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Motivation

Likelihood(LL) fits even though widely used suffer from couple of
draw backs:

1. In case of small number events LL fits suffer from convergence
problems. This behaviour is well known and was observed
several times in toys when we done B→ K∗µµ.

2. LL can exhibit a bias when underlying physics model is not
well known, incomplete or mismodeled.

3. The LL have problems converging when parameters of the
p.d.f. are close to their physical boundaries, so-called
”boundary problem”

4. Accessing uncertainty in LL in some cases requires application
of computationally expensive Feldman-Cousins method.
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Method of Moments

MoM solves the above problems:

Advantages of MoM
I Probability distribution

function rapidity converges
towards the Gaussian
distribution.

I MoM gives an unbias result
even with small data sample.

I Insensitive to large class of
remodelling of physics
models.

I Is completely insensitive to
boundary problems.
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Method of Moments

MoM solves the above problems:

Advantages of MoM
I Each observable can be

determined separately from
other.

I Uncertainly follows perfectly
1/
√
N scaling.
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Method of Moments

MoM solves the above problems: Drawback:

Advantages of MoM
I Each observable can be

determined separately from
other.

I Uncertainly follows perfectly
1/
√
N scaling.

Advantages of MoM
I Estimated uncertainty in

MoM is larger then the
ones from LL.
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Introduction to MoM

Let us a define a probability density function p.d.f. of a decay:

P(~ν, ~ϑ) ≡
∑
i

Si (~ν)× fi (~ϑ) (1)

Let’s assume further that there exist a dual basis: {fi (~ϑ)}, {f̃i (~ϑ)}
that the orthogonality relation is valid:∫

Ω
d~ϑ f̃i (~ϑ)fj(~ϑ) = δij (2)

Since we want to use MoM to extract angular observables it’s
normal to work with Legendre polynomials. In this case we can find
self-dual basis:

∀i f̃i = fi , (3)

just by applying the ansatz: f̃i =
∑
i aij fj .

Marcin Chrząszcz (UZH) Extracting angular observables with Method of Moments 5 / 12



Determination of angular observables

Thanks to the orthonormality relation Eq. 2 one can calculate the
Si (~ν) just by doing the integration:

Si (~ν) =
∫

Ω
d~ϑP(~ν, ~ϑ)f̃i (~ϑ) (4)

We also need to integrate out the ~ν dependence:

〈Si 〉 =
∫

Θ
d~ν
∫

Ω
d~ϑP(~ν, ~ϑ)f̃i (~ϑ) (5)

MoM is basically performing integration in Eq. 5 using MC
method:

E [Si ]→ Ê [Si ] =
1
N

N∑
k=1

f̃ (xk)
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Uncertainty estimation

MoM provides also a very fast and easy way of estimating the
statistical uncertainty:

σ(Si ) =

√√√√ 1
N − 1

N∑
k=1

(f̃i (xk)− Ŝi )2 (6)

and the covariance:

Cov[Si , Sj ] =
1
N − 1

N∑
k=1

[Ŝi − f̃i (xk)][Ŝj − f̃j(xk)] (7)

Thanks to the CLT both equations are satisfied.
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Partial Waves mismodeling

I Let us consider a decay of
B→ P1P2µ−µ+.

I In terms of angular p.d.f. is expressed in
terms of partial-wave expansion.

I For B→ Kπµ−µ+ system, S,P,D waves
have been studied.

I The muon system of this kind of decays has a fixed angular
dependence in terms of ϑ1 and ϑ3.

I The hadron system can have arbitrary large angular
momentum.
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Partial Waves mismodeling

I One can write the p.d.f. separating the
hadronic system:

P(cosϑ1, cosϑ2, ϑ3) = (8)∑
i

Si (~ν, cosϑ2)fi (cosϑ1, ϑ3)

I Si (~ν, cosϑ2) can be further expend in terms of Legendre
polynomials p|m|l (cosϑ2):

Si (~ν, cosϑ2) =
inf∑
l=0

Sk,l(~ν)p
|m|
l (cosϑ2) (9)

I Experimentally the Sk,l are easily accessible, but there is a
theoretical difficulty as one would need to sum over infinite number
of partial waves.
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Detector effects

I Since our detectors are not a
perfect devices the angular
distribution observed by them are
not the distributions that the
physics model creates.
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I To take into account the acceptance effects one needs to
simulate the a large sample of MC events.
Try to figure out the efficiency function.

I Try to figure out the efficiency function.
I Number of possibilities.
I Then you can just weight events:

Ê [Si ] =
1∑N
k=1 wk

N∑
k=1

wk f̃ (xk), wk =
1

ε(xk)
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Unfolding matrix

In general one can write the distribution of events after the
detector effects:

PDet(xd) = N
∫ ∫
dxt dxd P

Phys(xt)E (xd |xt), (10)

where N−1 =
∫ ∫
dxt dxd PPhys(xt)E (xd |xt) and (xd |xt) denotes

the efficiency ε(xt) and resolution of the detector R(xd |xt):

E (xd |xt) = ε(xt)R(xd |xt) (11)

One can define the raw moments:

Q(m)
i =

∫ ∫
dxt dxd f̃i (xd)P

(m)(xt)E (xd |xt) (12)

The m index corresponds to simulation sample that has S0 and Sm
observables set to 12 and rest to zero.
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Unfolding matrix

Once again we can use MC estimator:

Q(m)
i → Q̂(m)

i =
1
Nt

Nd∑
i

f̃i (x
i ,m
d ) (10)

Linearity of the integral ensures that there has to exists a linear
transformation:

~Q = M~S , (11)

where M is so-called unfolding matrix, given by the formula:

Mij =

2Q(0)
i j = 0 ,

2
(
Q(j)
i − Q

(0)
i

)
j 6= 0 ,

(12)

Once we measured the moments Q in data we can invert Eq. 11
and get the ~S :

~̂S = M−1 ~̂Q, (13)
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Toy Validation

I All the statistics properties of
MoM have been tested in numbers
of TOY MC.

I As long as you have ∼ 30 events
your pulls are perfectly gaussian.

I Uncertainty scales with α√
n ,

α = O(1).
I Never observed any boundary

problems.
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Correlation of MoM with Likelihood

I MoM is highly correlated with LL.
I Despite the correlation there can

be difference of the order of
statistical error.
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Conclusions

1. MoM posses several big advantages with one drawback which
is larger statistical uncertainty.

2. Allows us to go smaller q2 bins (get ready for 1 GeV2 soon!).

3. Alternative method of extracting the detector effects.

4. Can be applied to various rare decays.
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