begin{columns} \column{2.5in} \center \includegraphics[scale=.11]{images_v3/thetal.png}\\ \center \includegraphics[scale=.11]{images_v3/thetak.png} \column{2.5in} \center \includegraphics[scale=.11]{images_v3/phi.png}\\ \center \includegraphics[scale=.11]{images_v3/q2.png} \end{columns} \end{frame} \end{document}