Extracting angular observables with Method of Moments

Marcin Chrząszcz¹ in collaboration with Frederik Beaujean, Nicola Serra and Danny van Dyk,

based on *[arXiv:1503.04100](http://arxiv.org/abs/1503.04100)*

¹ University of Zurich

May 8, 2015

- **1.** Motivation.
- **2.** Method of Moments.
- **3.** Systematic uncertainties.
- **4.** MC toy studies.
- **5.** Conclusions.

Likelihood(LL) fits even though widely used suffer from couple of draw backs:

- **1.** In case of small number events LL fits suffer from convergence problems. This behaviour is well known and was observed several times in toys when we done $B \to K^* \mu \mu$.
- **2.** LL can exhibit a bias when underlying physics model is not well known, incomplete or mismodeled.
- **3.** The LL have problems converging when parameters of the p.d.f. are close to their physical boundaries, so-called "boundary problem"
- **4.** Accessing uncertainty in LL in some cases requires application of computationally expensive Feldman-Cousins method.

MoM solves the above problems:

Advantages of MoM

- \blacktriangleright Probability distribution function rapidity converges towards the Gaussian distribution.
- \triangleright MoM gives an unbias result even with small data sample.
- \blacktriangleright Insensitive to large class of remodelling of physics models.
- \blacktriangleright Is completely insensitive to boundary problems.

MoM solves the above problems:

Advantages of MoM

- \blacktriangleright Each observable can be determined separately from other.
- ▶ Uncertainly follows perfectly $1/\sqrt{N}$ scaling.

MoM solves the above problems: Drawback:

Advantages of MoM

- \blacktriangleright Each observable can be determined separately from other.
- ▶ Uncertainly follows perfectly $1/\sqrt{N}$ scaling.

Advantages of MoM

 \blacktriangleright Estimated uncertainty in MoM is larger then the ones from LL.

Introduction to MoM

Let us a define a probability density function p.d.f. of a decay:

$$
P(\vec{\nu},\vec{\vartheta})\equiv\sum_{i}S_{i}(\vec{\nu})\times f_{i}(\vec{\vartheta})
$$
\n(1)

Let's assume further that there exist a dual basis: $\{f_i(\vec{\vartheta})\}$, $\{\tilde{f}_i(\vec{\vartheta})\}$ that the orthogonality relation is valid:

$$
\int_{\Omega} d\vec{\vartheta} \, \tilde{f}_i(\vec{\vartheta}) f_j(\vec{\vartheta}) = \delta_{ij} \tag{2}
$$

Since we want to use MoM to extract angular observables it's normal to work with Legendre polynomials. In this case we can find self-dual basis:

$$
\forall_i \tilde{f}_i = f_i \tag{3}
$$

just by applying the ansatz: $\widetilde{f}_i = \sum_i a_{ij} f_j.$

Determination of angular observables

Thanks to the orthonormality relation Eq. [2](#page-6-0) one can calculate the $S_i(\vec{v})$ just by doing the integration:

$$
S_i(\vec{\nu}) = \int_{\Omega} d\vec{\vartheta} P(\vec{\nu}, \vec{\vartheta}) \tilde{f}_i(\vec{\vartheta}) \tag{4}
$$

$$
\langle S_i \rangle = \int_{\Theta} d\vec{\nu} \int_{\Omega} d\vec{\vartheta} P(\vec{\nu}, \vec{\vartheta}) \tilde{f}_i(\vec{\vartheta}) \tag{5}
$$

$$
E[S_i] \rightarrow \widehat{E[S_i]} = \frac{1}{N} \sum_{k=1}^N \tilde{f}(x_k)
$$

Determination of angular observables

Thanks to the orthonormality relation Eq. [2](#page-6-0) one can calculate the $S_i(\vec{v})$ just by doing the integration:

$$
S_i(\vec{\nu}) = \int_{\Omega} d\vec{\vartheta} P(\vec{\nu}, \vec{\vartheta}) \tilde{f}_i(\vec{\vartheta}) \tag{4}
$$

We also need to integrate out the $\vec{\nu}$ dependence:

$$
\langle S_i \rangle = \int_{\Theta} d\vec{\nu} \int_{\Omega} d\vec{\vartheta} P(\vec{\nu}, \vec{\vartheta}) \tilde{f}_i(\vec{\vartheta}) \tag{5}
$$

$$
E[S_i] \rightarrow \widehat{E[S_i]} = \frac{1}{N} \sum_{k=1}^N \tilde{f}(x_k)
$$

Determination of angular observables

Thanks to the orthonormality relation Eq. [2](#page-6-0) one can calculate the $S_i(\vec{v})$ just by doing the integration:

$$
S_i(\vec{\nu}) = \int_{\Omega} d\vec{\vartheta} P(\vec{\nu}, \vec{\vartheta}) \tilde{f}_i(\vec{\vartheta}) \tag{4}
$$

We also need to integrate out the $\vec{\nu}$ dependence:

$$
\langle S_i \rangle = \int_{\Theta} d\vec{\nu} \int_{\Omega} d\vec{\vartheta} P(\vec{\nu}, \vec{\vartheta}) \tilde{f}_i(\vec{\vartheta}) \tag{5}
$$

MoM is basically performing integration in Eq. [5](#page-7-0) using MC method:

$$
E[S_i] \rightarrow \widehat{E[S_i]} = \frac{1}{N} \sum_{k=1}^N \tilde{f}(x_k)
$$

MoM provides also a very fast and easy way of estimating the statistical uncertainty:

$$
\sigma(S_i) = \sqrt{\frac{1}{N-1}\sum_{k=1}^N(\tilde{f}_i(x_k)-\hat{S}_i)^2}
$$
(6)

and the covariance:

Cov[S_i, S_j] =
$$
\frac{1}{N-1} \sum_{k=1}^{N} [\hat{S}_i - \tilde{f}_i(x_k)][\hat{S}_j - \tilde{f}_j(x_k)]
$$
 (7)

MoM provides also a very fast and easy way of estimating the statistical uncertainty:

$$
\sigma(S_i) = \sqrt{\frac{1}{N-1}\sum_{k=1}^N(\tilde{f}_i(x_k)-\hat{S}_i)^2}
$$
(6)

and the covariance:

Cov[S_i, S_j] =
$$
\frac{1}{N-1} \sum_{k=1}^{N} [\hat{S}_i - \tilde{f}_i(x_k)][\hat{S}_j - \tilde{f}_j(x_k)]
$$
 (7)

Thanks to the CLT both equations are satisfied.

Partial Waves mismodeling

- \blacktriangleright Let us consider a decay of $B \to P_1 P_2 \mu^- \mu^+$.
- In terms of angular p.d.f. is expressed in terms of partial-wave expansion.
- ^I For B *→* K*πµ−µ* ⁺ system, S,P,D waves have been studied.

 \triangleright The hadron system can have arbitrary large angular momentum.

Partial Waves mismodeling

 \triangleright One can write the p.d.f. separating the hadronic system:

$$
P(\cos \vartheta_1, \cos \vartheta_2, \vartheta_3) = \sum_i S_i(\vec{\nu}, \cos \vartheta_2) f_i(\cos \vartheta_1, \vartheta_3)
$$
(8)

 \triangleright *S*_{*i*}(\vec{v} , cos ϑ_2) can be further expend in terms of Legendre polynomials *p |m|* $\partial_l^{|m|}(\cos\vartheta_2)$:

$$
S_i(\vec{\nu},\cos\vartheta_2)=\sum_{l=0}^{\inf}S_{k,l}(\vec{\nu})p_l^{|m|}(\cos\vartheta_2)\qquad\qquad(9)
$$

Experimentally the $S_{k,l}$ are easily accessible, but there is a theoretical difficulty as one would need to sum over infinite number of partial waves.

Detector effects

- \triangleright Since our detectors are not a perfect devices the angular distribution observed by them are not the distributions that the physics model creates. $\cos \theta_{K}$ -1 -0.5 0 0.5 1 **Efficiency** $0 0.5$ \vdash 1 simulation I HC_b
	- \triangleright To take into account the acceptance effects one needs to
	- \triangleright Try to figure out the efficiency function.
	- \triangleright Number of possibilities.
	-

Detector effects

- \triangleright Since our detectors are not a perfect devices the angular distribution observed by them are not the distributions that the physics model creates. $\cos \theta_{K}$ -1 -0.5 0 0.5 1 **Efficiency** $0 0.5$ \vdash 1 simulation I HC_b
	- \blacktriangleright To take into account the acceptance effects one needs to simulate the a large sample of MC events. Try to figure out the efficiency function.
	- \blacktriangleright Try to figure out the efficiency function.
	- \blacktriangleright Number of possibilities.
	- \blacktriangleright Then you can just weight events:

$$
\widehat{E[S_i]} = \frac{1}{\sum_{k=1}^N w_k} \sum_{k=1}^N w_k \tilde{f}(x_k), \ w_k = \frac{1}{\epsilon(x_k)} \qquad \text{University of}
$$

Unfolding matrix

In general one can write the distribution of events after the detector effects:

$$
P^{\text{Det}}(x_d) = N \int \int dx_t \, dx_d \, P^{\text{Phys}}(x_t) E(x_d | x_t), \qquad (10)
$$

where $N^{-1} = \int\int dx_t\; d\mathsf{x}_d\; P^{\rm Phys}(\mathsf{x}_t) E(\mathsf{x}_d|\mathsf{x}_t)$ and $(\mathsf{x}_d|\mathsf{x}_t)$ denotes the efficiency $\epsilon(x_t)$ and resolution of the detector $R(x_d|x_t)$:

$$
E(x_d|x_t) = \epsilon(x_t)R(x_d|x_t)
$$
\n(11)

$$
Q_i^{(m)} = \int \int dx_t \, dx_d \, \tilde{f}_i(x_d) P^{(m)}(x_t) E(x_d | x_t) \tag{12}
$$

University of

Unfolding matrix

Once again we can use MC estimator:

$$
Q_i^{(m)} \rightarrow \widehat{Q}_i^{(m)} = \frac{1}{N_t} \sum_i^{N_d} \widetilde{f}_i(x_d^{i,m})
$$
(10)

Linearity of the integral ensures that there has to exists a linear transformation:

$$
\vec{Q} = M\vec{S},\tag{11}
$$

where *M* is so-called unfolding matrix, given by the formula:

$$
M_{ij} = \begin{cases} 2Q_i^{(0)} & j = 0 \,, \\ 2\left(Q_i^{(j)} - Q_i^{(0)}\right) & j \neq 0 \,, \end{cases}
$$
(12)

Once we measured the moments *Q* in data we can invert Eq. 11 and get the \vec{S} :

$$
\widehat{\vec{S}} = M^{-1} \widehat{\vec{Q}},
$$

Toy Validation

- \blacktriangleright All the statistics properties of MoM have been tested in numbers of TOY MC.
- ^I As long as you have *∼* 30 events your pulls are perfectly gaussian.
- **►** Uncertainty scales with $\frac{\alpha}{\sqrt{n}}$, $\alpha = \mathcal{O}(1)$.
- \blacktriangleright Never observed any boundary problems.

Correlation of MoM with Likelihood

- \triangleright MoM is highly correlated with LL.
- \triangleright Despite the correlation there can be difference of the order of statistical error.

Marcin Chrząszcz (UZH) [Extracting angular observables with Method of Moments](#page-0-0) 12 / 12

- **1.** MoM posses several big advantages with one drawback which is larger statistical uncertainty.
- **2.** Allows us to go smaller q^2 bins (get ready for 1 GeV² soon!).
- **3.** Alternative method of extracting the detector effects.
- **4.** Can be applied to various rare decays.

